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Abstract:

Objective:

This study examined the effects of low-frequency vibration on physiological recovery from exhaustive exercise. Twelve college
males were recruited in this randomized crossover-designed study, and were asked to perform one of three treatments following a
graded cycling exercise test:

Methods:

nonvibration (0 Hz, 0 mm, CON), high-amplitude vibration (8 Hz, 8 mm, HVT), or low-amplitude vibration (8 Hz, 2 mm, LVT).
After the 10-min treatment, participants were asked to rest in a supine position for a 1-h recovery. The oxygen uptake, heart rate
(HR), and blood lactate concentration (La) were measured during the trials. The oxygen uptake during HVT were significantly higher
than those in the CON and LVT (p < 0.05, effect size = 1.52−1.63). The La immediately following HVT was significantly lower than
that following CON (HVT vs. CON = 11.52 ± 1.85 vs. 12.95 ± 1.78 mmol•L-1, p < 0.05, effect size = 1.94). Additionally, the Las
following HVT and LVT at the post 30-min were significantly lower than that following the CON (HVT vs. LVT vs. CON = 4.72 ±
0.97 vs. 4.58 ± 1.06 vs. 5.98 ± 1.49 mmol•L-1, p < 0.05). No significant differences were found on the HRs, or on the time and
frequency domain indices of HR variability among treatments during the recovery period.

Results:

These results indicated that vibration with low frequency (8 Hz) can facilitate the removal of metabolic by-products after exhaustive
exercise, but it has little effect on the autonomic nervous modulation of HR recovery.

Keywords: Heart rate variability, Lactate clearance, Mechanical massage, Oxygen uptake, Regeneration, Metabolism.

INTRODUCTION

Achieving an appropriate balance between training or competition stress and recovery plays an essential role in
optimizing athletes’ performances. Numerous recovery modalities (e.g., massage, light activities, and cryotherapy) have
been proposed to attain this  balance by  increasing blood  flow to and from  the damaged  muscle, removing  waste by-
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products, reducing muscle soreness, and stimulating the muscle receptors to reduce muscular tension following high-
intensity exercise [1, 2]. Vibration is a mechanical oscillation whereby energy is transferred from the vibration device to
human  body.  Vibration  exercise,  in  which  intensity  is  administered  by  frequency  and  amplitude  (peak-to-peak
displacement) of vibration platform, can increase muscular activity [3] and muscle deoxygenation [4, 5], and result in
an increase in the oxygen uptake (VO2) and energy expenditure, which is similar to the effects of light exercise [6, 7].
Previous  studies  have  also  reported  that  the  vibration  exercise  can  increase  peripheral  circulation  [8],  muscle
temperature [9], and skin [10, 11] and leg blood flow [12]. Therefore, the vibration exercise may act as a mechanical
massage to facilitate physiological recovery from strenuous exercise.

Several studies have shown that the frequency of vibrations higher than 20 Hz could improve both delayed onset
muscular soreness (DOMS) and physiological recovery after exhaustive exercise. When performing vibration exercise,
it is not possible to apply a high frequency with high amplitude. Normally, vibration exercise with higher frequency is
performed  with  low  amplitude.  After  an  exercise  which  triggered  DOMS,  a  local  [13]  or  whole-body  [14,  15]
vibrational  stimulation  for  consecutive  3−4  days  has  facilitated  the  improvements  in  DOMS and  range  of  motion,
thereby accelerating the recovery of muscles [16]. In other studies, participants have been asked to sit and place their
feet on a vibration platform immediately after exhaustive exercise to perform a vibration exercise (25 Hz, 4 mm). This
treatment accelerated the decline of the heart rate (HR) during recovery [17], increased peripheral vasodilation, and
improved the following time to exhaustion performance [12]. One study [18] found that vibration exercise with a high
frequency and low amplitude (30 Hz & 40 Hz, 2.4 & 4.4 mm) can also improve muscle oxygenation after exhaustive
exercise. Its effect of improving the subsequent Wingate test performance was similar to active recovery. However, it
was much less effective with regard to blood lactate removal 30 minutes after exercise compared with active recovery.
Nevertheless,  not  all  studies  support  the  assumption  that  vibration  exercise  facilitates  physiological  recovery  after
exercise. For example, Cheng et al. [19] found that vibration exercise with 20 Hz and 36 Hz frequencies, and 0.8 mm
improved neither the recovery of HR and VO2, nor the removal of blood lactate after exhaustive exercise. Carrasco et
al.  [20] similarly found that vibration exercise with 20 Hz frequency and 4 mm improved neither the blood lactate
removal and muscle contractile properties after exhaustive exercise, nor the time to exhaustion of the subsequent high-
intensity exercise. Furthermore, Rittweger et al. [21] suggested that a vibration frequency below approximately 20 Hz
may  induce  muscular  relaxation  according  to  experiences  from  their  laboratory.  However,  to  the  present  authors’
knowledge, no study has yet explored the effect of low-frequency with high amplitude vibration followed by an intense
exercise. One study about low frequency and high amplitude indicated that the VO2  reaction triggered by vibration
exercise (3−6 Hz, 6 mm) was similar to the effects of light activity [22]. Therefore, we hypothesized that exercise with
a low-frequency vibration and high amplitude may accelerate physiological recovery after exhaustive exercise.

The autonomic nervous system adjusts the HR through a balance of sympathetic and parasympathetic pathways.
Time and frequency domain analyses of HR variability (HRV) based on RR intervals have been considered credible and
noninvasive tools that can be used to assess the regulatory effects of the autonomic nervous system on the sinus node of
the heart  [23, 24].  The HR returns to a resting state after exercise mainly because of parasympathetic activation or
sympathetic withdrawal [25 - 27]. Previous studies have determined that vibration exercise in either a standing (20 Hz
and 36 Hz) [19] or sitting (25 Hz) [17] pose did not change the indices of HRV during the recovery period following
exhaustive exercise. However, the simulation of vehicle vibration with a low-frequency (6 Hz) vibration was found to
affect  the  frequency  domain  indices  of  HRV  [28];  in  short,  it  increased  sympathetic  activity  and  reduced
parasympathetic activation. Therefore, another purpose of this study was to investigate whether vibration exercise with
low frequency and high amplitude influences the regulatory effects of the autonomic nervous system on HR during the
recovery period following exhaustive exercise.

MATERIALS AND METHODS

Participants

Twelve healthy male college students (age = 20 ± 2 years; height = 1.77 ± 0.06 m; body mass = 72 ± 7 kg) were
voluntarily recruited for this study. All participants completed a medical history and health questionnaire, and provided
written informed consent before participating in the experimental procedures. The participants were asked to abstain
from exercise for 24 hours, and to fast at least 4 hours prior to visiting the laboratory, to reduce the interference effects
of the exercise and food. The study was approved by the Taipei Medical University-Joint Institutional Review Board.
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Procedures

A randomized, crossover trial design was used in this study to eliminate any order effects.  The testing protocol
required four visits to the laboratory over a 3-week period. During the first visit, participants performed the graded
exercise test (GXT) on an electrically braked cycle ergometer (Cyclus 2, h/p/cosmos, Germany), which served only as a
familiarization trial and was not included in the data analyses. During each participant’s first visit to the laboratory, the
cycling  ergometer  seat  and  handlebars  were  adjusted  for  comfort;  these  same  settings  were  then  restored  for  each
consecutive exercise trial. Over the following three visits (separated by at least 48 hours), a nonvibration (CON, 0 Hz, 0
mm), low-amplitude vibration (LVT, 8 Hz, 2 mm), or high-amplitude vibration (HVT, 8 Hz, 8 mm) treatment was
administered to the participants following their GXTs Fig. (1). The amplitude of vibration treatment in this study was
defined as the peak-to-peak displacement of periodic oscillation. The participants completed all of the trials during the
same period (± 2 h) of testing days to eliminate any effect from circadian variation.

Fig.  (1).  Experimental  design  GXT  =  graded  exercise  test;  Treatment  =  high-amplitude  vibration,  low-amplitude  vibration,  or
nonvibration treatment; HRV = heart rate variability analysis; triangle = blood lactate concentration; square = oxygen uptake and
heart rate.

Before  the  GXTs,  participants  were  asked  to  rest  in  a  supine  position  for  at  least  20  min  for  the  baseline
measurements,  and  then  performed  a  standardized  warm-up  (3  min,  50  watts,  60–80  rev·min-1)  on  the  cycling
ergometer. Similar to a previous study [29], the participants performed a GXT in which the exercise load was gradually
increased.  The  GXT  began  at  an  initial  workload  of  150  watts  and  a  pedaling  rate  of  60  rev·min-1  for  2  minutes,
followed by increasing increments of 30 watts every 2 minutes until  exhaustion. Strong verbal encouragement was
provided throughout the trial.  Exhaustion was defined by attainment of at  least  three criteria [30]:  (1) a respiratory
exchange ratio > 1.2; (2) HR > 90% of age-predicted maximum; (3) a plateau of VO2  defined as no change (< 150
mL·min-1) in VO2 from the previous test stage; or (4) rating of perceived exertion > 17 on the Borg’s 6–20 scale.

Pulmonary gas exchanges were measured breath-by-breath throughout the GXTs by having the participants wear a
face mask (7400 Vmask series,  Hans Rudolph,  Kansas City,  MO, USA) attached to a portable gas analysis  system
(Cortex Metamax 3B; Cortex Biophysik, Leipzig, Germany). Before the trial, the system was calibrated according to
the manufacturer’s guidelines against known concentrations of cylinder gases (15% oxygen, 5% carbon dioxide) and a
3-L calibration syringe (5530 series, Hans Rudolph, Kansas City, MO, USA). HRs was monitored using a telemetry
system with a wireless chest strap (Polar S810i; Polar Electro, Inc., Oy, Kempele, Finland) and continuously measured
through a link to the Cortex gas analysis system during the exercise test. The greatest VO2 and HR value (averaged
every 30 s) measured during the GXT was respectively recorded as the VO2max and HRmax value.

Immediately following the GXT, the participants were seated on a chair with their feet placed on a vertical vibration
device (AV-001A, Body Green Technology Co. Ltd., Taiwan) for a 10-min treatment of CON, LVT, or HVT. After the
vibration treatments, the participants were asked to rest in a supine position for 60 min to monitor the recovery phase.
The average of VO2 and HR was analyzed during the last 5 min of the baseline phase (pretest), treatment, and at the 30-
min (25–30 min after treatment) and 60-min (55–60 min after treatment) mark during the recovery phase. The capillary
blood samples were obtained by a finger puncture at the pretest, immediately after GXT and treatment, and at the 30-
and 60-minute mark during the recovery phase. The first blood samples were discarded, and the second blood samples
(approximately 5 µL) were used to analyze the blood lactate concentrations (Las) using a lactate chemistry analyzer
(Lactate Pro, Arkray, Inc., Japan). The Lactate Pro analyzer was calibrated using check or calibration strips provided by
the manufacturer 30 min before testing the capillary blood samples, thus ensuring the correct operation and precision of
the analyzer.



90   The Open Sports Sciences Journal, 2017, Volume 10 Cheng et al.

The HR data were transferred via Polar infrared rays (Polar IR Interface; Polar Electro Inc.) to a personal computer;
the  5  min  data,  including  from the  pretest,  post-30  min,  and  post-60  min,  were  selected  for  HRV analysis.  Before
processing, the HR signals were automatically corrected by the Polar ProTrainer 5.0 package software for ectopic and
missed  beats,  and  then  the  modified  HR  data  were  transformed  into  ASCII  files.  The  time  domain  and  frequency
domain analyses of RR intervals were performed by HRV analysis software (Kubios HRV version 2.0; University of
Kuoplo, Finland). In the time domain analysis, the RR mean, standard deviation of all normal RR intervals (SDNN),
and  the  square  root  of  the  mean  squared  successive  differences  between  adjacent  RR  intervals  (RMSSD),  were
evaluated from the electrocardiogram data. To analyze the frequency domain indices, the HR waveform was resampled
at 4.0 Hz, and the spectral power was derived through a 1024-point linear fast Fourier transformation with a Hamming
window. The power spectrum was then analyzed for LF (0.05–0.15 Hz) and HF (0.15–0.40 Hz) powers. Because the
raw values of LF and HF did not follow a normal distribution, a natural log (ln) transformation was applied (lnLF and
lnHF) [31]. Sympathovagal balance was estimated by the ration of lnLF: lnHF. Finally, the coefficient of component
variance (CCV) of the LF- and HF-power was calculated using the following formula [32]: CCVA (%) = 100 × (power
of component A)1/2/(RR mean).

Statistical Analysis

SPSS  for  Windows  software  (version  17.0,  SPSS,  Inc.,  Chicago,  IL,  USA)  was  used  to  conduct  the  statistical
analysis. All data were expressed as mean ± standard deviation (SD). A two-way (3 treatments × 5 time points) within-
participants repeated measures ANOVA was used to investigate differences in the La, VO2, HR, and HRV (3 treatments
× 3 time points) indices. If a significant interaction was found, a subsequent one-way ANOVA with Bonferroni post hoc
comparison was performed to examine the differences over time and between treatments. The effect size (ES) and 95%
confidence intervals (95% CI) were also calculated to evaluate differences between treatments. The ES was calculated
by  dividing  the  difference  between  mean  values  of  the  treatments  by  the  pooled  SD [33];  the  ES  values  of  <  0.5,
0.5−0.79  and  ≥  0.8  were  considered  to  represent  small,  moderate,  and  large  effects,  respectively  [33].  Statistical
significance was denoted by a p value of ≤ 0.05.

RESULTS

There were no significant differences in the workload at VO2 max (HVT vs. LVT vs. CON = 263 ± 29 vs. 263 ± 32
vs. 265 ± 28 W, F = 0.234, p > 0.05) and total caloric expenditure (HVT vs. LVT vs. CON = 127 ± 29 vs. 129 ± 32 vs.
132 ± 30 kcal, F = 2.292, p > 0.05) during GXT among the treatments. The results of the VO2 and HR data for the
different treatments are represented in Table 1. Significant interaction effects were found for VO2 (F = 2.191, p < 0.05).
No significant differences in VO2 max were found among the treatments (HVT vs. LVT vs. CON = 49 ± 6 vs. 50 ± 6 vs.
50 ± 5 mL·kg-1·min-1, p > 0.05), as well as the VO2 during the pretest. However, the VO2 during the HVT treatment was
significantly higher than those in the CON (p < 0.05, ES = 1.52, 95% CI = 0.47−2.03) and LVT (p < 0.05, ES = 1.63,
95% CI = 0.57−2.11) treatments. There were also no significant differences in the VO2 at any of the 30-min or 60-min
post-treatment marks. No significant interaction effects were determined for HR (F = 1.624, p > 0.05), but a significant
main effect was found for time (F = 1341.7, p < 0.05).

Table 1. Effects of various amplitudes of vibration on oxygen uptake (VO2) and heart rate (HR).

Pre-test GXT Treatment Post-30 min Post-60 min
HR (bpm)
HVT 64 ± 9 186 ± 7 113 ± 7 80 ± 9 75 ± 8
LVT 61 ± 5 186 ± 8 113 ± 7 83 ± 8 75 ± 7
CON 62 ± 8 187 ± 8 109 ± 16 84 ± 11 77 ± 9
VO2 (mL·kg-1·min-1)
HVT 4.5 ± 1.3 49.1 ± 5.9 10.0 ± 1.9*† 5.5 ± 1.2 5.1 ± 1.1
LVT 4.4 ± 0.7 49.7 ± 6.3 8.2 ± 0.8 5.5 ± 0.7 4.9 ± 0.8
CON 4.6 ± 0.8 50.4 ± 4.9 8.3 ± 0.9 5.2 ± 0.7 4.9 ± 0.7
*p < 0.05, compared with CON; †p < 0.05, compared with LVT. Values are mean ± SD.

Moreover, significant interaction effects were found for Las (F = 2.690, p < 0.05). Fig. (2) illustrates that the La
after HVT treatment was significantly lower than that following CON treatment (HVT vs.  CON = 11.52 ± 1.85 vs.
12.95 ± 1.78 mmol·L-1,  p < 0.05,  ES = 1.94,  95% CI = 0.94−2.99).  Additionally,  the Las in the HVT (4.72 ± 0.97



Vibration and Physiological Recovery The Open Sports Sciences Journal, 2017, Volume 10   91

mmol·L-1, p < 0.05, ES = 1.69, 95% CI = 0.85−2.24) and LVT (4.58 ± 1.06 mmol·L-1, p < 0.05, ES = 2.33, 95% CI =
1.49−2.93) treatments at post-30 min were significantly lower than that in the CON treatment (5.98 ± 1.49 mmol·L-1).
No significant differences were found in Las at pre-test, after GXT, and at 60 min post-treatment in the CON, HVT, or
LVT.

Fig. (2). Effects of vibration exercise on the blood lactate concentrations. HVT = high-amplitude vibration; LVT = low-amplitude
vibration; CON = nonvibration treatment; GXT = graded exercise test;  Pretest = rest before the GXT; Treatment = vibration or
nonvibration  treatment;  Post-30  min  =  30  min  after  treatment;  Post-60  min  =  60  min  after  treatment.  *p  <  0.05,  significant
differences between HVT and CON; ‡p < 0.05, significant differences between LVT and CON. Values are mean ± SD.

Fig. (3). Effects of vibration exercise on the balance of the sympathetic and parasympathetic nervous system. HVT = high-amplitude
vibration; LVT = low-amplitude vibration; CON = nonvibration treatment; lnLF: lnHF = low-frequency to high-frequency ratio;
Pretest = rest before the graded exercise test; Post-30 min = 30 min after treatment; Post-60 min = 60 min after treatment. *p < 0.05,
compared with the pretest. Values are mean ± SD.

Table (2) displays the effect of various vibration treatments on HRV indices. No significant interaction effects were
determined for  the time domain indices of  HRV (p > 0.05),  but  a  significant  effect  was found for  time (p < 0.05).
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Although  no  significant  differences  were  found  on  the  time  domain  indices  of  HRV  at  each  time  point  among
treatments (p > 0.05), the mean RR, SDNN, and RMSSD at post-30 min in each treatment were significantly lower than
those during the pretest (p < 0.05). The mean RR at post-60 min among all of the treatments, and the RMSSD at post-60
min in the LVT and CON was significantly lower than those during the pretest. In addition, the time domain indices of
HRV at post-60 min in the three treatments were significantly higher than those at post-30 min, except the RMSSD in
the LVT. Furthermore, significant interaction effects were determined for the frequency domain indices of HRV (p <
0.05), except the CCVHF. No significant differences were found at any of the time points among the treatments for the
frequency domain indices of HRV. However, the lnLF, lnHF, and CCVHF at post-30 min, and the lnHF and CCVHF at
post-60 min in  the CON treatment  were significantly  different  from those during the pretest  Table  (2).  As Fig.  (3)
depicts, the lnLF: lnHF at the 30-min (p < 0.05, ES = 3.34, 95% CI = 2.87−3.41) and 60-min (p < 0.05, ES = 2.91, 95%
CI  =  2.67−2.97)  marks  in  the  CON  treatment  were  significantly  higher  than  that  during  the  pretest,  whereas  no
significant differences between the pretest and recovery phase were found in the HVT and LVT treatments.

DISCUSSION

The primary aim of this study was to examine the effects of a low frequency and high amplitude (8 Hz, 8 mm)
vibration exercise on the recovery from exhaustive cycling exercise. The major finding of this study was that the low
frequency vibration exercise could speed up the blood lactate recovery following strenuous exercise. Although low
frequency vibration exercise could not accelerate the decline in HR and VO2, such a recovery modality might improve
the regulation of the autonomic nervous system on the heart through increased parasympathetic reactivation.

Table 2. Effects of various amplitudes of vibration on the time and frequency domain indices of HRV.

Pre-test Post-30 min Post-60 min
HVT LVT CON HVT LVT CON HVT LVT CON

Mean RR (ms) 956 ± 135 993 ± 97 998 ± 131 761 ± 91a 735 ± 74a 732 ± 103a 818 ± 97a, b 809 ± 81a, b 795 ± 107a, b

SDNN (ms) 69 ± 22 76 ± 39 87 ± 31 42 ± 17a 40 ± 17a 34 ± 19a 60 ± 18b 64 ± 23b 64 ± 35b

RMSSD (ms) 58 ± 33 61 ± 32 74 ± 40 23 ± 17a 21 ± 14a 17 ± 16a 31 ± 18b 36 ± 21a 28 ± 20a, b

lnLF (ms2) 6.65 ± 0.65 6.47 ± 1.13 7.24 ± 0.96 5.90 ± 0.97 5.60 ± 1.17 5.36 ± 1.32a 6.62 ± 0.66b 6.69 ± 1.10b 6.47 ± 0.98b

lnHF (ms2) 6.85 ± 1.30 6.63 ± 1.49 7.35 ± 1.09 4.94 ± 1.81a 5.01 ± 1.70 4.07 ± 1.86a 5.67 ± 1.53b 5.97 ± 1.56 5.32 ± 1.67a, b

CCVLF (%) 3.11 ± 1.11 2.86 ± 1.20 4.20 ± 2.14 2.72 ± 1.18 2.56 ± 1.35 2.33 ± 1.35 3.47 ± 0.84 3.90 ± 1.83 3.48 ± 1.39
CCVHF (%) 3.71 ± 1.89 3.35 ± 1.91 4.44 ± 2.02 2.01 ± 1.32 2.12 ± 1.35 1.42 ± 1.13a 2.51 ± 1.42 3.03 ± 1.95 2.28 ± 1.58a, b

ap < 0.05, compared with the pretest; bp< 0.05, compared with post-30 min. Values are mean ± SD.

Overall,  the  energy consumption increased with  the increasing intensity  of  the  vibration exercise.  For  instance,
under the same frequency of vibration, VO2 increased at higher amplitudes [6]. When the vibration exercise (26 Hz)
with different amplitudes (2.5 mm & 7.5 mm) was performed in a squatting position, the VO2 reached 0.31 and 0.53
L·min-1, respectively [6]. Other previous studies on vibration exercise with low-frequency (3−8 Hz) [22, 34] performed
in  a  seated  position  found  that  the  energy  consumption  produced  by  vibration  exercise  (approximately  0.24−0.27
L·min-1) was similar to that of light activity. In the present study, the VO2 produced by low-frequency vibration exercise
performed in  any treatment  (0.59 L·min-1  for  LVT,  0.71 L·min-1  for  HVT) was  higher  than in  the  previous  studies
because of the diverse experimental situations; specifically, the treatments in this study were performed after exhaustive
exercise, resulting in higher energy consumption. Nevertheless, the results of this study also revealed that compared
with controlling treatment, the VO2 of the HVT significantly increased by 0.12 L·min-1 during recovery, whereas the
energy consumption of the LVT was similar to the CON. Another prior study [19] also revealed that vibration exercise
with  low  frequency  and  low  amplitude  (20  Hz,  0.8  mm)  did  not  affect  the  VO2  during  recovery  after  exhaustive
exercise, that is, the excess postexercise oxygen consumption caused by exhaustive exercise might obscure the impact
of vibration exercise with a lower intensity on the VO2 during recovery period. Nevertheless, vibration exercise with
low frequency and high amplitude has been demonstrated to increase energy consumption during recovery following
exercise, as well as passively stimulate the body.

This study is the first to discover that vibration exercise with low-frequency facilitates the removal of blood lactate
following exhaustive exercise; however, it did not improve the VO2 or HR during the recovery period. Although several
studies  [1,  35]  discuss  the  validity  of  the  La  as  a  parameter  to  determine  the  postexercise  muscle  recovery,  this
biochemical marker has been widely used for such purpose [36 - 38]. Researchers have also determined that a vibration
frequency over 20 Hz (25−30 Hz, 2−6 mm) facilitates the reduction of arterial stiffness [39], the acceleration of blood



Vibration and Physiological Recovery The Open Sports Sciences Journal, 2017, Volume 10   93

velocity [8], and the increase of both muscle temperature [9] and blood flow [10 - 12]. However, other studies have
suggested that a vibration frequency over 20 Hz (20−40 Hz, 0.8−4.4 mm) cannot improve the removal of blood lactate
during the recovery period after exhaustive exercise [18 - 20]. For example, Manimmanakorn et al. [18] argued that
after six sets of 30-s Wingate sprints, vibration exercise (30 & 40 Hz, 2.4 & 4.4 mm) increased muscle oxygenation
compared  with  active  and  passive  recovery  conditions,  thus  generating  a  vasodilation  effect;  however,  they  also
revealed that the La after 30 min of vibration exercise was significantly higher than that of active recovery treatment.
Furthermore, some studies have indicated that a vibration frequency of less than 20 Hz (10−16 Hz, 4−5 mm) enhanced
muscle oxygenation [4, 5] and increased blood velocity and skin temperature [40]. Therefore, high-intensity vibration
(e.g., frequency > 20 Hz) does not facilitate the removal of blood lactate after exercise, but low-intensity vibration (e.g.,
< 20 Hz) may facilitate the recovery of muscles after exercise. Regardless, accelerating the removal of blood lactates
with a low-frequency vibration exercise following exercise still requires further exploration.

During the recovery period following exercise, HR has been shown to gradually decline because of parasympathetic
activation or sympathetic withdrawal [25 - 27]. Previous studies have found that the stimulation from vibration exercise
changes  modulation  of  the  autonomic  nervous  system,  and  low-frequency  vibration  exercise  (6  Hz)  increases  the
sympathetic activity and reduces parasympathetic activation [28]. Therefore, the application of low-frequency vibration
may disturb the regulation of the autonomic nervous system on HR recovery from exercise. The results of this study
demonstrated that vibration exercise with low frequency did not affect cardiac autonomic response during the recovery
period after exhaustive exercise, which is consistent with previous findings [17, 19]. However, an examination of the
time variables (Table 2 and Fig. 3) suggested that low-frequency vibration exercise might increase the parasympathetic
reactivation. Cheng et al. [19] found that the regulation of the autonomic nervous system during the recovery period
after exercise showed no significant differences among different frequencies (20 & 36 Hz). However, a 20-Hz whole-
body vibration performed in  a  standing position during recovery after  exercise  might  improve the  parasympathetic
activation following exhaustive exercise [19]. In a study by Sanudo et al. [17], participants were seated with both feet
placed on a platform for a 25-Hz vibration exercise. Their total HRV power increased after exhaustive exercise, but the
vibration  did  not  affect  LF  or  HF  components  of  HRV.  Nevertheless,  vibration  exercise  with  either  high-  or  low-
frequency had little impact on the activity of the autonomic nervous system during the recovery period after exercise
because the stimulation of exhaustive exercise for the autonomic nervous system [27, 41, 42] was much higher than that
of the lower intensity vibration exercise. However, local or whole-body vibration and various vibration characteristics
might lead to distinct effects regarding the HR regulation of the autonomic nervous system after exercise. Overall, the
impact of vibration exercise on the regulation of the autonomic nervous system during the recovery period after intense
exercise requires further study.

This study presents some limitations. For instance, we did not examine exercise performance during the recovery
period.  Some  researchers  [1,  2]  have  suggested  that  the  exercise  performance  during  recovery  period  should  be
determined when assessing the utility of recovery strategy after exercise. Several studies have also found that despite a
lower  La,  exercise  performance  during  the  recovery  period  did  not  improve  [43,  44].  For  example,  Sanudo  [12]
demonstrated that when performing high-intensity exercise until exhaustion, a vibration exercise (25 Hz, 4 mm) during
recovery period can improve blood flow in the popliteal artery and prolong the time to exhaustion of the subsequent
high-intensity exercise. However, other studies have suggested that vibration exercise during the recovery period after
exercise did not improve the removal of blood lactate, and neither increased the time to exhaustion of high-intensity
exercise [20], nor the 30-s Wingate test, maximum voluntary contraction, jump height, or sit-and-reach performances
[18]. Therefore, although vibration exercise with low-frequency facilitated the removal of blood lactate during recovery
period  after  exercise,  further  clarification  regarding  whether  this  recovery  modality  facilitates  the  improvement  of
exercise performance during the recovery period is required.

CONCLUSION

In conclusion, the results of the present study suggest that low-frequency vibration (8 Hz) can facilitate the removal
of metabolic by-products after exhaustive exercise, but has little effect on the modulation of the autonomic nervous
system on HR recovery.  Vibration exercise  has  been reported to  induce peripheral  vasodilation,  and produce acute
increases in peripheral circulation, blood flow, and skin and muscle temperature [8 - 12, 18, 39]. Our data also indicate
that the improvement in removal of blood lactate during recovery period should occur after the application of low-
frequency vibration. These results may help coaches, strength and conditioning professionals, and exercise enthusiasts
use  low-frequency vibration as  part  of  a  cool-down procedure.  However,  considering that  vibration exercise  offers
numerous operational settings, including various combinations of frequency and amplitude, and local or whole-body
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vibration, future studies should perform low-frequency vibration exercise as a recovery strategy to improve recovery
from strenuous exercise and examine the subsequent exercise performance.
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