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Abstract:

Objective:

We  provide  a  new  stochastic  representation  for  a  Kumaraswamy  random  variable  with  arbitrary  non-negative  parameters.  The
representation is in terms of maxima and minima of independent distributed standard uniform components and extends a similar
representation for integer-valued parameters.

Result:

The  result  is  further  extended  for  generalized  classes  of  distributions  obtained  from a  “base”  distribution  function  Fviz.G(x)  =
H(F(x)), where H is the CDF of Kumaraswamy distribution.

Keywords: Distortion function, Distribution theory, Extremes, Kumaraswamy generalized distribution, Marshall-Olkin scheme,
Proportional hazards transform, Quadratic transmutation map, Random extrema, Sibuya distribution.

1. INTRODUCTION

There  is  a  growing  literature  on  generalized  distributions  based  on  Kumaraswamy  distribution  [1].  They  are
obtained from a “base” distribution with the cumulative distribution function (CDF) F as the CDF G (a generalized
version of F) viz.

(1)

where

(2)

is the CDF of the Kumaraswamy distribution with parameters α, β > 0. The latter from now is denoted by Kα,β. In
terms of random variables, the relation (1) can be stated as

(3)

where Y~G  and T~Kα,β.  This generalization of F  was proposed in Cordeiro and de Castro [2], where the authors
developed its basic properties and presented generalizations of normal, Weibull, gamma, Gumbel, and inverse Gaussian
distributions. Many other generalized distributions following this scheme have been developed since then, including
recent works  of de Pascoa et al. [3], Nadarajah et al. [4],  Mameli [5] and  Aryal and  Zhang [6].  However,  papers on
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the topic focus mainly on rather elementary properties and do not provide any significant theoretical interpretation of
the  construction.  One  exception  is  an  interpretation  for  integer-valued  α  and  β  through  maxima  and  minima  of
independent and identically distributed (IID) random components (e.g., Jones [7], Nadarajah et al. [4], Nadarajah and
Eljabri [8]). Indeed, assuming that α = m, β = n are positive integers, we find that xm is the CDF of the maximum of m
IID standard uniform variables, with the corresponding survivor function (SF) being 1 - xm. Thus, the quantity (1 - xm)n

in (2) is the SF of the minimum of n such random variables, with H being the corresponding CDF. In other words, we
have the following stochastic representation of T~Km,n,

(4)

where {Ui,j} are IID standard uniform variables. This property, discussed in Jones [7], motivated the name minimax
for this distribution. Below we extend this interpretation to the general Kumaraswamy distribution as well  as to its
generalization (1).

2. MAIN RESULTS

To obtain a representation of a Kumaraswamy random variable in terms of min/max, we shall use the following
basic result (e.g., Kozubowski and Podgórski, [9]), which relates the distributions of min/max of IID components with
random number of terms to the relevant Probability Generating Function (PGF).

Lemma 2.1. If N is an  random variable, independent of the sequence {Xi} of IID random variables with
the CDF F, then the CDFs of the random variables

(5)

are given by FX(x) = GN(F(x)) and FY(y) = 1 - GN(1 - F(y)) , respectively, where GN is the PGF of N.

A notable application of this result, discussed in Kozubowski and Podgórski [9], concerns a special case where the
variable N = Nα in (5) has the Sibuya distribution (Sibuya, [10]), given by the PGF

(6)

and the Probability Mass Function (PMF)

(7)

where necessarily , with the boundary case α = 1 corresponding to a unit mass at n = 1. This variable
represents the number of trials till the first success in an infinite sequence of independent Bernoulli trials, where the
probability of success varies with the trial, and for the nth trial equals α/n. Here, because of the special form of the PGF
of the Sibuya random variable Nα, if the latter represents the random number of terms in Lemma 2.1, the CDFs of the
random variables X and Y in (5) are given by FX(x) = 1 - [1 - F(x)]α and FY(Y) = [F(x)]α, respectively. This leads to our
first result for the Kumaraswamy distribution with the parameters restricted to the unit interval (0, 1).

Proposition  2.1.  Assume  that  {Ui,j}  are  IID  standard  uniform  variables,   have  Sibuya
distributions with respective parameters ,  and  all  the  variables  on  the  right-hand-side of

(8) are mutually independent. Then the variable

(8)

has the Kumaraswamy distribution Kα, β.
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The  above  result  can  be  re-formulated  for  any  Kumaraswamy  generalized  random  variable  obtained  viz.  (3),
providing a meaningful interpretation of this construction in terms of maxima and minima of IID components with the
“parent” CDF F.

Proposition 2.2.  Let Nα
(i),   be IID Sibuya variables with parameter ,  and independent of another

 Sibuya variable Nβ, with parameter . Further, for a given CDF F, let Y be a random variable with the CDF G

 defined by (1), where H = Kα, β ; with . Then we have

(9)

where the {Xi,j} are IID random variables with CDF F, independent of Nα
(i) and Nβ.

Remark 2.1. Let Bα, β denote beta distribution given by the PDF

(10)

Then,  if  either  α  =  1  or  β  =  1,  the  Kumaraswamy  distribution  Kα,  β  coincides  with  Bα,  β.  Thus,  Proposition  2.1
specialized to this case, leads to stochastic representations of such beta-distributed random variables in terms of maxima
and minima, i.e. if for the {Ui} are IID standard uniform random variables, independent of Sibuya-distributed Nα and Nβ

with  we define

(11)

then B1~Bα, 1 and B2~B1, β. Further, if either α = 1 or β = 1, the generalized distributions obtained viz. (1) are special
cases  of  beta-generalized  distributions  popularized  by  Eugene  et  al.  [11],  arising  when  H  in  (1)  is  the  CDF
corresponding to (10). Thus, Proposition 2.2 specialized to this case shows that if a random variables Y is defined viz.
(3), where either T~Bα, 1 or T~B1, β with , then we have

(12)

respectively, where the {Xi} are IID random variables with CDF F, independent of Sibuya-distributed Nα and Nβ.

An extension of Proposition 2.1 to the case where the parameters are no longer restricted to the unit  interval is
straightforward. To formulate the result, we shall split a positive number r into r = {r} + < r >, where

(13)

We shall  also  need the  following result  taken from Kozubowski  and Podgórski  [9],  where  we use  the  standard
convention that the min and max over an empty set are understood as ∞ and -∞, respectively.

Proposition 2.3. If X and Y have CDFs given by 1 - (1 - F(x))r and [F(x)]r, respectively, where F is a CDF and
, then they admit the stochastic representations

(14)

where N< r > has the Sibuya distribution (7) with parameter α = < r > and is independent of the IID {Xj} with the CDF
F.
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When we set r = β and apply the first representation in (14) to a Kumaraswamy random variable T~Kα, β, , we obtain

(15)

where N< β > has Sibuya distribution with parameter < β > and {Xj} is IID with the CDF xα. In turn, when we set r = α
and apply the second representation in (14) to each Xj in (15), we obtain

(16)

where the {Ui,j} are IID standard uniform variables and the N<  α >
(j) are IID and Sibuya distributed with parameter

      < α >, independent of the {Ui,j}. By combining (15) with (16), we obtain the following result.

Proposition 2.4. Let T~Kα, β with general α, β > 0. Then we have

(17)

where the  {Ui,j} are  IID standard uniform variables,  N<  α  >
(j)  and N<  β  >  have Sibuya distributions  with  respective

parameters < α > and < β >, and all the variables on the right-hand-side of (17) are mutually independent.

Remark 2.2. If the parameter α of T~Kα, β is a positive integer, , then we have {α} = m - 1, < α > = 1, so
that the Sibuya variables N< α >

(j) are equal to 1 almost surely. Thus, in the same notation, the representation (17) turns
into

(18)

On the other hand, if the parameter β of T~Kα, β is a positive integer, , then we have {β} = n - 1, < β > = 1,
and the Sibuya variable N< β > is equal to 1 almost surely, in which case the representation (17) reduces to

(19)

Moreover, if both parameters of T~Kα, β are positive integers, so that in (18) we have  and in (19) we have
, then both, (18) and (19), turn into the representation (4) derived by Jones [7].

Remark 2.3. The stochastic representation (17) can be extended to the case of exponentiated Kumaraswamy (EK)
distribution studied by Lemonte et al. [12], which is given by the CDF

(20)

This can be achieved by another application of Proposition 2.3 on top of Proposition 2.4, leading to

(21)

where  W  has  EK  distribution  (20),  γ  =  {γ}  +  <  γ  >  with ,  and  N<  γ  >has  Sibuya
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distribution (7) with parameter α = < γ >, and is independent of the IID Kumaraswamy random variables {Tj} with the
CDF (2). In turn, each of the Kumaraswamy variables Tj admits the stochastic representation (17) involving minima and
maxima of IID standard uniform variables.

Finally, we extend Proposition 2.4 to generalized random variables obtained from Kumaraswamy distribution viz.
(3), which links this construction with maxima and minima of IID components with the “parent” CDF F.

Proposition 2.5. Let Y be a random variable with the CDF G defined by (1), where H = Kα, β with α, β > 0. Then we
have

(22)

where the {Xi,j} are IID random variables with CDF F, N< α >
(j) and N< β > have Sibuya distributions with respective

parameters < α > and < β >, and all variables on the right-hand-side of (22) are mutually independent.

Let us consider again the stochastic representation of T~Km,  n  given by (4).  As discussed in Nadarajah et al.  [4]
(Nadarajah and Eljabri, [8]), T can be thought of as a lifetime of a system consisting of n sub-systems connected in a
series, where each sub-system is composed of m IID components with standard uniform lifetimes. If the lifetimes are
non-negative and IID with the CDF F, then similar interpretation holds for the random variable Y obtained viz. (3) with
T~Km, n. The results presented above provide a similar interpretation for a general T~Kα, β as well as for a non-negative
variable Y obtained viz. (3) with T~Kα, β, where the number of IID components is a random variable.

In connection with this interpretation of (4), one can instead assume that the n sub-systems are connected in parallel
rather than in a series, while the IID standard uniform components {Ui,j} within each sub-system are connected in a
series. In this case, the total lifetime of the system will admit the representation

(23)

It is easy to see that  in (23) has the same distribution as 1 - T, where T~Km, n. More generally, let us consider the

random variable , where T~Kα, β, which we shall call a dual of the latter, and denote its distribution by .
Clearly,

(24)

Remark 2.4. Interestingly, the class of distributions on the unit interval defined viz. (24) coincides with the class of
distributions whose CDFs are given by the quantile functions corresponding to the Kumaraswamy CDF (2).

All the results for the Kumaraswamy and Kumaraswamy-generated distributions presented above have analogs in
terms of the dual distributions (24) and the generalizations of F obtained viz.

(25)

It turns out that they are obtained by swapping the minima with the maxima in the results for the Kumaraswamy and
Kumaraswamy-generated distributions. We shall state them, without proofs, for distributions (25) since other results are
obtained by setting F (x) = x. As before, we start with the case .
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(26)

where the {Xi,j} are IID random variables with CDF F, independent of the Sibuya variables.

An extension to the general case presented below can be derived from Proposition 2.3.

Proposition 2.7. Let Y be a random variable with the CDF G defined by (25) with α , β > 0. Then

(27)

where the {Xi,j} are IID random variables with CDF F, independent of two independent Sibuya variables N< α >
(j) and

N< β > with parameters < α > and < β >, respectively.

Remark 2.5. If Y in Propositions 2.6 and 2.7 has a dual Kumaraswamy distribution with the CDF (24), then the
stochastic representations still apply with the {Xi,j} being IID standard uniform variables.

Remark 2.6.  If  the underlying variables  are  non-negative,  our  results  have an interpretation in  terms of  series-
parallel or parallel-series systems of IID components where the number of components can be random (and Sibuya
distributed).  For  example,  the  quantity  Y  in  Proposition 2.2  represents  the  lifetime of  ra  andom number  Nβ  of  sub-
systems connected in parallel, where each sub-system i consists of a random number Nα

(i) of components connected in a
series. Similarly, the quantity Y in Proposition 2.6 represents the lifetime of Nβ sub-systems connected in a series, where
each sub-system consists of a random number of components connected in parallel. The other results have analogous,
albeit not as straightforward, interpretations.

Remark 2.7.  As discussed above, the stochastic representations for Kumaraswamy and related distributions are

built on min/max interpretations of distributions given by the survival function  or the CDF Fr with non-negative r,
where  F  is  a  “base”  CDF.  These  two  transformations  are  known  as  the  proportional  hazard  and  the  proportional
reversed  hazard  transforms  (or  models,  see,  e.g.,  Wang  [13]  and  Di  Crescenzo  [14]),  since  the  hazard  rates  of

distributions given by F and  are proportional (as are the the reversed hazard rates of distributions given by F and
Fr).  It  also is worth noting that these two generalizations of F  are examples of the so-called distorted distributions,
which in general are obtained through a transformation q(F) where q is a continuous and increasing bijective function
on the unit interval onto itself (see, e.g.,  Navarro et al.  [15], Navarro [16], Navarro and Gomis [18] and references
therein). Consequently, using this connection and the results for distorted distributions one can study preservation of
reliability aging classes and related properties for Kumaraswamy-transformed distributions obtained viz. (1) or (25).

By means of Lemma 2.1, several other classes of generalized distributions based on a “parent” CDF F, which were
introduced  in  recent  years,  can  also  be  shown  to  arise  from random maxima  and  minima  of  IID  components  with
distribution  F.  For  example,  as  shown  by  Kozubowski  and  Podgórski  [18],  if  N  has  a  Bernoulli  distribution  with
parameter  shifted up by one, so that its PGF is

(28)

we obtain the so-called transmuted version of F, defined by

(29)

Another  example  is  provided  by  the  so-called  Marschall-Olkin  generalized-F  distributions,  which  were  made
popular by Marshall and Olkin [19] who introduced them through minima and maxima of IID components (following
distribution F) with a geometric number of terms N.
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e.g., Navarro, [16]) as well as usual mixture of F2 and 1 - (1 - F)2 (with non-negative weights (1 - α)/2 and (1 + α)/2,
respectively). The latter representation as a mixed system (e.g., Samaniego, [20]) allows an alternative interpretation of
(29) in terms of lifetimes of series/parallel systems with IID components.
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