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Abstract: Skill acquisition can be conceived as a nonlinear, emergent process punctuated by sudden changes in skill ca-
pability and coordination dynamics stability. The rate of learning when expressed in terms of movement dynamics typi-
cally follows nonlinear trajectories interspersed throughout practice with trial-to-trial fluctuations. In this review we pre-
sent recent empirical evidence examining both individual learners and also groups or teams of learners, which serve to 
further illuminate the nonlinear nature of skill acquisition. Innovative experimental designs, and sophisticated data collec-
tion / analysis tools are common features of this rapidly expanding body of literature. Finally, we present a number of 
practical implications for consideration within sport and physical activity pedagogy in the 21st century. The key role of 
physical educators is to design tasks and games that provide learners with opportunities to explore and find movement so-
lutions within a set of specific constraints (especially task constraints). 
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INTRODUCTION 

 Recent global trends such as decreasing levels of physi-
cal activity and general motor competency [1] place renewed 
significance on an informed understanding of human motor 
learning and development. Since the late 19th century, 
movement scientists have considered the question of how 
humans learn to control and coordinate their actions, for an 
overview see [2]. In this article we propose that skill acquisi-
tion should be conceived as a nonlinear, emergent process 
punctuated by sudden changes in skill capability and coordi-
nation dynamics stability. To justify this argument we pre-
sent recent empirical evidence examining both individual 
learners and also groups or teams of learners, which serve to 
further illuminate the nonlinear nature of skill acquisition. 
Finally, we present a number of practical implications for 
consideration within sport and physical activity pedagogy in 
the 21st century.  

HISTORICAL VIEWS OF THE SKILL ACQUISITION 
PROCESS 

 Motor skill acquisition has traditionally been described as 
the internal processes that bring about ‘relatively permanent’ 
changes in the learner’s movement capabilities [3]. Histori-
cally researchers have tried to understand skill acquisition by 
examining the performance changes that accompany prac-
tice. For example, in early research efforts, Bryan and Harter 
[4] studied how learners’ typing skills developed while prac-
ticing to send and translate Morse code. Over a period of 40 
weeks, the telegraphers went through distinct phases of 
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improvement and periods where performance levels pla-
teaued. The inference from such performance curves was 
that learners initially construct simple elements of the skill, 
interspersed by periods of consolidation (i.e., development of 
automaticity) before they link individual parts of movements 
(in this case individual finger presses) into more integrated 
patterns of learned behaviour (linked sequences of finger 
presses typed as words).  

 Analyses of performance curves have led many research-
ers to develop mathematical models of the rate of learning 
[5]. The strongest empirical support has been offered for a 
generalised power function, prompting A. Newell and 
Rosenbloom [6] to conclude that “…There exists a ubiqui-
tous quantitative law of practice. It appears to follow a power 
law.” (pg. 2). As the logarithmic function of the power law 
presents a straight line it has been tempting to assume that 
learning itself is a linear, deterministic process. Lane [5] is 
more reticent and commented that while the general appear-
ance of performance curves can be anticipated reliably, “the 
time course over which acquisition runs, and thus the curve 
parameters, is generally not predictable from prior knowl-
edge of task characteristics.” (pg. 125). 

 There is little debate that learning of complex skills ap-
pears to follow “stage–like” characteristics where a learner’s 
progression at any one time can be broadly categorised as 
belonging to one of several developmental stages. Amongst 
others, Fitts [7], Anderson [8], and Newell [9] have each 
proposed 3-stage models in which behavioural characteris-
tics and the internal changes associated with learning are 
argued to be qualitatively different at each stage. Whilst both 
conceptually and practically valuable, such stage-models are 
relatively silent on the extent to which progression through 
the stages is a smooth, linear and a continuous process.  
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 Humans acquire skill by consistently coordinating rele-
vant body parts into functional synergies. Historically motor 
learning theories have tended to attribute the coordination 
and control of movement to an executive controlling mecha-
nism residing in the Central Nervous System. For example, 
the information processing approach views the performer as 
a sort of human communications channel in which the rela-
tionship between changes in input signals and system output 
are linearly related. As noise is an inherent feature of every 
biological system [10] it has been presumed that an impor-
tant job for the performer is to gradually eliminate or mini-
mise noise (or movement variability) through practice and 
task experience. Hence, the magnitude of movement vari-
ability has been viewed as an important feature for assessing 
the quality of system control [11]. The role of repetitive 
practice is often conceived of as reducing the amount of 
movement pattern variability viewed as noise. Further com-
pounding this viewpoint, the selection of movement models 
to investigate motor system functioning has been biased 
away from dynamic, multi-joint actions prevalent in sports 
because of the view that experimental rigor could be better 
maintained in laboratory studies of simple movements [12].  

 In the past, the motor learning literature has suffered 
from an overemphasis on the amount of change in perform-
ance outcomes without sufficient analysis of the dynamic 
properties of change in movement coordination [13]. Un-
doubtedly this criticism may be partly attributed to the lack 
of sophisticated measuring devices for examining movement 
coordination. Another important issue is that skill acquisition 
research has typically been conducted over short, intense 
practice periods, such as a number of days [14]. For obvious 
pragmatic reasons there are few examples in the research 
literature of motor learning experiments performed over 
longer periods of practice, as experienced in real life 
although for a classic exception, see [15]. Hence, conclu-
sions drawn from such “snap-shot” studies are likely to be 
based on the transient effects of practice rather than the more 
enduring consequences of learning. 

 Indeed, certain features of performance curves (e.g., tran-
sient warm-up decrements, relatively permanent perform-
ance changes) indicates that the process of learning is com-
posed of multiple time scales, the importance of which has 
been overlooked in the quest to produce ubiquitous mathe-
matical models of learning [16]. For example, minor fluctua-
tions within a practice session exist on a different, much 
shorter timescale to a change in coordination pattern 
achieved over many hours of practice. An important conse-
quence of different time scales in learning lies in the appre-
ciation of inter-individual differences in learning behaviour. 
Investigating typical performance curves, Newell and col-
leagues [17] showed how the power-law of learning can be a 
mere consequence of averaging group data emphasising the 
application of intra-individual analysis methods, see also 
[18]. In the following sub-section we discuss the theoretical 
underpinnings of a constraints-led account of learning which 
has prompted us to look more closely at coordination dy-
namics during learning. According to Newell [19], con-
straints may be relatively time dependent or time independ-
ent. For example, the position of a cyclist’s centre of gravity 
may fluctuate considerably during a practice session (time 
dependent) however the influence of gravity remains con-

stant (time independent). That is, “the rate with which con-
straints may change over time varies considerably with the 
level of analysis and parameter under consideration” (pp. 
347).  

REDEFINING LEARNING AS A NONLINEAR, 
EMERGENT PROCESS 

 How do long term changes to the organisation of human 
movement occur as a result of learning and practice? From a 
constraints-led perspective, skill acquisition has recently 
been reconceptualised as a learner (a dynamical movement 
system) searching for stable and functional states of coordi-
nation or ‘attractors’ during goal-directed activity [2, 20, 21]. 
Stages of learning can be viewed as the creation of tempo-
rary states of coordination that resist constraints that could 
perturb the system’s stability. For skilled performance, indi-
viduals eventually need to develop a repertoire of movement 
attractors to satisfy the constraints of changing contexts. We 
can consider this repertoire of attractors as a kind of percep-
tual-motor landscape to denote that performers need to learn 
how to coordinate their actions with their environment in 
order to perform skills effectively [22].  

 The perceptual-motor landscape is a useful metaphor for 
describing an individual learner’s coordination dynamics. Its 
layout is constrained by genetic endowment, developmental 
status, past learning experiences and the task requirements. 
That is, each landscape is continually being shaped and al-
tered by the interaction of an individual’s genes, perceptions, 
and intentions, as well as physical constraints, surrounding 
information, and system dynamics [23]. Because these per-
formance constraints are not static and fixed, the landscape is 
undulating, ever changing and hence emergent. As a 
learner’s constraints change over time, the topology of the 
landscape alters to reflect the flow of information and of new 
experiences.  

 The landscape concept captures some of Bernstein’s 
early observations about the evolution of coordinative struc-
tures in learning. Bernstein [24] proposed that coordination 
involves the mastery of redundant degrees of freedom in 
order to perform an action. He suggested that in motor learn-
ing, initial practice results in freezing of degrees of freedom 
to eliminate any redundancy which are subsequently released 
with practice as degrees of freedom are organised into a co-
ordinated movement unit. Anderson and Sidaway’s [25] soc-
cer kicking study subsequently provided empirical support 
for Bernstein’s ideas. They showed that learners placed con-
straints on their joint range of motion (ROM) at the hip and 
knee initially. With practice, these constraints were relaxed 
and the hip and knee joints typically had greater freedom of 
movement which enabled the kicking leg to take greater ad-
vantage of the velocity generated at the hip. As practice pro-
ceeds, less successful patterns are believed to be gradually 
sacrificed by the learner and more successful actions are 
reinforced by strengthening connections between intentions 
and energy flows. 

 Localised within a region of the landscape, the performer 
may find several areas where successful solutions are closely 
situated; these regions are solution manifolds [13]. Within 
solution manifolds small fluctuations alter the task-solution 
only minimally, providing some sort of task tolerance. Large 
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solution manifolds have more tolerance for different move-
ment solutions, where smaller manifolds may only allow 
subtle modifications. For example, a penalty kick in soccer 
which can be achieved successfully in a number of different 
ways has a relatively large solution manifold, however the 
basketball free throw shot which seems to have less toler-
ance for variation [26] has a small solution manifold. 
Movement variability during learning allows the learner to 
search, find and subsequently refine appropriate solution 
manifolds for different performance contexts [13]. Influential 
constraints such as task goals, exploration, intrinsic dynam-
ics and feedback stabilise certain areas of the landscape al-
lowing the learner to experiment until effective movement 
solutions are found. Consequently the rate of learning when 
expressed in terms of movement dynamics typically follows 
nonlinear trajectories (e.g., an exponential function) inter-
spersed throughout practice with trial-to-trial fluctuations 
[18].  

 Hence, motor learning is a process that occurs over sev-
eral timescales (i.e., moment to moment, trial by trial, prac-
tice session by session, year by year, etc.) meaning that pa-
rameter change can be sudden and substantial, as well as 
gradual and incremental. The landscape analogy also evokes 
the idea that learning is not unidimensional and that per-
formance levels may fluctuate considerably on the way to 
achieving the long term goal of stable, consistently high out-
comes. It is when performance and movement coordination 
are analysed at multiple levels that the (essential) nonlinear-
ity of this process is most obvious. In the next section we 
discuss recent research that describes how constraints influ-
ence nonlinear learning from an individual and group per-
spective. These empirical studies typically adopt multiple 
levels of analysis, indicating that much of the traditional re-
search on motor learning may have neglected essential com-
ponents of the learning process. 

EMPIRICAL ANALYSIS OF INDIVIDUAL LEARN-
ING  

 Motor learning can be examined at both individual as 
well as group or team levels. To date, most motor learning 
research has focussed on the individual level although in-
creasingly social networks of learners are now coming under 
scrutiny [27]. As discussed above, skill acquisition at an in-
dividual level has traditionally been characterised by a grad-
ual increase in performance scores or improvement in timing 
in terms of performing a learned task [13]. Motor learning 
studies, from a dynamical systems perspective, look at indi-
vidual changes over time. Patterns of movement coordina-
tion within individuals are studied using tools such as cluster 
analysis or principal component analysis (PCA) [28, 29] and 
through the study of variation in individual performance 
scores or timing throughout learning sessions [30, 31].  

 Newell, Liu and Mayer-Kress [16] interpreted learning as 
a progression in time on an attractor landscape toward a 
fixed point. In other words, movement performance will tend 
to approach a stable state with practice. For example, Chen 
and colleagues [30] applied a modified ‘Cauchy theorem’ 
which consisted of a movement pattern difference score to 
measure the convergence of a behaviour towards a fixed 
point as an indication of learning. In this study, skill level of 

an upright pedalo-locomotor task was determined by tempo-
ral criteria (i.e., shorter movement time and improved 
movement smoothness) as well as spatial variables (i.e., in-
creased consistency of movement patterns). Although learn-
ers revealed fluctuations throughout the practice trials, 
movement pattern variability reduced significantly over time 
(i.e. increased in consistency in a nonlinear fashion) which 
were consistent with the expectations proposed by Newell 
and colleagues [16]. Thus, the authors suggested that the 
consistency measure appears to be a useful method for exam-
ining changes in multiple degrees-of-freedom over time and 
the learning of whole body actions such as high board diving 
and gymnastics. In addition, the findings showed that while 
movement time had plateaued at the end of the practice ses-
sion, the participants were still searching for the dynamical 
stable fixed point in terms of movement dynamics (move-
ment pattern difference score). This provides support. That 
traditional motor learning studies which rely solely on per-
formance scores as an indication of success may have ig-
nored important components of the learning process.  

 Nonlinear dynamical systems do not follow continuous 
linear progressions but rather display sudden, rapid changes 
in behaviour [2, 32]. Learning a 90◦ relative phase bimanual 
finger flexion-extension task, determined by a “visual met-
ronome”, resulted in a change in attractor states towards the 
newly learned coordination pattern which persisted for one 
week after practice [21]. In addition, phase transitions from 
bistable-to-multistable, or multistable-to-monostable dy-
namic patterns, were sometimes accompanied by a loss in 
stability of intrinsic patterns [21]. A subsequent study high-
lighted that pre-existing individual differences resulted in 
different learning strategies [33]. Liu and colleagues [34] 
showed similar observations in a rollerball task. Eight par-
ticipants were assigned to either a 42-rps or 35-rps initial ball 
speed group and practiced for 45 trials a day, over 3 possible 
practice days. If the participant was successful in learning 
the task, then the practice session was completed. The task 
was considered “successfully learned” when the participant 
performed eight 30-s trials above a threshold speed out of 10 
consecutive trials. Individual analysis showed that partici-
pants were subcategorised into those that produced: a) a 
transition to successful performance (2 participants from 42-
rps condition), b) a scaled-up performance without transition 
to successful performance (2 participants from 35-rps condi-
tion and 1 participant from 42-rps condition) and c) no im-
provement in performance (2 participants from 35-rps condi-
tion and 1 participant from 42-rps condition). The two par-
ticipants who achieved success displayed an increase in ball 
acceleration fluctuation before success (i.e., switching to a 
new coordination mode). The group which showed improved 
ball acceleration but did not achieve success (category b) 
displayed several occasions of increased variability. The 
sudden, abrupt nature of transitions in this study were de-
scribed by the authors as: “consistent with a saddle-node 
bifurcation or nonequilibrium phase transition” (pg. 392). 
Variability increments observed in categories (a) and (b) 
were described as epochs of explorative behaviour which 
were not observed in the group (category c) without any im-
provement in performance [34].  

 In recent times, kinematic case studies of learners prac-
ticing multi-articular actions have begun to appear in the 
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literature. For example, in Chow et al.’s study [28] 4 novices 
practiced kicking a soccer ball over a barrier to a live re-
ceiver for 4 weeks. Cluster analysis of intra-individual kine-
matic variables showed that all participants, except one, 
demonstrated a change in preferred movement patterns fol-
lowing practice. This refers to a change in the individual 
kicking patterns represented by a change in movement clus-
ters (see Fig. 1). Movement clusters were determined in a 
hierarchical grouping process by the differences between 
various types of kinematic variables (e.g., hip, knee, and 
ankle joint range of motion) for both kicking and non-
kicking limbs. Variability, indicated by the number of cluster 
of movements exhibited within a session, only preceded a 
defined change for two of the participants. Participant YH, 
as shown in Fig. (1), illustrated a change from a preferred 
cluster (C1) in session 1 to four different movement clusters 
(C1, C2, C3, C4) in session 2, and a new preferred pattern 
(C6) in session 4 followed by an increase variability from 
session 5 to 6 and finally a new preferred pattern (C2) from 
session 7 to the end of the practice sessions. Fig. (2) displays 
the hip and knee joint angles for the kicking trials of partici-
pant YH, illustrating the two main clusters (C1 and C2) pre-
sent during the practice sessions. Participant KL demon-
strated occasions of high variability in movement clusters 
without a change in preferred movement clusters in follow-
ing practice sessions. In addition, a lack in variability of 

movement clusters was also observed for the other two par-
ticipants who displayed a smaller rate in improvement from 
pre to post test, similar to the findings in Liu et al [34]. 
Overall it was interesting to note in several participants, that 
a sudden change between movement clusters did not neces-
sarily precede an immediate improvement in performance 
and that often a period of parameterising (refining) the new 
pattern was necessary before performance improved. This 
study illustrates that whilst movement variability can predict 
changes between preferred patterns, it may not always signal 
such changes and it may be indicative of other performance 
related factors. 

 Perhaps surprisingly, there has been limited empirical 
evidence to support Bernstein’s early observations about 
coordinative structures (i.e., that humans initially constrain 
and gradually free motor synergies). Furthermore, research-
ers have questioned if Bernstein was referring to dynamical 
degrees of freedom (collective spatial and temporal organiza-
tion of joints and body segments) or mechanical degrees of 
freedom (motions of individual joint angles) in his seminal 
writings. Hodges and colleagues [35] investigated the 
changes in movement kinematics and accuracy as a function 
of 9 days of soccer-chipping practice with the left foot for a 
26-year old novice. In this case study, radial error decreased 
(i.e. improvement in outcome scores) over practice while the 
most significant changes occurred at the hip for the move-

 

Fig. (1). Distribution of movement clusters over practice sessions for all participants. Number of trials per session is shown on the x axis. 
Movement clusters for all sessoins are shown on the y axis. Reproduced from Chow et al. (2008) with permission of Human Kinetics.  
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Fig. (2). Joint angles from the kicking (right) and non-kicking (left) legs of Participant YH. Reproduced from Chow et al. (2008) with 
permission of Human Kinetics.  

ment kinematics. In particular, the range of motion (ROM) 
of the hip decreased from day 1 to 5 of practice and then 
started to increase after the first session on day 5 until the 
end of practice (see Fig. 3). In addition, the ROM results in 
Hodges’s study were also supported by the linear coupling 
between joints (cross-correlation coefficient data) whereby 
the degrees of freedom moved from freeing to freezing and 
then back to freeing throughout practice. Hodges and col-
leagues [35] suggested that the initial freezing of degrees of 
freedom was a temporary strategy used by learners to assist 
performance and that with extended practice, task demands 
are achieved more consistently and effectively by independ-
ent joint control (and potentially more complex synergies). 

 Not surprisingly, the nature of the task being learnt ap-
pears to have a significant role in shaping how dynamical 
degrees of freedom are regulated. The ski-simulator has 
proved a useful device to study the dynamics of learning 
over the years [36]. For example, in one study, seven days of 
practice on a simulator resulted in the suppression of me-
chanical degrees of freedom followed by the stabilization of 
the new pattern of coordination whereas there was no change 
in the number of dynamical degrees of freedom as a function 
of practice [37]. Similarly, learning to play a violin was not 
associated with the release of degrees of freedom. Instead, 
greater practice experience was associated with a decrease in 
shoulder ROM and a reduction in bow-movement variability 
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Fig. (3). Range of motion and SD bars (degrees) for the hip, knee and ankle as a function of practice day and session. Reproduced from 
Hodges et al. (2005) with permission of Taylor & Francis. 

[38]. The authors pointed out that the strategies used to con-
strain mechanical degrees of freedom for learning a skill is 
task-specific, rather than age-dependent. In particular, the 
findings suggest that restricting joint amplitude at selected 
joints while leaving other degrees of freedom unconstrained 
is an appropriated strategy for learning complex, high-
precision motor patterns for both children and adult learners 
[38]. Collectively these results verified that the mastery of 
degrees of freedom seems to be noticeably more complex 
and task dependent than has been implied from Bernstein’s 
seminal writings. 

 In summary, this section provides evidence to support the 
importance of individual analysis from a nonlinear dynam-
ics’ perspective. For example, several studies which exam-
ined joint ROM during practice showed that mastery of de-
grees of freedom by learners is both a complex and task-
specific process. In addition to examining degrees of free-
dom in coordinated movements, the dynamic attractor land-
scape has been used to study changes in attractor states and 
stability of the system following a learned task. From a 
nonlinear, constraints-led perspective, movement variability 
is often necessary for learning to occur while increased sta-
bility of a novel coordinated pattern is an indication of learn-
ing. Finally, several of these studies have highlighted that 
learning rates as well as learning strategies vary between 
individuals [30, 31].  

EMPIRICAL ANALYSIS OF TEAM LEARNING  

 Arguably the focus on quantifying the global aspects of 
team learning has been limited by the inherent complexity of 
group behaviour such as in team sports. Especially in team 
sports such as soccer and hockey where low scores and con-
tinuous ball flow does not reliably measure the players col-
lective skill level using linear statistical tools [39]. This is 
where nonlinear analysis can quantify the skill level in a 
team setting. It has been suggested that team work can en-
hance greater creativity than individual activity [40]. How-
ever, it is still difficult to determine what factors are pivotal 
for learning as a coherent group under the given constraints 

such as size of team, playing area dimensions, time alloca-
tion of game play. Past researchers in team sports have quan-
tified individual and dyadic performance or small sided 
games to investigate team behaviour and it is these studies 
that we shall consider in this sub-section. 

 Collective behaviour in team sports cannot be understood 
by simply quantifying individual performance parameters 
such as total running distance, running velocity, geometric 
shape, common centre of gravity and so on [41]. This is pri-
marily because organismic constraints (varied anthropomet-
ric measurements) and task constraints (e.g., numbers of 
players, typical team sports are invasive whereas individual 
sports are combative) differ considerably in team sports. A 
team sport is not simply a culmination of individual skills 
[42]. The overall movement of a team is dynamically inter-
related. Expert team players not only have more refined mo-
tor skills but also possess increased tactical awareness that 
allows them to focus on complex game features such as op-
ponent’s skills and limits [43]. 

 Researchers in sports performance have defined skillful-
ness by acknowledging the contributions of both motor con-
trol and game knowledge [44]. A review article by Turner et 
al. [45] illustrates that invasive games constitute tactical un-
derstanding for skillful performance. Typical invasive games 
require players to cope with dynamic environment demands 
such as changing team formations. To attain peak perform-
ance, individual players must be competent to make quick 
selective decisions and adapt their motor control according 
to the evolving environment. Game play can evolve when 
the state of balance ruptures suddenly [46]. Thus players 
have to anticipate the course of game play and cannot be 
confident on a pre-determined plan i.e. strategy.  

 Network analysis has been the favoured tool among re-
searchers investigating the inter-relation between agents in 
social networks [47]. Recently a social network based study 
was conducted to understand the contribution of individual 
soccer players to the overall team performance [48]. The 
study highlighted the influence of certain players by con-
structing a network based on the ball flow between two play-
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ers. The ‘flow centrality’ is the normalised distribution of 
player performance (minimum of five successful passes), 
that results in a shot. In a tentative estimate it is acceptable 
that the player performance can be extended to the team 
level by calculating the average performance of a subset of 
players. However, in this study ‘successful pass’ was the 
only parameter considered to determine individual perform-
ance in a team game. Other factors such as player’s skill, 
knowledge, specificity of task would also be important to 
objectively quantify in future work to determine the collec-
tive contribution of players in a team game [43]. 

 Coordinate profiling of players has also been a popular 
tool to define the structure of a team under varying con-
straints. A study investigated the variation of tactical behav-
iour in youth football teams and small-sided game conditions 
[41]. The spatio-temporal variables included total running 
distance, running velocity, team shape and geometrical cen-
tre difference, whereas the constraints included number of 
players (organismic) and pitch dimension (environmental). 
All these factors were incorporated to find a collective team 
variable (lpw_ratio), which looked at the changing shapes of 
the area enclosed by the players in various sub-phases of the 
game such as attack and defense game play. Lpw_ratio is a 
collective variable, which is the based on the ratio between 
length and the width of the players occupying the pitch 
space. Lpw_ratio, being a non-dimensional unit, has an ad-
vantage as a performance indicator, owing to the fact it is 
independent of any unit and favours comparative analysis 
[49]. There was a decrease in lpw_ratio with increase in age 
group, suggesting that the youngest players tend to solve 
game tasks by trying to be closer to the ball and using indi-
vidual executions, rather than a collective approach [41]. In 
team sports context this phenomena can be visualised as a 
form of “swarming behaviour” common in children’s foot-
ball [50]. However, just quantifying pitch occupancy using 
quantitative measures at different age groups will not high-
light what factors led to the changing state space. Instead, it 
would be interesting for future research to conduct question-
naires’ with individual players based on team game aptitude 
(qualitative) and simultaneously investigate spatio-temporal 
characteristics of players (quantitative). The introduction of 
questionnaires will supposedly reflect the factors which are 
unique to the decision making process in the context of the 
game. This approach might be used to correlate the game-
specific knowledge of a team with actual game play. 

 Behavioural scientists have investigated the interpersonal 
dynamics (decision making and attacking) in dyadic move-
ment of rugby union players [27]. A collective variable (vec-
tor connecting the dyads) was identified, which was later 
processed using different nonlinear tools such as: 

1. First derivative analysis (analyse the rate of change of 
the relative positioning between an attacker and de-
fender). 

2. Phase space plot (investigate the nonlinear variability 
and periodicity in dyads). 

3. Approximate entropy (quantify the predictability of the 
dyadic movements in the collected time series). 

 The study highlighted the evolving nature of game play, 
i.e. the behaviour of team players exhibited emergent and 

self-organising characteristics. Although this investigation 
garnered strong evidence to link dynamical systems theory 
(DST) to sub-phases of rugby, i.e. team sports, it would be 
beneficial to study what factors led to the decision-making 
process in the game situation. Future research in team sports 
pedagogy might in turn incorporate the critical factors of 
decision making in team game learning. 

 Whilst to date, there is limited research on team (or col-
lective) learning, it is apparent that like individual learning, 
the process is characterised by nonlinear phenomena (such as 
emergence, dynamic inter-relations, multistability and phase 
transitions). It seems that future research will need to adopt 
innovative, multidisciplinary methods to analyse collective 
learning. Team sports are inherently complex and therefore 
the tools of nonlinear dynamical systems theory seem well 
placed to improve our understanding of learning in these 
common situations. Findings from these empirical investiga-
tions on nonlinear motor learning suggest that teaching and 
learning in practical settings should encompass strategies 
that stem from nonlinear dynamics. 

PRACTICAL IMPLICATIONS 

 As discussed previously, physical educators need to 
(re)consider the ‘traditional’ practice of planning and imple-
menting repetitive drills which include repeating a move-
ment continually during practice to get players consistent. 
These drills are often too static and place limited emphasis 
upon how the skill might be functionally adapted for per-
formance in dynamic real game situations. Instead, physical 
educators should consider designing and modifying practice 
tasks and games that maintain the functional information-
movement couplings of the practice tasks or games. This 
allows a learner to increasingly couple the information avail-
able in the learning environment to the actions needed to 
achieve a specific task goal as practice proceeds. For exam-
ple, learners should be given opportunity to be involved in 
real game practices. The presence of real game context (par-
ticularly in small-sided games) allows critical information-
movement couplings to be maintained when learners execute 
movement in response to the perceptual information that is 
continuously available in the practice setting.  

 In typical invasion games, players can learn to adjust to 
the dynamic environmental demands such as changing team 
formations and be able to make quick selective decisions and 
adapt their motor control according to the evolving environ-
ment. As noted by Grehaigne et al. [42] team sports are not 
simply a culmination of individual skills; or put differently 
the whole is greater than the sum of its parts. As such, games 
and practice task constraints should mimic the actual per-
formance environments as much as possible. 

 Closely related to the idea of information-movement 
couplings, the infusion of variability in modified games and 
practice tasks is critical for the learner to explore a larger 
performance ‘solution space’, thus enhancing a learner’s 
flexibility and adaptability. Thus, although learners may 
show fluctuations as games and practice proceed, movement 
variability should not necessarily be seen as a sign of incon-
sistency and therefore detrimental to movement performance 
outcomes. Instead, physical educators need to understand 
and view movement variability as an integral process in 
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learning and acquiring effective movement patterns specific 
to a task goal. Although coaches implement various ortho-
dox training drills, which tend to simulate practice sessions 
with real game scenarios, they need to realise that movement 
variability will reduce over time as movement patterns de-
velop stability and more successful actions will be rein-
forced. The resulting movement performance outcomes will 
be more relevant and effective in providing the flexibility 
required to adapt to complex dynamic sport environment [2]. 

 Thus, the key role of physical educators is to design tasks 
and games that provide learners with opportunities to explore 
and find movement solutions within a set of specific con-
straints (especially task constraints). This, however, does not 
simply mean allowing ‘freeplay’ during lessons. Instead it 
requires physical educators to carefully manipulate task con-
straints appropriate to guide learners in adapting their 
movements to overcome specific movement challenges in 
modified games. For example, in a 3 vs. 1 throw-catch pos-
session game, having a rule that disallows the use of high 
passes (e.g. ball cannot be thrown above head level), physi-
cal educators can challenge learners to adapt their throwing 
movements to passes such as the bounce or chest pass and 
moving in front of defenders for a clear channel to receive a 
bounce or chest pass rather than a lob.  

 As discussed earlier, practitioners should also plan for 
realistic game-oriented scenarios, in which learners partici-
pate in more dynamic modified game play and avoid over-
loading learners with all the technical constraints of the game 
(skills and rules) during the early stages of learning. Game-
oriented scenarios allow educators to tactically reinforce the 
environmental constraints (e.g., positional play) and task 
constraints (e.g., rules of the game). This idea is congruent 
with in the pedagogical strategy Teaching Games for Under-
standing (TGfU) [51]. As Hopper stated, “skill learning is 
not for playing games; rather playing games is for skill learn-
ing” [52]. Hence, practitioners can prioritise learning of 
game tactics rather than specific technical skills; the latter 
can be developed when the learner shows signs of attuned 
game perception [53]. Lessons on refining skills in a later 
stage enable systematic progression from a fundamental 
movement pattern to an advanced movement pattern [54]. 

 Additionally, Hopper [52] noted that tactical skills need 
to be taught initially through modified game plays to make 
the skills more purposeful. For example, an amateur learner 
has to sprint forward to intercept a ball or kick the ball in a 
certain direction to make an advantageous pass. The learner 
then realises that in order to have a better scoring opportu-
nity, he/she might have to replace the fundamental skills 
(linear sprinting) with a further refined skill (dribbling or 
dodging) under the guided supervision of educators. Thus, 
the learner can transiently improve his/her performance in 
the team. 

 Physical educators also need to understand the different 
time scales in learning; different learners may progress at 
different rates in acquiring game tactical knowl-
edge/technical skills. For example, matching task difficulty 
to the learner’s skill level has been suggested to facilitate 
learning effectiveness [55]. In an attempt to verify this, Choi 
et al [55] introduced a multiple task motor program that in-
cluded practice schedules that were adaptive both in diffi-

culty and in number of trials for each task. This study 
showed that performance-based adaptive scheduling pro-
duced better results than random scheduling on a delayed 
retention test, providing evidence that motor learning is en-
hanced when the task provided or instructions given com-
plements the individual learning needs. Hence, physical edu-
cators need to adjust the complexity of the learning task ap-
propriately to adequately challenge learners to achieve suc-
cess. This can be done by manipulating the task constraints. 
Useful constraints such as changes to space, target areas, 
equipment, player numbers involved, goal of the task, and 
rules of the activity can be added to small-sided games. For 
example, in a modified 4 vs. 4 soccer game, the educator 
could increase the task difficulty for attackers by placing a 
time limit for attackers to score a goal. In a mini, simplified 
3 vs. 3 volleyball game, the educator may allow lower skill 
learners to have an additional bounce between volley passes 
by the same team. 

 Using the nonlinear approach in learning also requires 
some reconsideration of assessment. Traditionally, practitio-
ners have adopted skill battery tests to evaluate a learner’s 
ability to execute a sports skill. While skill battery tests can 
be a good measure to examine the skill in individual settings, 
it is unrealistic and limited when transferred to game play 
[56]. For assessment in game play, practitioners may con-
sider the Tactical Decision-making Competency (TDC) 
model proposed by Pagnano-Richardson & Henninger [57]. 
The TDC model, developed to assess students’ focus of at-
tention during game play, consists of four levels of compe-
tency; they are self and skill execution; self and teammates; 
self, teammates, and opponents; and self, teammates, oppo-
nents, and situation. The model proposed that students’ focus 
during game play progresses across these four levels of 
competency, starting from themselves and their skills, and 
eventually to the game situation (e.g., considering oppo-
nents’ formation) as they become more competent in game 
play [57].  

 However, assessing students’ TDC in game play in PE 
can be challenging since physical educators are unable to 
observe students’ thoughts during game play. Pagnano-
Richardson and Henninger [57] suggest using assessment 
records of students’ TDC based on four teaching techniques. 
These are: ‘Simply Ask” (e.g., asking students to verbally 
respond to questions on their thoughts during game play), 
posters (e.g., displaying four posters, each representing one 
level of TDC and getting students to stand under the poster 
that best represents their thoughts during game play), journal 
prompts (e.g., developing questions to assess students’ TDC 
through their journal entries), and exit cards (e.g., getting 
students to respond to a variety of questions on index-size 
cards and collected as they leave the class). These techniques 
not only allow students to identify their decision-making 
during game play, but also allow physical educators to assess 
students’ progress across the levels of TDC [57].  

 In conclusion, recent empirical investigations of motor 
learning support the viewpoint that learning is a nonlinear, 
dynamical process. More specifically, skill acquisition is 
conceived as an emergent process punctuated by sudden 
changes in skill capability and coordination dynamic stabil-
ity (2). As the learner/s searches for stable and functional 
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states of coordination during goal-directed activity [58], the 
learner/s may display an increase in variability by a large 
fluctuation in performance or coordination before a success-
ful movement pattern is learned. Movement variability dur-
ing learning allows the learner/s to search, find, and subse-
quently refine appropriate solution manifolds for different 
performance contexts [13]. These ideas raised in this paper 
have several practical implications for consideration within 
sport and physical activity pedagogy; they could inform 
practitioners to more effectively engage learners using the 
nonlinear approach to learning [59]. Further research is 
needed to identify the different, nested timescales across 
which the learning process evolves. Also the inclusion of 
both discrete and continuous tasks in empirical work is nec-
essary before the approach that has been described can form 
a global and pervasiveness theory of learning. 

CONFLICT OF INTEREST 

 The authors confirm that this article content has no con-
flicts of interest. 

ACKNOWLEDGEMENTS 

 Grant from Office of Education Research, National Insti-
tute of Education, Nanyang Technological University. OER 
15/09 CJY. 

REFERENCES 

[1] Visser J, Geuze RH, Kalverboer AF. The relationship between 
physical growth, the level of activity and the development of motor 
skills in adolescence: Differences between children with DCD and 
controls. Hum Mov Sci 1998; 17(4-5): 573-608. 

[2] Davids K, Button C, Bennett SJ. Dynamics of Skill Acquisition: a 
Constraints-Led Approach. Champaign, Illinois: Human Kinetics 
2008. 

[3] Schmidt RA, Wrisberg CA. Motor Learning and Performance. 3rd  
ed. Champaign, Illinois: Human Kinetics 2004. 

[4] Bryan WL, Harter N. Studies in the physiology and psychology of 
the telegraphic language. Psychol Rev 1897; 4: 27-53. 

[5] Lane NE. Skill Acquisition Rates and Patterns: Issues and Training 
Implications. New York: Springer-Verlag 1987. 

[6] Newell A, Rosenbloom PS. Mechanisms of skill acquisition and 
the law of practice. In: Anderson JR, Ed. Hillsdale, NJ: Erlbaum 
1981; pp. 1-55. 

[7] Fitts PM. Perceptual-motor skills learning. In: Melton AW, ed. 
Categories of human learning. New York: Academic Press 1964. 

[8] Anderson JR. Acquisition of cognitive skill. Psychol Rev 1982; 89: 
369-406. 

[9] Newell KM. Change in movement and skill: learning, retention and 
transfer. In: Latash ML, Turvey MT, Eds. Dexterity and its 
Development. Mahwah, NJ: Erlbaum 1996; pp. 393-430. 

[10] Collins JJ. Fishing for function in noise. Nature 1999; 402: 241-2. 
[11] Schmidt RA. The search for invariance in skilled movement 

behavior. The 1984 C.H. McCloy Research Lecture. Res Quart 
Exerc Sport 1985; 56: 188-200. 

[12] Davids K, Button C, Renshaw I, Araújo D, Hristovski R. 
Movement models from sports provide representative task 
constraints for studying adaptive behavior in human motor systems. 
Adapt Behav 2006; 14(1): 73-95. 

[13] Muller H, Sternad D. Decomposition of variability in the execution 
of goal-oriented tasks: Three components of skill improvements. J 
Exp Psychol Hum Percept Perform 2004; 30(1): 213-33. 

[14] Newell KM, Deutsch KM, Sosnoff JJ, Mayer-Kress G. Variability 
in Motor Output as Noise: A Default and Errorneous Proposition. 
In: Davids K, Bennett S, K.M.Newell, Eds. Movement System 
Variablity. Champaign, Illinois: Human Kinetics 2006; pp. 3-24. 

[15] Crossman ERFW. A Theory of the acquisition of speed-skill. 
Ergonomics 1959; 2: 153-66. 

[16] Newell KM, Liu YT, Mayer-Kress G. Time scales in motor 
learning and development. Psychol Rev 2001; 108(1): 57-82. 

[17] Newell KM, Liu Y-T, Mayer-Kress G. Time scales in motor 
learning and development. Psychol Rev 2001; 108(1): 57-82. 

[18] Heathcote A, Brown S, Mewhort DJK. The power law repealed: 
The case for an exponential law of practice. Psychon Bull Rev 
2000; 7(2): 185-207. 

[19] Newell KM. Constraints on the development of coordination. In: 
Wade MG, Whiting HTA, Eds. Motor Development in Children: 
Aspects of Coordination and Control. Dordrecht, Netherlands: 
Martinus Nijhoff 1986; pp. 341-60. 

[20] Wenderoth N, Bock O. Learning of a new bimanual coordination 
pattern is governed by three distinct processes. Motor Control 
2001; 1: 23-35. 

[21] Zanone PG, Kelso JAS. Evolution of behavioral attractors with 
learning: nonequilibrium phase transitions. J Exp Psychol Hum 
Percept Perform 1992; 18: 403-21. 

[22] Button C, Chow J-Y, Rein R. Exploring the perceptual-motor 
workspace: New approaches to skill acquisition and training. In: 
Hong Y, Bartlett R, Eds. Handbook of Biomechanics and Human 
Movement Science. London: Routledge 2008; pp. 538-53. 

[23] Muchisky M, Gershkoff-Cole L, Cole E, Thelen E. The epigenetic 
landscape revisited: a dynamical interpretation. In: Rovee-Collier 
C, Lipsitt LP, Eds. Advances in Infancy Research. Norwood, NJ: 
Ablex 1996; pp. 121-60. 

[24] Bernstein NA. The coordination and regulation of movements. 
London: Pergamon Press 1967. 

[25] Anderson DI, Sidaway B. Coordination changes associated with 
practice of a soccer kick. Res Quart Exerc Sport 1994; 65: 93-9. 

[26] Button C, Macleod M, Sanders R, Coleman S. Examining 
movement variability in the throwing action at different skill levels. 
Res Quart Exerc Sport 2003; 74(3): 257-69. 

[27] Passos P, Araujo D, Davids KS et al. Interpersonal pattern 
dynamics and adaptive behavior in multiagent neurobiological 
systems: Conceptual model and data. J Mot Behav 2009; 41(5): 
445-59. 

[28] Chow JY, Davids K, Button C, Rein R. Dynamics of movement 
patterning in learning a discrete multiarticular action. Motor 
Control 2008; 12: 219-40. 

[29] Hong SL, Newell KM. Change in the organization of degrees of 
freedom with learning. J Motor Behav 2006; 38(2): 88-100. 

[30] Chen HH, Liu YT, Mayer-Kress G, Newell KM. Learning the 
pedalo locomotion task. J Motor Behav 2005; 37(3): 247-56. 

[31] Chow JY, Davids K, Button C, Koh M. Coordination changes in a 
discrete multi-articular action as a function of practice. Acta 
Psychol 2008; 127: 163-76. 

[32] Kelso JAS. Dynamic Patterns: The Self-Organization of Brain and 
Behavior. Cambridge, MA: MIT Press 1995. 

[33] Zanone PG, Kelso JAS. Coordination dynamics of learning and 
transfer: Collective and component levels. J Exp Psychol Hum 
Percept Perform 1997; 23(5):1454-80. 

[34] Liu Y-T, Mayer-Kress G, Newell KM. Qualitative and quantitative 
change in the dynamics of motor learning. J Exp Psychol Hum 
Percept Perform 2006; 32(2): 380-93. 

[35] Hodges NJ, Hayes S, Horn RR, Williams AM. Changes in 
coordination, control and outcome as a result of extended practice 
on a novel motor skill. Ergonomics 2005; 48(11-14):1672-85. 

[36] Vereijken B, van Emmerik REA, Whiting HTA, Newell KM. 
Free(z)ing degrees of freedom in skill acquisition. J Motor Behav 
1992; 24: 133-42. 

[37] Hong SL, Newell KM. Practice effects on local and global 
dynamics of the ski-simulator task. Exp Brain Res 2006; 169: 350-
60. 

[38] Konczak J, Vander Velden H, Jaeger L. Learning to play the violin: 
motor control by freezing, not freeing degrees of freedom. J Motor 
Behav 2009 ; 41(3): 243-52. 

[39] Dutt MA, Button C, Robins A, Bartlett R. Neural network 
modelling and dynamical system theory: are they relevant to study 
the governing dynamics of association football players? Sports 
Med 2011; 41(12): 1-15. 

[40] Whitfield J. Collaboration: Group theory. Nature 2008; 455(7214): 
720-3. 

[41] Folgado HMCA. Towards an understanding of youth football 
teams tactical performance by analysis of collective positional 
variables during small-sided games. . Vila Real, Portugal: UTAD 
2010. 



58    The Open Sports Sciences Journal, 2012, Volume 5 Button et al. 

[42] Gréhaigne J-F, Caty D, Godbout P. Modelling ball circulation in 
invasion team sports: a way to promote learning games through 
understanding. Phys Educ Sport Pedagogy 2010; 15(3): 257-70. 

[43] Davids K, Araujo. D, Shuttleworth R. Applications of Dynamical 
Systems Theory to Football. In: Reilly T, Cabri J, Araújo D, Eds. 
Science and Football V. London: Routledge, Taylor & Francis 
2005; pp. 537-50. 

[44] French KE, Nevett ME, Spurgeon JH, Graham KC, Rink JE, 
McPherson SL. Knowledge representation and problem solution in 
expert and novice youth baseball performance. Res Quart Exerc 
Sport 1996; 66: 194-201. 

[45] Turner AP, Allison PC, Pissanos BW. Constructing a concept of 
skilfulness in invasion games within a game for understanding 
context. Eur J Phys Educ 2001; 6: 38-54. 

[46] Vilar L, Araújo D, Davids K, Travassos B. Constraints on 
competitive performance of attacker–defender dyads in team 
sports. J Sports Sci 2012; 30: 459-69. 

[47] Barabasi AL, Oltvai ZN. Network biology: understanding the cell's 
functional organization. Nat Rev Genet 2004; 5(2): 101-13. 

[48] Duch J, Waitzman JS, Amaral LA. Quantifying the performance of 
individual players in a team activity. PLoS One 2010; 5(6): e10937. 

[49] Mendoza JL. Design and analysis. A researcher's handbook, 4th  ed. 
Organ Res Methods 2006; 9(2): 248-51. 

[50] Button C, Chow J-Y, Dutt Mazumder A, Vilar L. Exploring the 
swarming effect in children's football.  World Congress of Science 
and Football; May 26-30, 2011; Nagoya, Japan 2011. 

[51] Bunker D, Thorpe R. A model for the teaching of games in the 
secondary school. Bull Phys Educ 1982; 10: 9-16. 

[52] Hopper T. Teaching games for understanding: the importance of 
student emphasis over content emphasis. J Phys Educ Recreat 
Dance 2002; 73(7): 44-9. 

[53] Griffin LL, Mitchell SA, Oslin JL. Teaching sports concepts and 
skills: a tactical games approach. Champaign, IL: Human Kinetics 
1997. 

[54] Gallahue DL. Developmental physical education for today's 
elementary school children. New York: Macmillan 1987. 

[55] Choi YG, Qi F, Gordon J, Schweighofer N. Performance-based 
adaptive schedules enhance mot learning. J Mot Behav 2008; 
40(4): 273-80. 

[56] Veal ML. The role of assessment and evaluation in secondary 
physical education: a pedagogical view. In: Rink J, Ed. Critical 
crossroads: middle and secondary school physical education. 
Reston, VA: National Association for Sport and Physical Education 
1993. 

[57] Pagnano-Richardson K, Henninger ML. A model for developing 
and assessing tactical decision-making competency in game play. J 
Phys Educ Recreat Dance 2008; 79(3): 24-9. 

[58] Newell KM, Broderick MP, Deutsch KM, Slifkin AB. Task goals 
and change in dynamical degrees of freedom with motor learning. J 
Exp Psychol Hum Percept Perform 2003 2003/4; 29(2): 379-87. 

[59] Chow JY, Davids K, Button C, Shuttleworth R, Renshaw I, Araújo 
D. The role of nonlinear pedagogy in physical education. Rev Educ 
Res 2007; 77(3): 251-78. 

 
 
Received: July 18, 2011 Revised: May 25, 2012 Accepted: May 30, 2012 
 

© Button et al.; Licensee Bentham Open. 
 

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/ 
by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.  

 


