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Abstract: Consider the linear regression model 
 
y = X + u  in the usual notation. In many applications the design matrix 

X is frequently subject to severe multicollinearity. In this paper an alternative estimation methodology, maximum entropy 

is given and used to estimate the parameters in a linear regression model when the basic data are ill-conditioned. We de-

scribed the generalized maximum entropy (GME) estimator, imposing sign restrictions of parameters and imposing cross 

parameter restrictions for GME. Mean squared error (mse) values of the estimators are estimated by the bootstrap method. 

We compared the generalized maximum entropy (GME) estimator, least squares and inequality restricted least squares 

(IRLS) estimator on the widely analyzed dataset on Portland cement. 
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1. INTRODUCTION 

In the econometric literature a distinction is usually made 

between the types of problem that can affect the classical 

regression model. A problem is described as being ill-posed 

because of non-stationarity or because the number of pa-

rameters to be estimated exceeds the number of data points. 

Alternatively, a problem is described as being ill-conditioned 

when the parameter estimates are highly unstable. This fre-

quently occurs when the data generating process is badly 

designed, or the data are generated non-experimentally. One 

problem in this case is collinearity of the data. The problem 

of multicollinearity and its statistical consequences on a lin-

ear regression model are very well-known in statistics. The 

multicollinearity is defined as the existence of nearly linear 

dependency among column vectors of the design matrix  X  
in the linear model 

 
y = X + .  The best way of explaining 

the existence and structure of multicollinearity is to look at 

the eigenvalues and eigenvectors of the matrix  X X.  The 

existence of multicollinearity may result in wide confidence 

intervals for individual parameters (unstable estimates), may 

give estimates with wrong signs and may affect our decision 

in a hypothesis testing. Severe multicollinearity may make 

the estimates so unstable that they become practically use-

less. In the statistics literature there are several standard ap-

proaches for dealing with the problem of collinearity. 

This paper examines the generalized maximum entropy 

(GME) estimator in the linear model. The maximum entropy 

estimator is based on Shanon’s (information) entropy con-

cept [1] and maximum entropy principle [2].  
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To date Golan et al. [3] have considered applications of 

GME when the basic data are ill-conditioned and suggest 

that GME is a feasible alternative method of estimation 

when faced by ill-conditioned linear inverse problems 

Campbell  and Hill [4] carry out an extensive Monte Carlo 

experiment in which the effect of the degree of collinearity 

on the MSE of both GME and restricted GME Campbell  

and Hill [5] consider the support spaces and effects of collin-

earity in a Monte Carlo experiment. 

Wu [6] generalized the GME method to the weighted 

GME (W-GME) and proposed a data driven method to select 

the weights in the entropy objective function. Since GME 

estimation requires us to specify bounds for parameters, we 

discuss how to specify the GME parameter and error support 

matrices. We vary the GME parameter and error support 

matrices and examine the sensitivity of the GME estimates 

to the prior information imposed. Applications of restricted 

maximum entropy estimation can be found in [7] and [8]. 

Mishra [9] compared the restricted Liu estimates of re-

gression coeffecients with those obtained by applying the 

maximum entropy Leuven (MEL) family of estimators on 

the widely analyzed dataset on Portland cement. Using a new 

development in the method of comparative statics, the sensi-

tivity of the resulting coefficient and error estimates to the 

prior information is investigated in [10]. 

The remainder of the paper is organized as follows. Sec-

tion 2 reviews GME estimation in the linear regression 

model. In Section 3, to illustrate the theoretical results we 

consider a dataset on Portland cement. We estimate a regres-

sion model, using GME and compare the GME estimates to 

least squares estimates, inequality restricted least squares 

(IRLS) estimates, We also describe how to impose inequality 

restrictions through the GME parameter support matrix. 
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2. GENERALIZED MAXIMUM ENTROPY ESTIMA-
TION IN THE GENERAL LINEAR MODEL 

In this section, we briefly review the principle of the gen-

eralized maximum entropy estimator for the linear models 

2.1. The GME Estimator 

To explain how GME works consider the classical gen-

eral linear model (GLM)  

 

y
t
= X

tk

k=1

K

k
+

t
, t =1,2,...,N           (1) 

or  in matrix form as 

 
y = X + e                              (2) 

where 
 
y  is an  N 1  vector of sample observations on the 

dependent variable,  X  is an  N K  design matrix,  is a 

 K 1  vector of unknown parameters and  e  is an  N 1  vec-

tor of unknown errors. Our objective is to estimate the vector 

 from the sample observations y. 

The GME estimator requires a number of support values 

supplied subjectively and exogenously by the researcher. 

The estimates as well as their standard errors depend on 

those support values. Lacking such theoretical knowledge, 

we usually assume the support space is symmetric around 

zero with large range. 

Golan et al. [3] recommend using the “three-sigma rule” 

of [11] to establish bounds on the error components: the 

lower bound is: 

= -3
 
ˆ

y
 and the upper bound is =+3

 
ˆ

y
, where 

 
ˆ

y
 

is the empirical standard deviation of the sample y. For ex-

ample if J=5, then 
 
v = ( 3ˆ

y
, 1.5 ˆ

y
,0,1.5 ˆ

y
,3 ˆ

y
)

 
[12]. 

We briefly summarize how we would obtain a GME es-

timate of equation (2) [3] proceed by “reparameterizing”  

to obtain a problem for which the  values are uniquely 

determined. This is done by defining a support for  and set 

of weights which are often called probabilities over the sup-

port [3] generalize the maximum entropy methodology and 

reparameterize the linear model such that the unknown pa-

rameters and the unknown errors are in the form of prob-

abilities. Using the reparameterized unknowns, 
 
= Zp  and 

 e = Vw , we rewrite the GLM, equation (2), as  

 
y = X + e =

 
XZp+Vw                   (3) 

where Z is a  K KM  matrix of support points, and p is a 

 KM 1  vector of unknown weights such that 
 
p

km
> 0  and 

 
p

k
i
M
=1  for all k where 

 
i
M
= 1,1,...,1  and M is the number 

of support points. Each regression coefficient 
 k

 is reparam-

eterized as a discrete random variable with a compact sup-

port interval consisting of  2 M < possible outcomes, 

where a support interval is defined as a closed and bounded 

interval of the real line. We can express each 
 k

 as a convex 

combination 
 k

= z
k
p

k
, where 

 
z

k
= z

k1
,...,z

kM
 and 

 
p

k
= p

k1
,...,p

kM
 (see [10]). Similarly V is a  N NJ  matrix 

of known support values for  e  and  w  is a vector of prob-

ability weights  NJ 1  such that  w > 0  and 
 
w

t
i
J
=1  for each 

t where 
 
i
J
= 1,1,...,1 , where J is the number of support val-

ues chosen for each error 
 
w

t
.  

We jointly estimate the unknown parameters and errors 

by solving the constrained optimization problem: 

Max 
 
H(p,w) = p ln(p) w ln(w)

                      (4)
 

subject to  

eXy += = VwXZp + , KMK ipiI =)( , 
NJN iwiI =)(  (5) 

where  is the Kronecker product. For this problem, we can 

apply Lagrange method. The lagrangian equation takes the 

form 

VwXZpywwppL )()ln()ln( +=  

[ ] [ ]wiIipiIi JNNMKK )()( ++                  (6) 

Solving the first order conditions, the GME parameter 

and error estimates are given by 

 
ˆ

GME
= Zp̂                     (7) 

and 

 
ê

GME
= Vŵ                     (8) 

where 
 
p̂ and   ŵ  are the estimated probability vectors.  

3. APPLICATIONS OF GENERALIZED MAXIMUM 
ENTROPY ESTIMATORS TO THE PORTLAND CE-

MENT DATASET 

We now consider in this section a dataset on Portland 

cement originally due to Woods et al., [13]. We assemble 

our data as follows: 

 

X = (x
1
;x

2
,x

3
,x

4
) =

7 26 6 60

1 29 15 52

11 56 8 20

11 31 8 47

7 52 6 33

11 55 9 22

3 71 17 6

1 31 22 44

2 54 18 22

21 47 4 26

1 40 23 34

11 66 9 12

10 68 8 12

,

 

x
i

i=1

4

=

99

97

95

97

98

97

97

98

96

98

98

98

98

,

 

y =

78.5

74.3

104.3

87.6

95.9

109.2

102.7

72.5

93.1

115.9

83.8

113.3

109.4
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These data come from an experimental investigation of 

the heat evolved during the setting and hardening of Portland 

cements of varied composition and the dependence of this 

heat on the percentages of four compounds in the clinkers 

from which the cement was produced. In this example, the 

dependent variable 
 
y  is defined as heat evolved in calories 

per gram of cement. The four compounds considered by [13] 

are tricalcium aluminate
 
(X

1
) , tricalcium silicate 

 
(X

2
) , tet-

racalcium alumino ferrite 
 
(X

3
) , - dicalcium silicate 

 
(X

4
) . 

The four columns of the 13x4 matrix X comprise the data on 

 
x

1
,x

2
,x

3
,x

4
respectively. 

Consider the following homogeneous linear regression 

model: 

 
y = X + u =

1
x

1
+

2
x

2
+

3
x

3
+

4
x

4
+ u .                (9) 

The ordinary least squares estimates of  and their esti-

mated standard errors (in parentheses) together with the as-

sociated t-statistics with n-p =13-4=9 degrees of freedom and 

two-sided critical values (in parentheses) are: 

  

OLS
=

2.1931

1.1533

0.7585

0.4863

 , 

 

(0.1853)

(0.0479)

(0.1595)

(0.0414)

, 

 

11.84

24.06

4.76

11.74

, 

 

(< 0.0001)

(< 0.0001)

(0.0010)

(< 0.0001)
 

where 
  

2

OLS
= 5.845461  and the mŝe

  
(

OLS
) = 0.0638 . We 

note that all of the t-statistics are highly significant.  

The condition number of X is 
 

(X) = 20.5846 so X may 

be considered as “well-conditioned”. We now, however, 

following Hald ([14], pp.648-649) and Gorman and Toman 

([15], pp. 35-36), Daniel and Wood ([16], pp: 89) and [17] 

add a column of ones to the matrix X and fit an inhomogene-

ous linear regression model with intercept to the data. Now, 

consider the following regression model: 

 
y =

0
+

1
x

1
+

2
x

2
+

3
x

3
+

4
x

4
+ u .                (10) 

It is seen that the row totals of the 13 4 matrix X  

(without the column of ones) are all approximately equal  

to 100 (the compounds are all measured in percentages).  

We still have n=13 observations but there are now  

p=5 unknown regression coefficients. The 13x5 matrix  

X now has singular values 
 1

= 211.3675 , 
 2

= 77.2361,  

 3
= 28.4597 , 

 4
=10.2674,  

 5
= 0.0349 . The condition 

number of X is now 
 

(X) =
 1

/
5
= 6056.37 , which is ex-

ceptionally large and so X may be considered as being quite 

“ill-conditioned”. With an intercept the associated inhomo-

geneous linear model certainly posses “high multicollinear-

ity” with possible effects on the OLS estimates 

 
ˆ

0
, ˆ

1
, ˆ

2
, ˆ

3
, ˆ

4
.  The ordinary least squares estimates of  

and their estimated Standard errors (in parenthesis) together 

with the associated t-statistics with n-p =13-4=9 degrees of 

freedom and two-sided critical values (in parenthesis) are: 

 

ˆ
OLS

=

62.4054

1.5511

0.5102

0.1019

0.1441

, 

 

(70.0710)

(0.7448)

(0.7238)

(0.7547)

(0.7091)

, 

 

0.89

2.08

0.70

0.14

0.20

,

 

(0.3991)

(0.0708)

(0.5009)

(0.8959)

(0.8441)

 

We note that not one of these t-statistics is significant (at 

the 5% level). Thus, the estimated regression function is:  

 
ŷ = 62.4054+1.551x

1
+0.5102x

2
+0.1019x

3
0.1441x

4
, 

 
ˆ 2

OLS
=5.982955 and  R

2
= 0.9824 , which implies that 

98.24% of the total variation has been explained by the re-

gressors.  

Following [17], we may improve our estimates by adding 

to the inhomogeneous model with intercept the linear restric-

tion 
 3

=
2 1

 or 
 
R = r = 0  where R = (0, 1, -1, 1, 0

 
) . We 

test the linear hypothesis 
 
H

o
: R = r = 0  in the unrestricted 

linear model (10). The test statistic for testing the null-

hypothesis 
 
H

o
 against 

 
H

1
: R r = 0 , given our observa-

tions, is 

 

F =
(R ˆ

OLS
r) (RS

1
R )

1
(R ˆ

OLS
r)

ˆ 2
=1.92. 

Since 
 
F

0.05,1,8
= 5.32 , 

 
H

o
 is not rejected at the 5% signifi-

cance level. We have the following estimates for  
2

:  

(a) unrestricted inhomogeneous model: 
 
ˆ 2

OLS
=5.982955 

(b) restricted inhomogeneous model with the restriction 

 3
=

2 1
: 

 
ˆ 2

c
= 6.59199 . 

Table 1 gives summary statistics for the data. The sample 

coefficient of variation is defined as  CV = s / x , where  s  is 

Table 1. Summary Statistics for Cement Data (n=13 Observations) 

Variable Mean Min. Max. Standard Deviation CV=
 

s
x

 

y 95.423 72.500 115.900 15.044 0.158 

x1 7.462 1.000 21.000 5.882 0.788 

x2 48.154 26.000 71.000 15.561 0.323 

x3 11.769 4.000 23.000 6.405 0.544 

x4 30.000 6.000 60.000 16.738 0.558 



16    The Open Statistics & Probability Journal, 2011, Volume 3 Akdeniz et al. 

the sample standard deviation and  x is the absolute value of 

the sample mean. 

Table 2 gives the sample correlation matrix. 

As can be seen from Table 2 the sample correlation coef-

ficients are: 
 
r
x

1
x

2

= 0,229 ,
 
r
x

1
x

3

= 0,824 , 
 
r
x

1
x

4

= 0,245  

 
r
x

2
x

3

= 0.139 , 
 
r
x

2
x

4

= 0.973 and 
 
r
x

3
x

4

= 0.030  [18] notes cor-

relation and collinearity are not the same. It is possible to 

have data that are subject to collinearity when the correlation 

between pairs of explanatory variables is low.  

3.1. Prior Mean of Each Parameter Is Zero 

For both the coefficient and error supports, we need to 

select the number of points, M and J, respectively. 

GME- First consider the parameter support. We choose 

M=5 support points for each parameter. First consider the 

parameter support. Here we specify wide bounds of 

 
75,75  (for the intercept term, 4, 4[ ]  for 1  and…) 

 
2,2  for the other coefficients. The supports are symmet-

ric about zero so prior mean of each parameter is zero. Table 

3 gives the parameter support for GME.  

We also need the error support for the GME estimates. 

We initially construct the GME estimator with error bounds 

 ±3 . However, since  is not known we must replace it 

with a consistent estimator. We considered two possible es-

timates for : 1)  ˆ = 2.446  from the OLS regression, 2) The 

sample standard deviation of y is  s =15.044 . We used the 

more conservative value s=15.044 of the sample standard 

deviation of y. Using the sample standard deviation of y,  3  

and  4 - rule results are: 

For 3  and M=5
  
v = -46    -23     0     23    46{ }  

For 4  and M=5 
 
v = -60    -30     0     30    60{ }  

For 3  and M=7

 { }-46    -30.67    -15.33     0     15.33    30.67   46v =  

For 4  and M=7 { }-60    -40     -20      0     20     40    60v =
 

Table 4 gives point estimates for the cement data using 

OLS, and GME estimators, where S3 and S4 refer to the use 

of a  3  and  4 - rule respectively.  

We have obtained that the results are not improved by us-

ing more than 5 support points. The results show that the 

GME estimates differ much from OLS in terms of the signs 

and magnitudes of the estimates. The GME estimates for 
0  

and 1  are smaller than the OLS estimate, while the GME 

estimates for 
2 , 3

and 4 are larger in magnitude than the 

OLS estimates. 

Using Table 4, we have  

 
ˆ

OLS
ˆ

OLS
=

 3897.08 >  
ˆ

GME1S3M7
ˆ

GME1S3M7
= 703.119

 

> 
ˆ

GME1S3M5
ˆ

GME1S3M5
= 699.790

 >
 
 
ˆ

GME1S4M7
ˆ

GME1S4M7
= 686.198

 

>  
ˆ

GME1S4M5
ˆ

GME1S4M5
= 682.648

. 

On the other hand, mean squared error (mse) values of 

the estimators are estimated by the bootstrap method. The 

idea behind the bootstrap is as follows: Let 
 

 be an estimate 

of the coefficient vector ,   
2
denotes the estimated residual 

variance and 
  e denotes the standardized estimated residual 

Table 2 Sample Correlation Matrix 

 y x1 x2 x3 x4 

y 1.000 0.731 0.816 -0.535 -0.821 

x1 0.731 1.000 0.229 -0.824 -0.245 

x2 0.816 0.229 1.000 -0.139 -0.973 

x3 -0.535 -0.824 -0.139 1.000 0.030 

x4 -0.821 -0.245 -0.973 0.030 1.000 

 

Table 3. Parameter Support for GME-S3 and GME-S4 

Parameter Parameter Support (M=5) Parameter Support (M=7) 
Prior 

Mean 

 0
  (constant) { }0

-75  -37.5  0  37.5  75z =  { }0
-75 -50 -25 0 25 50 75z =  0 

 1
 

 
x

1
 

 
z

1
= -4    -2     0     2    4{ }  { }1

-4 -2.67 -1.33 0 1.33 2.67 4z =  0 

 2
 
 
x

2
 

 
z

2
= -2    -1     0     1    2{ }  { }2

-2 -1.33 -0.66 0 0.66 1.33 2z =  0 

 3
 

 
x

3
 

 
z

3
= -2    -1     0     1    2{ }  { }3

-2 -1.33 -0.66 0 0.66 1.33 2z =  0 

 4
 
 
x

4
 

 
z

4
= -2    -1     0     1    2{ }  { }4

-2 -1.33 -0.66 0 0.66 1.33 2z =  0 
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vector, which is obtained using 
 

 in (2). For the j-th boot-

strap replication, 
  
e

j

*
, a random sample of 

  e with replacement 

is taken and multiplied by  . Using this 
  
e

j

*
, 

 
and the X  

matrix; 
 
y

j

*  is computed from the equation (2). For this boot-

strap sample
 
y

j

*  and design matrix X, 
  j

*
, j-th bootstrap esti-

mate of 
 

is computed. This procedure is replicated for 

10000 times to obtain the empirical sampling distribution of 

 
. After then, the variance and the expected value of each 

element in 
 

is estimated with this sampling distribution. 

Scalar mse of 
 

is estimated using bootstrap variances and 

expected values in 
  
mse( ) = trace cov( )}+ bias( ){ bias( ) . 

On the other hand, since the true value of  is not known, we 

used OLS estimate of  to estimate bias as  

  
biaŝ( ) = Ê( )

OLS
, where 

  
Ê( ) is the bootstrap estimate of 

the expected value. Estimated mse values are as follows 

 
mŝe( ˆ

OLS
) = 4402.698

 > 
 
mŝe ˆ

GME1S4M5( ) =1326.741
 

>
 

 
mŝe ˆ

GME1S4M7( ) =1320.869 >
  

mŝe ˆ
GME1S3M5( ) =1306.551

 
> 

 
mŝe ˆ

GME1S3M7( ) =1300.118 . 

Golan et al. [3] show that the GME estimator has a lower 

mean squared error than the OLS, Ridge and RLS estimators 

in several sampling experiments, particularly when the data 

exhibit a high degree of collinearity.  

We now modify our parameter support to account for the 

expected signs of the coefficients. 

3.2. Imposing Sign Restrictions of Parameters for GME  

R1GME- If we expect the coefficients to have positive 

effect, we modify the parameter support such that the prior 

mean of their coefficients is positive. We impose correct sign 

restrictions for all the parameters. The prior mean is simply 

the value the parameters are shrunk toward, not a binding 

restriction. When we restrict the parameter estimates to be 

positive we obviously must specify a positive prior mean. 

For the R1GME estimator we specify the parameter support 

for 
 1

 as 
 
0 0.5 1 1.5 2  which has a prior mean 1. We 

choose M=5 support points for each parameter. Table 5 gives 

the parameter support for R1GME. When we restrict the 

parameter estimates to be positive we must specify a positive 

prior mean.  

We again specify error supports using  ±3  and  ±4 ., 

3.3. Imposing Cross Parameter Restrictions for GME 

R2GME-We now estimate the Hald data (cement data) 

model with sign restrictions plus the additional restriction 

that 
 1 4

>0. This is just a made up restriction to illustrate 

Table 4. OLS, and GME Estimates (n=13 Observations) 

Variable and Parameter OLS 
M=5 

GME-S3 

M=5 

GME-S4 

M=7 

GME-S3 

M=7 

GME-S4 

constant 
 0

 62.405 
26.398 

(0.388) 

26.077 

(0.366) 

26.461 

(0.380) 

26.145 

(0.360) 

 
x

1
 

 1
 1.551 

1.368 

(0.191) 

1.247 

(0.193) 

1.369 

(0.190) 

1.248 

(0.192) 

 
x

2
 
 2

 0.510 
0.972 

(0.027) 

0.978 

(0.024) 

0.970 

(0.027) 

0.976 

(0.024) 

 
x

3
 

 3
 0.102 

0.162 

(0.039) 

0.147 

(0.029) 

0.163 

(0.039) 

0.148 

(0.029) 

 
x

4
 
 4

 -0.144 
0.305 

(0.025) 

0.324 

(0.023) 

0.304 

(0.025) 

0.324 

(0.023) 

Bootstrap standard error estimates are given in parenthesis. 

 

Table 5. Parameter Support for R1GME (Sign Restrictions Only) 

Variable and Parameter Parameter Support Prior Mean 

constant 
 0

 
 
z

0
= 0.0    30.0    60.0    90.0     120.0{ }  60.0 

 
x

1
 

 1
 

 
z

1
= 0    0.5     1   1.5  2{ }  1 

 
x

2
 
 2

 
 
z

2
= 0    0.5     1   1.5  2{ }  1 

 
x

3
 

 3
 

 
z

3
= 0   0.1    0.2     0.3     0.4{ }  0.2 

 
x

4
 
 4

 
 
z

4
= 0.0   0.2    0.4     0.6    0.8{ }  0.4 
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how to impose cross restrictions. We include this restriction 

to illustrate the use of a non-block diagonal parameter sup-

port matrix. We specify the restricted GME support matrix 

using 

 

1

4

= Z.
p

1

p
4

=
z

1
z

4

0 z
4

.
p

1

p
4

 

where Z is the  2 2M  sub matrix of support points for 
 1

 

and 
 4

, and 
 
p

1
 and 

 
p

4
 represent the unknown probabilities 

associated with support points for tricalcium alumi-

nate
 
(X

1
) and - dicalcium silicate 

 
(X

4
) , respectively. For 

this set of restrictions, we specify the parameter supports for 

R2GME as follows: 

R2GME: Both 
 
ˆ

1
 and 

 
ˆ

4
 are constrained to be positive 

because of the support of 
 4

.  The estimate for 
 1

, 

 
ˆ

1
= ˆ

4
+ z

1
p

1  
ˆ

4
. The prior mean of the estimate for 

 1
 

is 
 
ˆ

4
+0.6

 

We again specify error supports using  ±3  and  ±4 .  

Finally, we include an example imposing multiple ine-

quality restrictions through the parameter support matrix. In 

addition to the parameter sign restrictions, we impose the 

restrictions 
 1 4

 and 
 2 1 3

. Using the matrix nota-

tion we have: 

 

0 1 0 0 1

0 1 1 1 0

0

1

2

3

4

0

0
. 

To impose these restrictions, we specify the R3GME 

support matrix as (
 0

> 0,
1
> 0,

2
> 0,

3
> 0,

4
> 0)  

 
= Zp =

 

0

1

2

3

4

=

z
0

0 0 0 0

0 z
1

0 0 z
4

0 z
1

z
2

z
3

z
4

0 0 0 z
3

0

0 0 0 0 z
4

p
0

p
1

p
2

p
3

p
4

 

The restrictions are satisfied as  

 
ˆ

1
= z

1
p

1
+ z

4
p

4
= ˆ

4
+ z

1
p

1
ˆ

4
, 

 

ˆ
2
= z

1
p

1
+ z

2
p

2
z

3
p

3
+ z

4
p

4
= ( ˆ

1
z

4
p

4
)+

z
2
p

2
ˆ

3
+ z

4
p

4
= ˆ

1
ˆ

3
+ z

2
p

2

 
ˆ

1
ˆ

3 . 

Table 6 Estimates with a Single Cross-Parameter Restriction (
 0

> 0,
1
> 0,

2
> 0,

3
> 0,

4
> 0)  

Variable and Parameter OLS IRLS R1GME-S3 R1GME-S4 

Constant 
 0

 62.405 48.194 
34.852 

(1.961) 

36.696 

(1.856) 

 
x

1
 

 1
 1.551 1.696 

1.075 

(0.044) 

1.033 

(0.029) 

 
x

2
 
 2

 0.510 0.657 
0.871 

(0.032) 

0.844 

(0.026) 

 
x

3
 

 3
 0.102 0.250 

0.193 

(0.002) 

0.194 

(0.001) 

 
x

4
 
 4

 -0.144 0.000 
0.319 

(0.013) 

0.334 

(0.012) 

Bootstrap standard error estimates are given in parenthesis. 

 

Table 7. Parameter Support for R2GME (Single Restriction) 

Variable and Parameter Parameter Support Prior Mean 

constant    
 0

 
 
z

0
= 0.0    30.0    60.0    90.0     120.0{ }  60.0 

 
x

1
 

 1
 

 
z

1
= 0    0.3     0.6   0.9  1.2{ }  

 
ˆ

4
+0.6  

 
x

2
 
 2

 
 
z

2
= 0     0.5     1.0  1.5  2.0{ }  1 

 
x

3
 

 3
 

 
z

3
= 0    0.1    0.2     0.3     0.4{ }  0.2 

 
x

4
 
 4

 
 
z

4
= 0   0.2    0.4     0.6    0.8{ }  0.4 
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For this set of restrictions, we specify the parameter sup-

ports for R3GME as follows: 

R3GME- Both 
 
ˆ

1
 and 

 
ˆ

4
 are constrained to be positive 

due to the support for 
 4

.  The prior mean of the estimate for 

 1
 is 

 
ˆ

4
+0.6 . Table 9 gives the parameter support for 

R3GME. 

Table 10 gives the OLS, IRLS and R3GME estimates for 

the parameters. 

4. CONCLUSIONS 

The Generalized Maximum Entropy estimator is a robust 

estimator that is resistant to multicollinearity. This paper 

applies maximum entropy estimation to the Portland cement 

dataset. We discuss how to specify the parameter and error 

support matrices for the GME estimator. In our model, the 

results show that the GME estimates differ much from OLS 

in terms of the signs and magnitudes of the estimates. We 

illustrate the GME optimization method, through the GME 

Table 8. Estimates with a Single Cross-Parameter Restriction 

Variable and Parameter OLS IRLS R2GME-S3 R2GME-S4 

constant 
 0

 62.405 48.194 
34.744 

(2.023) 

36.786 

(1.873) 

 
x

1
 

 1
 1.551 1.696 

0.966 

(0.030) 

0.956 

(0.021) 

 
x

2
 
 2

 0.510 0.657 
0.883 

(0.035) 

0.850 

(0.028) 

 
x

3
 

 3
 0.102 0.250 

0.192 

(0.002) 

0.194 

(0.002) 

 
x

4
 
 4

 -0.144 0.000 
0.331 

(0.015) 

0.340 

(0.013) 

Bootstrap standard error estimates are given in parenthesis. 

 
Table 9. Parameter Support for R3GME (Multiple Restrictions) 

Variable and Parameter Parameter Support Prior mean 

constant    
 0

 
 
z

0
= 0    30  60  90     120{ }  60 

 
x

1
 

 1
 

 
z

1
= 0    0.3     0.6   0.9  1.2{ }  

 
ˆ

4
+ 0.6 

 
x

2
 
 2

 
 
z

2
= 0     0.5     1.0  1.5  2.0{ }  

 
ˆ

1
ˆ

3
+1 

 
x

3
 

 3
 

 
z

3
= 0   0.1    0.2     0.3    0.4{ }  0.2 

 
x

4
 
 4

 
 
z

4
= 0   0.2    0.4     0.6    0.8{ }  0.4 

 

Table 10. Estimates with Multiple Inequality Restriction (N=13 Observations) 

Variable and Parameter OLS IRLS R3GME-S3 R3GME-S4 

constant 
 0

 62.405 0 
25.531 

(1.380) 

25.617 

(1.116) 

 
x

1
 

 1
 1.551 1.911 

0.643 

(0.026) 

0.633 

(0.018) 

 
x

2
 
 2

 0.510 1.202 
1.182 

(0.049) 

1.211 

(0.045) 

 
x

3
 

 3
 0.102 0.710 

0.160 

(0.004) 

0.164 

(0.003) 

 
x

4
 
 4

 -0.144 0.491 
0.272 

(0.011) 

0.265 

(0.008) 
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parameter support matrix when there are linear inequality 

restrictions and multiple restrictions. 

We have seen that estimation is not improved by choos-

ing more than about five support points. Varying the width 

of the error bounds has a larger impact on the estimates. For 

the Portland cement data example, we conclude that error 

bounds of  ±4 ˆ  are preferred over error bounds of  ±3ˆ . The 

GME estimator is a shrinkage estimator where the parameter 

estimates are shrunk towards the prior mean, which is based 

on nonsample information. We demonstrate how to impose 

restrictions on the GME estimator using a simple example of 

sign restrictions and new parameter support matrices. 
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