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Abstract: Treatment of clinical isolates of human pathogenic bacteria, which were known to be resistant to multiple 

commonly-used antibiotics, with refined leukocyte extracts from the American alligator (Alligator mississippiensis) 

resulted in a time- and concentration-dependent inhibition of bacterial proliferation. The alligator leukocyte extract 

exhibited the strongest antibacterial effect on Pseudomonas aeruginosa followed by Enterococcus faecium and then 

Klebsiella pneumonia. The antibacterial activities were acid-soluble, heat-stable at 70
o
C for one h, sensitive to protease 

treatment, and did not require divalent metal ions for antibacterial activity. Collectively, these data strongly suggest that 

the molecule(s) responsible for the observed antibacterial activities are small, cationic antimicrobial peptides. 
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1. INTRODUCTION 

 The widespread use of antibiotics, both in human 
medicine and veterinarian use, has contributed to the 
growing problem of bacterial resistance to commonly used 
drugs [1]. Inappropriate use of antibiotics, by both health 
care professionals [2] and patients [3], has put selective 
pressure on bacteria to develop and transfer antibiotic 
resistance genes. In addition, high antibiotic usages in 
veterinary medicine [4] and agricultural practices [5] have 
exacerbated this problem. As a result, much time and effort 
is currently spent in search of new classes of antibiotics, 
particularly in the area of natural products [6]. 

 Alligators are territorial animals that are prone to serious 
injuries as they engage in both intraspecies and interspecies 
aggression. Despite the fact that they live in environments 
rich in potentially pathogenic microorganisms, these injuries 
often heal without signs of infection. Results from previous 
studies in our laboratory have shown that the American 
alligator (A. mississippiensis) exhibits potent innate 
immunity against various species of bacteria [7], parasitic 
amoebae [8], and three enveloped viruses [9]. Mateo et al. 
[10] stated that eosinophils of healthy American alligators 
have phagocytic and microbial capacity against 
Staphylococcus aureus. Cuchens and Clem [11] first 
assessed the existence of two distinct functional B-and T-like 
populations of lymphocytes in the American alligator. 
Furthermore, studies in our laboratory have shown that 
challenging alligators with bacterial lipopolysaccharide 
results in a large increase in heterophils [12], and that refined 
alligator leukocyte extracts exhibit acid-soluble, heat-stable, 
broad spectrum antimicrobial activities [13]. Many peptide 
antibiotics have been isolated from leukocytes belonging to a 
broad spectrum of eukaryotic organisms [14]. The primary  
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goal of this study was to investigate the effects of alligator 
leukocyte extracts on antibiotic-resistant pathogenic bacteria. 
The kinetic data presented in this study indicate that alligator 
leukocyte extracts display antibacterial activity against 
antibiotic-resistant pathogenic bacteria.  

2. MATERIALS AND METHODS 

2.1. Bacterial Strains 

 The following bacterial species, derived from human 
clinical isolates, were used for these studies: Pseudomonas 
aeruginosa, Enterococcus faecium, Klebsiella pneumoniae 
(13883). These three antibiotic-resistant bacterial strains 
were acquired from the Center from Disease Control, 
Atlanta, GA, USA). 

2.2. Treatment of Animals 

 Juvenile alligators were housed in 3.25m x 3.25m 
outdoor fenced pens each with a subterranean 364 L tank 
which furnished 1.00 m

2
 of water surface. Blood samples 

were drawn from the spinal vein [15,16] using 3.8 cm 18 ga. 
needles and 20 mL syringes, and transferred to 250 mL 
bottles containing 15 ml of 0.5 M EDTA. These bottles were 
immediately inverted to make sure that the EDTA was 
properly incorporated into the blood. All of the animal 
handling protocols used in this study were approved by the 
McNeese State University Animal Care and Use Committee. 

2.3. Isolation and Processing of Leukocytes 

 The bottles filled with whole blood were left undisturbed 
for 2 h. The erythrocytes began to settle and the whole blood 
was separated into three layers. The top layer, containing 
leukocytes, was removed using transfer pipettes and the 
same process was repeated every 1 hr. The leukocytes were 
collected by centrifugation at 800xg (25

o
C) for 20 min. The 

cell pellet was gently resuspended in normal saline and again 
centrifuged at 800xg (25

o
C) for 5 min. The leukocyte pellet 

was resuspended in one volume of 10% acetic acid (v/v) and 
later vortexed for 5 min. The leukocytes were disrupted 
using 20 strokes of a Dounce homogenizer. Then the 
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homogenate was centrifuged at 20,000xg for 30 min. The 
clear supernatant was exchanged to 0.1% acetic acid by 
using 1 kDa microcentrifugal concentrators (Pall 
Corporation, East Hills, NY) and stored at 5

o
C. 

2.4. Antibacterial Assay 

 The antibacterial assay was conducted 
spectrophotometrically (OD600) to measure microbial 
growth. Twenty μL of each log phase bacterial culture were 
pipetted into four wells of a 96 well microtiter plate of 
respective division. 750μL aliquots of sterile nutrient broth 
were pipetted into each well. Then 75 L (200 μg ALE 
protein), 37.5 L (100 μg ALE protein), and 18.75 L of 
leukocyte extract (50 μg ALE protein) were pipetted into the 
respective wells. For the negative solvent control, 75 L of 
0.1% acetic acid were used. The initial bacterial growth was 
measured spectrophotometrically (OD610) [17] by using a 
Benchmark Plus™ microtiter plate spectrometer (Bio-Rad 
Laboratories, Hercules, CA). Then the microtiter plate was 
allowed to incubate at 37

o
C for 48 h. During the incubation, 

the optical densities of the cultures were measured (610 nm) 
at 3, 6, 12, 24, 36, and 48 h after inoculation.  

2.5 Statistics and Controls 

 The results displayed represent the means ± standard 
deviations of eight independent determinations. The 
statistical significance between treatment groups was 
determined by subjection of the data to analysis of variance 
using Duncan’s post-hoc comparisons. 

3. RESULTS 

 Alligator leukocyte extract was effective as an 
antibacterial agent against the three bacterial species tested. 
The bacterial cultures were treated with 5, 10, or 20 μg ALE 
protein/mL of culture. The solvent control (0.1% acetic acid) 
did not exhibit growth inhibition for any bacterial strains 
tested. The kinetics of antibacterial activity of the alligator 
leukocyte extracts are displayed in Fig. (1-3). 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Kinetic analysis of the antibacterial activity of alligator 

leukocyte extract. The concentration-dependent effects of alligator 

leukocyte on Pseudomonas aeruginosa strain growth inhibition 

were examined. The results are represented as optical density at 610 

nm and expressed as the means ± standard deviations for three 

independent determinations. NB = nutrient broth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Kinetic analysis of the antibacterial activity of alligator 

leukocyte extract. The concentration-dependent effects of alligator 

leukocyte on Klebsiella pneumonia strain growth inhibition were 

examined. The results are represented as optical density at 610 nm 

and expressed as the means ± standard deviations for three 

independent determinations. NB = nutrient broth. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Kinetic analysis of the antibacterial activity of alligator 

leukocyte extract. The concentration-dependent effects of alligator 

leukocyte on Enterococcus faecium strain growth inhibition were 

examined. The results are represented as optical density at 610 nm 

and expressed as the means ± standard deviations for three 

independent determinations. NB = nutrient broth. 

 

 Fig. (1) shows the kinetics of the antibacterial activities 
of alligator leukocyte extract against Pseudomonas 
aeruginosa. A small, but significant, decrease in the 
maximum growth was observed with 5 μg/mL ALE protein 
as early as 6 hours after inoculation (p < 0.05), relative to 
control Pseudomonas cultures. This concentration exhibited 
strong antibacterial actions at later time points (12-24 hours). 
Treatment of multidrug-resistant Pseudomonas aeruginosa 
cultures with 10 μg/mL ALE protein resulted in substantial 
antibacterial activity as early as 3 hours (p < 0.05), and 
continued to show moderate activity for the duration of the 
48 hour study. The concentration of 20 μg/mL ALE protein 
was found to be strongly growth inhibiting for Pseudomonas 
aeruginosa, as it exhibited complete growth inhibition up to 
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12 hours, and bacterial growth was not observed until 24 
hours in the presence of this higher concentration. The 
highest concentration of ALE protein tested inhibited 
Pseudomonas aeruginosa growth approximately 60-65% (p 
< 0.01) from 24 to 48 hours after inoculation (Fig. 1). On the 
other hand, no inhibition was found in the presence of 
nutrient broth and the 0.1% acetic acid (v/v) negative control 
(p > 0.05).  

 The data in Fig. (2) illustrate the kinetics of the 
antibacterial activities of alligator leukocyte extract against 
Klebsiella pneumonia. Increasing concentrations (5-20 
μg/mL) of alligator leukocyte extract added to the cultures 
produced a concentration-dependent decrease in bacterial 
growth. Treatment of the cultures with 5μg/mL ALE protein 
resulted in small increments of growth inhibition at 24 hours 
(16% inhibition, p < 0.05), and continued through 48 hours 
(22% inhibition, p < 0.05). The concentration of 10 μg/mL 
ALE protein produced a small, but significant (p < 0.05), 
growth inhibitory effect as early as 3 hours after inoculation 
of the Klebsiella cultures. This activity was observed to be 
much stronger at later time points in the study and 
culminated in a 30% inhibition of bacterial growth at 48 
hours. The initial bacterial growth was completely inhibited 
up to 6 h incubation by the 20 μg/mL ALE protein (p < 
0.05), and continued to exhibit strong antibacterial growth 
activity throughout the 48 h study. No significant bacterial 
growth inhibitory effect of nutrient broth and solvent control 
(0.1% acetic acid) was observed (p > 0.05).  

 The results displayed in Fig. (3) reveal the kinetics of the 
antibacterial activities of alligator leukocyte extract against 
Enterococcus faecium. The addition of ALE protein to the 
cultures resulted concentration-dependent growth inhibition 
of Enterococcus faecium. The Enterococcus faecium treated 
with 20 μg/mL leukocyte extract did not show measurable 
bacterial growth until 12 h after inoculation, which was 
similar to that observed with Pseudomonas aeruginosa. 
However, unlike the Pseudomonas aeruginosa and 
Klebsiella pneumonia cultures treated with 5 and 10 μg/mL 
leukocyte extract, the Enterococcus faecium exhibited 
greater growth inhibition after the 12 h incubation period. 
The solvent control, 0.1% acetic acid (v/v), and nutrient 
broth alone had no inhibition effect on bacterial growth at 
any time point observed (p > 0.05).  

 The results displayed in Table 1 show the effects of mild 
heat (56

o
C, 30 min), protease, and EDTA-treatment on the 

antibacterial effects of ALE against the Pseudomonas 
aeruginosa multidrug resistant clinical isolate. These data 
were collected using the antimicrobial zone of inhibition 
assay. Incubation of ALE at 70

o
C for one h, prior to addition 

the bacterial culture, resulted in no significant change in 
antibacterial activity (p>0.05). In addition, treatment with 20 
mM EDTA also resulted in no substantial changes in 
antibacterial action (p>0.05). However, treatment of the ALE 
with 10 U of pronase, a protease isolated from S. griseus, for 
30 min at 37

o
C resulted in a 97.7% decrease in antibacterial 

activity (p<0.01). 

4. DISCUSSION 

 Antibacterial peptides are vital components of the innate 
immune system that protect hosts from different types of 
pathogenic bacteria. Most antibacterial peptides exhibit 

cationic and amphipathic properties [18]. Because of these 
chemical characteristics, they have electrostatic interaction 
with the negatively charged head groups of lipids in the 
cytoplasmic membrane, are able to insert into the membrane, 
and cause channel formation leading to leakage of essential 
nutrients from the cell [19]. Antibiotic peptides are 
expressed in tissues exposed to microbes such as mucosal 
surfaces, skin, and in cytoplasmic granules of professional 
phagocytes [20]. 

Table 1. Alligator Acid Soluble Leukocyte Extracts were 

Treated with Protease, Heat, or EDTA to Observe 

the Effects on Antibacterial Activity Against the 

Multidrug Resistant Pseudomonas aeruginosa 

Clinical Isolate 

Extract Treatment Antimicrobial activity 

None 100.0 ± 2.2 

Pronase (10 U, 30 min, 37oC) 2.3 ± 0.8 

70oC, 1 hr 97.4 ± 3.9 

50 mM EDTA 98.6 ± 2.9 

The results represent the means ± standard deviations for eight independent 
determinations. 

 

 In addition to the generation of toxic oxygen radicals and 
nitric oxide, leukocytes produce a variety of antibacterial 
peptides. These peptides were first reported as crude extracts 
from leukocytes and were shown to possess antimicrobial 
activity in vitro [21]. Zeya and Spitznagel [22] have 
established that rabbit and guinea pig granulocytes contain a 
family of low molecular weight lysosomal cationic proteins 
with selective antibacterial activity. 

 Alligator leukocyte extracts exhibited antibacterial 
activities against all three bacterial species such as 
Pseudomonas aeruginosa, Klebsiella pneumonia, and 
Enterococcus faecium, which are pathogenic to humans 
(Figs. 1, 2, and 3). All three bacterial strains tested in this 
study had developed resistance to chemically modified and 
synthesized antibiotics. The Pseudomonas aeruginosa clini-
cal isolate had developed resistance (Table 2) to amino-
glycosides (gentamicin, tobramycin, amikacin), quinolones 
(ciprofloxacin), and -lactams (imipenem, ceftazimide) [23]. 
The Enterococcus faecium isolate showed resistance to -
lactams (ampicillin), and glycopeptides (vancomycin) [24]. 
The Klebsiella pneumonia isolate was resistant (Table 2) to 
aminoglycosides (tobramycin), and quinolones (ciproflo-
xacin) [25]. The aminoglycosides inhibit protein synthesis by 
binding to the 30S subunit of the ribosome [26]. The -
lactams inhibit the peptidoglycan-assembling transpeptidases 
located on the outer face of the cytoplasmic membrane [27]. 
Quinolones bind to subunit A of DNA gyrase, which 
maintains the ordered structure of the chromosome inside the 
cells [23]. The amphipathicity of the antimicrobial peptides 
allows binding and disruption of the integrity of the bacterial 
cell wall by generating pores in the cell wall [28]. The pores 
cause leakage of cellular contents, and the differences in 
osmolalities across the outer membranes cause the cells to 
lyse. Since the peptides are targeted at the bacterial cell wall 
structure, it is rather difficult for bacteria to become resistant 
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to such peptides, and the generation of resistant mutants 
would require alterations in membrane composition [18]. 

 The kinetic studies displayed in Figs. (1-3) show that 
inclusion of 5, 10, and 20 μg/mL of ALE protein inhibited 
the multidrug resistant bacterial growth in a time- and 
concentration dependent fashion. The results from previous 
studies in our laboratory suggested that alligator leukocyte 
peptides express protease-sensitive, heat-stable, and acid-
soluble antimicrobial activities [7]. The results tabulated in 
Table 1 show similar properties for the anti- Pseudomonas 
aeruginosa properties of the ALE. The sensitivity of the 
antibacterial activity of the ALE to pronase indicates that the 
activity is due to the presence of a proteinaceous substance. 
The fact that the activity is not inhibited by EDTA suggests 
that the activity is not due to the presence of serum 
complement proteins, which have been shown to be sensitive 
to chelators of divalent metal ions [29]. The heat stability 
and acid solubility of the antibacterial activity suggests that 
the protein(s) responsible for the antibacterial effects of the 
ALE are small, cationic proteins.  

CONCLUSION 

 All of these activities, and the data presented in this study 
indicate that cationic peptides are responsible for the 
antibacterial activity of alligator leukocyte extracts. Based on 
these studies alligator leukocyte peptides might be useful as 

a new class of antibiotic peptides in the clinical settings and 
for veterinary purposes. 
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