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Abstract: Tolls are used to influence users to "voluntarily" choose paths in the system which optimize flows (VSO) to 

minimize social costs. When the toll solutions are not unique, administrators gain the flexibility to vary tolls in order to 

meet other goals while still maintaining optimal flows. For Fixed-Demand networks, it was known that path-tolls can be 

adjusted. However, the link-toll solution was thought to be unique if the number of paths exceeds the number of links. We 

show, however, that link-toll solutions are non-unique even for many very large networks in which the number of paths 

greatly exceeds the number of links. Uniqueness of tolls under Elastic Demand is studied here for the first time in the lit-

erature. We examine the uniqueness (or lack thereof) of tolls needed to optimize flows with Elastic User Demand. We 

find that elastic demand eliminates the adjustability of path-toll solutions, and partially restricts the newly-found flexibil-

ity of link-tolls. These results should provide guidance for traffic network administrators in planning second-best toll poli-

cies for situations where marginal cost pricing may be politically or otherwise unpopular. 
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1. INTRODUCTION 

1.1. Introduction: Background of Prior Work 

 Traffic system administrators aim to diminish problems 
of congestion by using link-tolls or path-tolls to modify the 
user-equilibrium (UE) flow pattern, thereby replicating the 
system-optimized (SO) flow pattern for the same network. 
Tolls in multi-class-user transportation networks were stud-
ied by Dafermos [1]. However, only fixed user demand was 
considered. It was shown that the path toll solution is not 
unique; adding the same toll to each path does not change 
the flows. Clearly, if path tolls are increased sufficiently, the 
assumption of fixed demand eventually becomes a poor ap-
proximation to reality. However, similar studies for elastic 
demand are not found in the literature. 

 Dafermos provides a specific method to solve the link-
toll problem, and shows that at least one solution exists. She 
states, without proof, that multiple solutions may exist in 
"relatively simple networks" where the number of paths is 
smaller than or comparable to the number of links. However, 
the solution provided "will be in general the only solution 
since usually the number of paths in a network greatly ex-
ceeds the number of links so that the number of equations ... 
is much greater than the number of unknowns". These state-
ments have led to the rather strong but unproved statement 
that, except in "simple networks", "the link-toll pattern con-
structed above will be the only solution of the link-toll col-
lection problem" [2], and even stronger statements that the 
link toll policy is unique [3]. 
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1.2. Introduction: Other Recent Work 

 Three very recent works on networks with fixed demands 
showed examples of the non-uniqueness of optimal tolls. 
Dial [4, 5] provides algorithms to find Minimal Revenue 
Tolls. Yang and Lam [6] uses an EDO (equilibrium decom-
position optimization) algorithm to find alternative tolls. 
Their solutions maintain the optimal flows. However, neither 
of these references found necessary and sufficient conditions 
under which solutions will actually differ from the Marginal 
Cost Tolls. Their numerical examples have more links than 
paths, so they are not suitable as new counter-examples to 
the uniqueness, since Dafermos [1] already showed such 
counter-examples for "simple" networks. Also, neither of 
them directly addressed correctly the effects of modified 
tolls on the flows under elastic demand (see Penchina [7]). 

1.3. Introduction: The Present Work 

 Through consideration of several example networks, we 
study the question of uniqueness of the link-toll and path-toll 
solutions for general networks. We review and extend previ-
ous work for fixed user demand, and then further extend the 
treatment to include the more realistic and more interesting 
case of elastic demand, for which we find new and very dif-
ferent results. 

 In section 2, we discuss fixed demand. We conclude that 
there are non-unique link-toll solutions in wide classes of 
"complex" networks; i.e. networks in which the number of 
paths greatly exceeds the number of links. It is shown by 
counter-examples that the well known statement [1] about 
uniqueness of link-tolls is too limiting. This non-uniqueness 
is important for toll policy planning in networks, where link-
tolls are generally easier to collect than path-tolls. We show 
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that for cases of fixed demand, link-toll planners often have 
some of the same flexibility as path-toll planners to adjust 
tolls (presumably for the social good) while still maintaining 
a system-optimized flow. 

 Although fixed demand is a very popular assumption in 
traffic theory, it is usually only an approximation to the more 
realistic and more complicated case of elastic demand. The 
voluntary-system-optimization (VSO) solution uses Mar-
ginal Cost Pricing to maximize the sum of User Surplus and 
Toll Revenue [8]. 

 For elastic demand, the problem of adjusting toll policies 
while maintaining optimal system flows has not been studied 
before in the literature. In section 3, we show that elastic 
demand removes the well-known flexibility of setting path-
tolls, and also reduces some of the newly found increased 
flexibility of setting link-tolls. It effectively reverses the 
roles of link-tolls and path-tolls in adjusting toll policies to 
simultaneously achieve system optimized flows and addi-
tional social goals. 

2. NON-UNIQUE LINK-TOLL SOLUTIONS (FIXED 
DEMAND) 

 In this section we discuss several networks for which the 
link-toll solution is non-unique (i.e. changed tolls with un-
changed flows) under conditions of fixed user demand. We 
do not presume to find necessary and sufficient conditions 
for the most general networks that have non-unique optimal 
tolls. However, we provide examples to show that, there is 
no limit to the size or complexity of the network in which the 
link toll solution is not unique. In section 2.6, we show a 
specific procedure (algorithm) that both increases the size of 
a network, and increases the adjustability of the link toll pol-
icy, or even makes it adjustable when it was unique for the 
smaller original network. 

 For simplicity of the argument and notation, we use sev-
eral examples to introduce networks with a single user class 
and fixed demand for each origin/destination (O/D) pair. 
Extension to multi-class-users is straightforward. It involves 
only added superscripts i = 1, 2, ...n, as in [1], and needs no 
further discussion here. Extension to elastic demand is more 
complicated, more interesting, and has some important ef-
fects; it is discussed in section 3. That discussion will make 
use again of all the examples in this section 2. 

 We first illustrate five classes of networks with non-
unique link-toll solutions. Some of these classes are more 
general than indicated by Dafermos [1]. We then introduce 
two more classes (combinations of the original five classes). 
Class 7, in particular can be quite "complex" in the sense of 
having many more paths than links, and serves as a good 
counterexample to claims of uniqueness of link tolls. Pre-
sumably, there are many more classes with non-unique link-
tolls than illustrated here, but we find that these seven are 
sufficient to elucidate the situation. 

 Although classes 1 - 3 do not have more paths than links, 
they are discussed because they, and also the examples from 
Dial [4, 5] and Yang and Lam [6], are useful as components 
of more complex classes. 

 

2.1. Fixed Demand - Network Class 1: Disjoint (Parallel) 

 For each origin/destination (O/D) pair Oi / Dj, each path 
Pij,k (k = 1,2, ... K) connecting Oi to Dj is independent of 
every other path. i.e. there are no intersections of paths ex-
cept at Oi and Dj. These can be thought of as "parallel" 
paths, although a single isolated link is also a (trivial) mem-
ber of this network class. No path shares a link or node with 
any other path. Changing link-tolls in ways that add the same 
arbitrary fixed toll Tij to every one of the K paths Pij,k con-
necting Oi/Dj will not influence any user to move from one 
path to another. Therefore, there is considerable freedom to 
modify some link-tolls without changing the flow pattern. 
One example of this class is shown in Fig. (1, class 1). 

 

Fig. (1). Examples of Network Classes with Flexible Link Tolls. 

Class 1 = Disjoint/Parallel. 

Class 2 = Fixed Number of Links per Path. 

Class 3 = Bridge. 

Class 4 = Chain/Series. 

Class 5 = Concrete Example with Many More Paths than Links. 
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 This example is particularly simple, and seems somewhat 
trivial, in that one could divide any long link with one toll 
into a series of shorter links with their own individual tolls. 
However, more interesting uses of this case 1 are produced 
by combinations with other cases, as e.g. in section 2.6. 

2.2. Fixed Demand - Network Class 2: Fixed Number Of 

Links Per Path 

 For each pair Oi/Dj, all paths Pij,k (k = 1,2, ... K) from 
Oi to Dj have exactly the same (arbitrary positive integer) 
number Nij,k = Nij of links, independent of k. However, it is 
not necessary that Nij = Ni'j' for any other pair Oi'/Dj'. Any 
two or more paths may share one or more links. One exam-
ple of this class is shown in Fig. (1, class 2). 

Given any link-toll policy which renders a user-equilibrium 
(UE) flow pattern system-optimizing (SO), the addition of 
the same arbitrary toll T to the existing toll on each link in 
this network will increase the path-toll by the same amount T 
x Nij on each path from Oi to Dj. This added toll maintains 
the equality of costs on alternate path choices, and maintains 
the system-optimizing flow. 

2.3. Fixed Demand - Network Class 3: Bridge 

 This class consists of bridged networks, such as the one 
in the Braess paradox. When all traffic uses the bridge 
(transversal link), a single toll on the bridge can replace two 
smaller tolls on each of the two congested links without 
changing any flows (see Penchina [9]. An example of this 
network class is shown in (Fig. 1, class 3). 

2.4. Fixed Demand - Network Class 4: Chain (Series) 

 This class consists of a serial chain made of networks of 
other classes. It has at least the link-toll flexibility of each of 
the sub-networks. If the same network is repeated, it can be 
thought of as a "super-link" in a linear chain, or a "mono-
mer" in a polymer (see Szwarc [10]), etc. A simple but inter-
esting example uses the 3-link, 2-path network of Fig. (1, 
class 4) as the monomer repeated M times in series to form a 
linear polymer, with a single origin at the beginning, and a 
single destination at the end of the series. 

 For large M, the 2
M

 = exp(M ln(2)) paths exponentially 
exceed the 3M links. Still, the link-toll policy is not unique. 
Wherever only one link connects two nodes, that link-toll 
may be adjusted at will, since the user can not change paths. 
Wherever two links connect two nodes, addition of the same 
arbitrary (positive or negative) toll to each link does not dis-
turb the equality of path costs, and will not change flow pat-
terns. This flexibility of link-tolls is present independently at 
each monomer in the polymer chain. This is a clear and 
strong counterexample to the claim of Dafermos that the 
reason for the existence of many solutions is that the number 
of allowed paths is comparable to [1] or less than [1] the 
number of links, since the number of paths is exponentially 
larger than the number of links. 

2.5. Fixed Demand - Network Class 5: Concrete Example 

with More Paths than Links 

 Fig. (1, class 5) shows a fairly small concrete example of 
a "complex" network, with many more paths, 13, than links, 
5, for which the link-toll pattern is non-unique; another clear 
counter-example to the uniqueness claim [1]. Here, the link-
cost functions Ci(fi) = hi + gi fi depend only on the local link 
flow fi, where hi is a fixed link cost (overhead cost) and gi is 
the non-negative incremental cost per unit of flow on that 
link due to congestion (congestion cost). Table 1 has more 
specifications and results of a detailed numerical example 
showing various possible solutions. 

 Note in Table 1, that the Marginal Cost solution, which 
induces system-optimal link flows, imposes tolls on all five 
links. In our example, it collects a high total revenue (com-
parable to the toll-free user costs). Clearly, there is no flow-
pattern-related reason to impose a toll on link c, since this 
toll can not influence users to change links. Nor is there any 
such reason to use tolls on both links a and b (or both links d 
and e) since only the difference between the tolls on two 
parallel links influences the user to choose between them. 
Thus, the optimal link-toll solution is surely not unique in 
this case. 

 The "simplest" solution, in the sense of having the small-
est number of non-negative tolls, induces a system-optimized 
flow pattern with only two tolls. (This solution shown in 

Table 1. User Equilibrium and System-Optimized Link-Toll Solutions for Network Class 5 with Fixed O/D Demands: dXY = 3 dWZ 

= 4 dWX = dYZ =dWY =dXZ = 2 

 

Link Cost  User Equilibrium. No Tolls System Optimal Flows Marginal Cost Toll  Simple Toll* Fair Toll** 

Link 

Ci(fi) 
Link 

flow f 

Link  

Costs 

Per 

User 

Total 

Link 

User 

Cost 

Link 

Flow f 

Link 

Cost 

Per User 

w/o Toll 

Total 

Link 

User 

Costs 

Link 

Toll T 

Link 

Revenue 

Link 

Toll T 

Link 

Revenue 

Link 

Toll T 

Link 

Revenue 

a  4 + 3fa fa=04 Ca =16  064 fa=03 Ca = 13  039 09 027 4 12 +3 +9 

b 12 + fb fb=04 Cb=16  064 fb=05 Cb = 17  085 05 025 0 00 -1 -5 

c  1 + 4fc fc=11 Cc=45  495 fc=11 Cc = 45  495 44 484 0 00 =0 =0 

d  4 + 3fd fd=04 Cd=16  064 fd=03 Cd = 13  039 09 027 4 12 +3 +9 

e 12 + fe fe=04 Ce=16  064 fe=05 Ce = 17  085 05 025 0 00 -1 -5 

 TOTAL    751    743  588  24  +8 

*The "Simplest" Toll, in the sense of achieving VSO with the minimum number of non-negative tolls. It turns out to be the so-called "Minimal-Revenue" Toll [4, 5]. 
**The Fair Toll [1] makes the VSO link cost per user equal to user equilibrium link cost per user. It includes negative tolls (i.e. subsidies). 
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Table 1 turns out to be an example of what Dial [4] called a 
Minimal Revenue solution.) To accomplish this, impose the 
first toll on that link (of links a and b) with the lower user 
marginal-cost in order to equalize the two marginal costs; 
and the second toll in the same way on links d and e. 

 Also shown in Table 1 is the so-called "Fair" solution 
suggested by Dafermos [1] for which the user costs are the 
same as for user-equilibrium (UE) without tolls. This re-
quires tolls on four links, two of them being negative tolls 
(subsidies). Note that the "Fair" solution has even lower net 
revenue than the so-called MR solution which does not allow 
subsidies. 

2.6. Fixed Demand - Network Class 6: Combination of 1 

& 2 

 This class combines classes 1 and 2. Each of the K dis-
joint paths Pij,k (k= 1,2,...,K) from Oi to Dj in Class 1 is 
replaced by a group of M(k) paths of Class 2, Pij,km (m = 1, 
2, ..., M(k)), each of which has the same number Nij,k of 
links, independent of m. Here, for example, one can modify 
the link-tolls in such a way that the change in each link toll 
in the group of M(k) paths Pij,km is the same arbitrary fixed 
number Cij,k = Cij/Nij,k, independent of m. This will change 
the cost on each path Pij,km by a fixed amount Cij, inde-
pendent of k or m, and will not change the flow pattern. 

2.7. Fixed Demand - Network Class 7: Compound 

 Given any complex network, one can add any one of the 
above "simpler" networks, or even a single isolated link, to 
an outer node of the complex network. This new "compound 
network" (= complex + simple network), larger, and in some 
ways even more complex than the starting complex network, 
has at least all the link-toll flexibility of the added simpler 
network. It is a good counter-example to the claim [1] of 
unique link-toll solutions in general large networks. 

 It seems likely that adding links to large complex net-
works will often increase the chance that the enhanced net-
work will include at least one simple network that has link-
toll flexibility. This is not always true, since one could care-
fully add links with the specific aim to avoid additional 
flexibility. However, we conjecture that it is usually true 
when one adds links in some other manner, to an already 
complex network. 

 A detailed discussion of the probability of finding link-
toll flexibility in large networks is beyond the scope of this 
present study. However, prior studies by Steinberg et al. [11, 
12] indicate that paradoxical links (such as the Braess para-
dox of the bridge network class 3) are found more often than 
not in large networks. Since these simple-network parts of 
larger compound networks could bring their own link-toll 
flexibility, we conjecture that at least some link toll flexibil-
ity exists more often than not in large networks. 

3. ELASTIC DEMAND 

3.1. Uniqueness of Path-Toll Solutions (Elastic Demand) 

 Dafermos [1] claims on p.218: "It is clear that one may 
construct an infinite number of solutions Rp of the path-toll 
collection problem." This claim of non-uniqueness is true 
when user travel demand is fixed for each O/D pair. How-

ever, we show here that it is not true for the more compli-
cated, and more realistic, case of elastic demand. 

 When O/D demand is fixed, the procedure of adding a 
fixed toll to each path connecting this O/D pair will not 
change the overall O/D flow, and will not change the distri-
bution among paths, thus allowing much flexibility in as-
signing path tolls. However, if the flow pattern is already 
system-optimized with elastic demand by using Marginal 
Cost pricing to maximize the sum of User Surplus and Toll 
Revenue [8], a uniform change in user-perceived cost for 
each path connecting an O/D pair, causes (by definition) an 
elastic change in the total O/D flow; thereby de-optimizing 
it. As an important limiting example, note that if demand is 
truly fixed, one can add equal tolls to each path ad infinitum, 
without affecting any flows. However, in any realistic case 
with elastic demand, it is clear that following the same pro-
cedure would eventually reduce the flows to zero; if the cost 
is sufficiently high, nobody can afford to make the trip. 

 Changing the toll of any used path would require a 
change in flow to readjust to the equilibrium, and would up-
set the optimality. Thus, one can not change costs of any 
used paths without upsetting the VSO conditions [13]. Fur-
thermore, for the sake of completeness, we should note that 
decreasing the cost of an unused path to the cost level (or 
below) of a used path, would induce a flow on the previously 
unused path, thus again upsetting the optimal flows. 

 It is interesting to view the situation also from an eco-
nomics viewpoint. It is well known that marginal cost (MC) 
pricing produces optimal flows and economic efficiency. 
Any additional uniform decrease/increase in path tolls, once 
MC pricing has been achieved, would be effectively a sub-
sidy/tax and would tend to encourage over-use/under-use of 
the network. The case of perfectly inelastic demand is a very 
special case where a uniform decrease/increase in path tolls 
would not change the overall use (by definition of perfectly 
inelastic). 

 In principle, there could be some "degeneracies" that 
change the situation: such as e.g. non-monotone, multi-
valued demand-cost functions. However, except for such 
unlikely degeneracies, the flexibility in assigning the path-
tolls while maintaining optimization under fixed demand, is 
totally lost under elastic demand. 

 In section 2, our original motivation and arguments were 
aimed at showing that there are many classes of networks for 
which planners can adjust link-tolls without affecting path 
flows. Somewhat ironically, here in section 3 we show that 
the flexibility provided to the link-toll planner in section 2 is 
now partially removed by the elasticity of user travel de-
mand. Similarly, path-toll planners that had great flexibility 
under conditions of fixed demand, now have (except for oc-
casional degeneracies mentioned above) no flexibility when 
the demand is elastic. 

 In practice, it may be possible to regain some of the lost 
path-toll flexibility. It turns out that the system cost im-
provement due to system-optimization is often a small per-
centage of the original user equilibrium system cost without 
any tolls. This is illustrated by the numerical example in our 
Table 1 for class 5, as well as various examples in the litera-
ture; e.g. Gartner [8], and the example by Penchina [9], and 
Arnott et al. [14]. Thus, although one can not maintain true 
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optimal VSO conditions while changing path tolls under 
elastic-demand conditions, we see from examples that there 
may often be sufficient flexibility to make changes in path-
tolls with only minor deviations from the overall VSO sys-
tem costs. These minor deviations may be, in many cases, 
smaller than the inaccuracies of system models used to pre-
dict real life. The social gain obtained by these toll changes 
may sometimes outweigh the social harm caused by non-
optimal use of the network. A sensitivity analysis similar to 
that of Yang and Lam [6] would help to analyze such situa-
tions. 

3.2. Methods to Achieve Flexibility of Link-Toll Solutions: 

(Elastic Demand) 

 We have seen in section 3.1 that, except for some possi-
ble degeneracies, changing path-tolls changes the network 
flows, by the simple definition of elastic demand. Thus, for 
elastic demand, path toll solutions are unique. On the other 
hand, depending on the details of the network, one may still 
have some flexibility to adjust link-tolls, so long as this is 
done in a way that keeps path-tolls constant. This is a 
stronger necessary condition (restriction) than we needed to 
provide link-toll flexibility under conditions of fixed demand 
where all path tolls had to change by the same amount. 

 Apparently, the full necessary and sufficient conditions 
for link-toll flexibility have not yet been investigated in gen-
eral for elastic demands, and are beyond the scope of this 
work. We can, however, explain some specific ways to 
change link tolls while maintaining optimal flows in some of 
the network classes that were already introduced in section 2. 

Elastic Demand - Class 1 from Section 2.1: Parallel 

 In these disjoint networks, the path-toll Tij,k on any path 
k with multiple links can be kept constant (i.e. Tij,k = con-
stant; k = 1,2,… K), while some link-tolls are increased and 
others decreased appropriately along the same path k. Since 
the path-tolls are not changed, the flow pattern remains the 
same. See also discussion in Section 2.1. 

Elastic Demand - Class 2 from Section 2.2: Fixed Number 
of Links Per Path 

 In these networks with fixed numbers of links per path, 
depending on how links are shared among paths, there may 
or may not be some paths for which it is possible to increase 
certain link-tolls and decrease others without changing any 
path-tolls. One simple example occurs if two links are shared 
by the same subset of paths; then one could increase the toll 
on the first link while decreasing the toll on the second by 
the same amount. 

Elastic Demand - Class 3 from Section 2.3: Bridge 

 For this bridged network, the replacement of the two 
congestion tolls by a single larger bridge toll will eliminate 
the Braess paradox. However, it will change path costs, and 
hence the system flow when the demand is elastic. Any de-
crease/increase in path costs could be compensated by a 
positive/negative toll at the entrance to (or exit from) the 
network thereby achieving link-toll flexibility. If one insists 
on true link-tolls rather than entrance or exit tolls, one could 
expand the bridge network with a short un-congested link 
added in series with the entrance, and then apply the com-

pensating positive/negative toll to this new link in the ex-
panded bridge network. 

Elastic Demand - Class 4 from Section 2.4 Chain (Series) 

 We can again provide a method (algorithm) to achieve 
link toll flexibility for this network. However, the restrictions 
on the flexibility are more severe. Consider again the simple 
example from Fig. (1, class 4) of a long chain of M mono-
mers with a single origin at the beginning and a single desti-
nation at the end of the chain. Wherever only one link con-
nects two nodes, one can only adjust that link-toll at will if 
one makes a compensating change elsewhere. One simple 
way would be to decrease the toll on another single link, or 
on each of another two-link pair, by the same amount as one 
increases the toll on this link. 

 Similarly, when two links connect two nodes, one can 
again add the same arbitrary (positive or negative) toll, but 
only if one compensates for it elsewhere. This compensation 
method could be the same as above. The compensation need 
not be done in this simple way, but could also be shared 
among many other links, so long as the total path toll re-
mains the same. Hence, the restrictions on the link-toll plan-
ner are not very constraining, but are surely stronger than for 
the case of fixed demand. 

 When there are many origins and destinations at the junc-
tions between monomers, one still has at least the flexibility 
of increasing/decreasing the toll on any single link (e.g. link 
c in Fig. (1, Class 4)), so long as one compensates it with a 
corresponding decrease/increase on each of the paired links 
(e.g. links a and b in Fig (1, Class 4)) within the same 
monomer, in order to keep all path tolls constant. 

 When there are many origins and destinations at the junc-
tions within monomers (similar to those in concrete example 
of class 5 in Fig. 1), then the situation is more complicated. 
There is no simple procedure which allows changing link 
tolls for all such networks. In fact, if each link has one path 
using only that link, the link-toll solution is unique (see fol-
lowing discussion of class 5). 

Elastic Demand - Class 5 from Section 2.5 Concrete Ex-

ample: Unique Link Tolls 

 It is clear by examination that if there is a path that uses 
only a single link, then the toll on that link can not be in-
creased without changing the path cost and consequently the 
elastic path flow. 

 Since each link in this example has a path which uses 
only that link, this restriction applies to all links, so this sim-
ple network has neither link toll flexibility nor path toll 
flexibility. The toll policy, link or path, for optimal flows 
under elastic demands is unique. 

Elastic Demand - Class 6 from Section 2.6: Combination of 

1 & 2 

 In this combination of classes 1 and 2, it is clear that the 
link-tolls have the same flexibility as for class 2. The combi-
nation neither adds nor removes any flexibility. 

Elastic Demand - Class 7 from Section 2.7. Compound 

 Just as in the case of fixed demand, the compound net-
work maintains at least the link-toll flexibility of the simple 
network added to the outer node. Again, we have no detailed 
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knowledge of the probability for link-toll flexibility in gen-
eral large networks. Clearly, the more restrictive conditions 
on unchanged (rather than equally changed) path tolls leads 
to more restricted link toll flexibility than for the case of 
fixed demand. 

4. DISCUSSION 

4.1. Discussion (Fixed User Demand) 

 For fixed user travel demand, link-toll and path-toll poli-
cies can be found which lead users to voluntarily choose an 
equilibrium flow pattern with tolls that replicate the system-
optimized flow pattern in the same network without tolls. 
The path-toll solutions were well known to be adjustable 
(non-unique). This gave planners great flexibility to adjust 
path-tolls in order to achieve additional (even non-traffic) 
social goals. Link-toll solutions were thought to be usually 
unique. Thus, although link-tolls may be easier to collect 
than path-tolls, it was thought that the uniqueness of the link-
toll solutions prevented planners from using link-toll policies 
for additional goals. 

 We showed in section 2 that fixed-demand link-toll poli-
cies are much more flexible than previously thought. We 
illustrated several classes of networks for which link-toll 
solutions are not unique, even for large networks, and even if 
the number of paths greatly exceeds the number of links. 

4.2. Discussion (Elastic User Demand) 

 The assumption that demand is fixed so that tolls can be 
raised indefinitely without changing flows seems naive. It 
might work well for short times in special situations with 
fairly low tolls that, even after they are increased, do not 
have a major effect on lifestyles. It may work when there are 
no convenient alternate routes. It does work fairly well (up to 
a point) in some analogous electric networks with electroni-
cally controlled constant current sources, and may also work 
well for a variety of different reasons for transportation of 
certain commodities such as milk, addictive drugs, guns, 
life-saving-medicines, etc.. Thus, the results of section 2 
showing the non-uniqueness of link toll policies under fixed 
demand may have important consequences in many real 
networks too. However, in most real networks, one must deal 
with the elasticity of real user demands. Some recent work 
on elasticity of user demand can be found in the TDM online 
encyclopedia [15] and Cain et al. [16]. 

 Having just demonstrated in section 2, a newly-found 
increased adjustability of link-tolls, and having just restated 
the well-known adjustability of path-tolls, we find the results 
of section 3 rather ironic. Elastic demand restricts the ad-
justability of link-tolls and essentially eliminates the flexibil-
ity of path-tolls. Thus, link/path-toll policies have almost 
switched the roles that they had under prior understandings 
of fixed demand: path-tolls usually unique and link-tolls 
sometimes adjustable under elastic demand. 

 Most real transportation situations have some elasticity in 
the user demand. This demand usually decreases/increases 
with corresponding increasing/decreasing perceived user 
costs, including time, distance, fuel, and tolls, as well as 
"costs" (positive or negative) such as weather, scenery, pre-
vious good or bad experiences, etc. Thus, traffic engineers 

who design tolls to achieve VSO in real networks, usually do 
not have the flexibility to adjust path-tolls without changing 
flows from their optimal levels. However, they often do have 
some flexibility to adjust link-tolls in order to achieve addi-
tional goals, while still achieving VSO. We have provided 
several examples with explanations for achieving this flexi-
bility. Apparently, however, in a general network with elas-
tic demand, the necessary and sufficient conditions for flexi-
bility of link-tolls have not yet been determined. 

 Except for a brief mention by Penchina [9], the unique-
ness of path-tolls under elastic demand has not been dis-
cussed in the literature. Even very recent works by Dial [4, 
5] have not recognized this uniqueness of path tolls, or its 
consequent limitation on the flexibility of link tolls. This 
topic is discussed further by Penchina [7], who shows that 
minimal revenue (MR) pricing does not achieve optimal 
flows and economic efficiency when demand is elastic. 

5. CONCLUSIONS 

 We have studied the uniqueness properties of toll policies 
that lead to Voluntary-System-Optimization (VSO) under 
conditions of fixed and elastic user demands. 

 Our present study shows that for fixed demand: 

1. in agreement with previous work, there are multiple 
path-toll solutions; but 

2. contrary to previous claims, there are also multiple 
link-toll solutions in many large complex networks. 

 Flexibility of toll policies for the case of elastic demand 
is discussed here for the first time. We find: 

1. there is generally only one path-toll solution; but 

2. there may still be multiple link-toll solutions (al-
though fewer than for fixed demand). 

 We showed a complete turnaround in the flexibility 
available to path-toll and link-toll planners, compared to 
prior beliefs for fixed demand. Now, for elastic demand, 
path-tolls are essentially unique and link-tolls may have mul-
tiple solutions. So, with elastic demand, planners can no 
longer adjust path-tolls to achieve extra goals without upset-
ting the voluntary system optimization (VSO). However, 
they can sometimes achieve VSO and additional goals by 
adjusting link-tolls instead. 

 In any case, traffic models only approximate real traffic 
networks. Thus, the system administrator may be able to 
make changes in even "unique" path-tolls and link-tolls 
without deviating from VSO by more than the inaccuracies 
of the model. A system sensitivity analysis would be impor-
tant to make these changes. 
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ABBREVIATIONS 

MC  =  Marginal Cost 

MR  =  Minimal Revenue 

SO  =  System Optimized (Minimizes social cost for  
   inelastic demand. For elastic demand, maximizes  
   social surplus. Costs are minimized for any given  
   level of demand) 

UE =  User Equilibrium (each user minimizes his  
   perceived costs) 

VSO =  Voluntary System Optimized 

O/D =  Origin/Destination 
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