Open Physics Journal




(Discontinued)

ISSN: 1874-8430 ― Volume 5, 2019

Strangeness Production in Deep-Inelastic ep Scattering at HERA §



Khurelbaatar Begzsuren*
The Institue of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

Abstract

The production of neutral strange hadrons is studied using deep-inelastic events measured with the H1 detector at HERA. The measurements of and productions are made in two regions of phase space defined by the negative four-momentum transferred squared of the photon, 7 < Q2 < 100GeV2 and the inelasticity 0.1 < y < 0.6 for the and 145 < Q2 < 20000GeV2 and 0.2 < y < 0.6 for the Λ . and production cross sections are determined. Differential ratios of production to charged hadron production are measured. Differential yields per event are determined. The Λ − asymmetry is measured and found to be consistent with zero. Predictions of leading order Monte Carlo programs are compared to data.

PACS number(s): 04.40.Nr, 04.70.Bw, 11.27.+d.

Keywords: Quantum chromodynamics, strange quarks.


Article Information


Identifiers and Pagination:

Year: 2014
Volume: 1
Issue: Suppl 1: M6
First Page: 48
Last Page: 51
Publisher Id: PHY-1-48
DOI: 10.2174/1874843001401010048

Article History:

Received Date: 25/11/2013
Revision Received Date: 25/12/2013
Acceptance Date: 26/12/2013
Electronic publication date: 31/12/2014
Collection year: 2014

© Khurelbaatar Begzsuren; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the The Institue of Physics and Technology of the Mongolian Academy of Sciences, Ulaanbaatar, Mongolia; Tel: 49 40 89984215, Fax: 49 40 89983093; E-mail: hurel@mail.desy.de§ Presented at the Low x workshop, May 30 - June 4 2013, Rehovot and Eilat, Israel.






1. INTRODUCTION

The measurement of strange particle production in high energy collisions provides valuable information for understanding Quantum Chromodynamics (QCD) in the perturbative and non-perturbative regime. In neutral current deep-inelastic ep scattering (DIS) at HERA four different processes depicted in Fig. (1) contribute to strange hadron production.

Fig (1)

Schematic diagrams for the processes contributing to strangeness production in ep scattering: (a) direct production from the strange sea, (b) BGF, (c) heavy hadron decays and (d) fragmentation. The diagrams relevant for K0 production are shown.



Strange quarks may originate directly from the strange sea of the proton (Fig. 1a), from boson-gluon-fusion (BGF, Fig. 1b), from the decays of heavy flavoured hadrons (Fig. 1c) and from the creation of pairs in the non-perturbative fragmentation process (Fig. 1d). The latter process is the dominant source for strange hadron production. In the modelling of the fragmentation process the suppression of pairs due to the mass of the strange quark is generally controlled by the strangeness suppression factor λs [1Sjöstrand T. High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4 Comput Phys Commun 1994; 82: 74-89., 2(a) Sjöstrand T. The Lund Monte Carlo for jet fragmentation and E+ E- Physics Jetset Version 6.2 Comput Phys Commun 1986; 39: 347-407.; (b) Sjöstrand T, Bengtsson M. The Lund Monte Carlo for jet fragmentation and E+ E- physics. Jetset Version 6.3: An Update Comput Phys Commun 1987; 43: 367-79.; (c) Andersson B, Gustafson G, Ingelman G, Sjöstrand T. Parton fragmentation and string dynamics Phys Rept 1983; 97: 31-145.]. Especially, the ratio of to charged particles should strongly depends on this quark mass effect.

This paper presents new measurements of production at low Q2 and Λ production at high Q2. Results are presented on and production cross sections, on the ratio of production to charged particles production measured in the same phase space region, on Λ yields normalised to DIS cross sections, and on the asymmetry. The measurements are shown as a function of several observables characterising the DIS kinematics and the strange particles production dynamics in the laboratory frame. The results are compared with predictions obtained from leading order Monte Carlo calculations, based on matrix elements with parton shower simulation. The rôle of strangeness suppression on hadrons with strangeness is investigated.

2. SELECTION OF HADRON CANDIDATES

The data used in the analyses correspond to an integrated luminosity of 109pb-1 in case of production and 340p-1 in case of Λ production and were collected with the H1 detector [3(a) Abt I, Ahmed T, Aid S, et al. [H1 Collaboration]. The H1 detector at HERA Nucl Instrum Meth A 1997; 386: 310-47.; (b) Abt I, Ahmed T, Aid S et al. [H1 Collaboration]. The tracking, calorimeter and muon detectors of the H1 experiment at HERA Nucl Instrum Meth A 1997; 386: 348-96.] in the years 2004 to 2007 when protons with an energy of 920 GeV collided with electrons1 with an energy of 27.6 GeV producing a centre-of-mass energy of = 319 GeV. The kinematics of the scattering process at HERA are described using the Lorentz invariant variables Q2 denoting the square of the photon virtuality, the inelasticity in the proton rest frame y and Bjorken scaling variable x. At fixed only two of these variables are independent because of Q2 = xys. The following kinematic ranges are used in the analyses: 7 < Q2 < 100GeV2 and 0.1 < y < 0.6 for the and 145 < Q2 < 20000GeV2 and 0.2 < y < 0.6 for the Λ (see Table 1).

Table 1

Phase space regions explored in the analyses of and Λ production, respectively.




The mesons and Λ baryons2 are measured by the kinematic reconstruction of their decays and , respectively. The number of mesons and Λ baryons is obtained by fitting the invariant mass spectra with the sum of a signal and background function. For the signal function the skewed t-student function is used while the background shape is described by a threshold function with exponential damping. In total approximately 290000 mesons and 7000 baryons are reconstructed in the phase space given in Table1. The fitted and Λ masses agree with the world average [4Nakamura K. (Particle Data Group). Review of particle physics J Phys G 2010; 37: 075021.].

3. RESULTS AND DISCUSSION

3.1. Inclusive Cross Sections

The visible inclusive production cross sections measured in the kinematic region defined in Table1, are


using a strangeness suppression factor of λs the models RAPGAP [5Jung H. Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP Comp Phys Commun 1995; 86: 147-61.] and DJANGOH [6Buchmüller W, Ingelman G, Schuler GA, Siesberger H. DJANGO Proceedings of physics at HERA DESY Hamburg 1992; 1419] predict cross sections of 10.93 nb and 9.88 nb, respectively, in reasonable agreement with the measurement. The cross section predictions for production from the MEPS and CDM [7(a) Andersson B, et al. Coherence effects in deep inelastic scattering Z Phys C 1989; 43: 625-32.; (b) Lönnblad L. Rapidity gaps and other final state properties in the colour dipole model for deep inelastic scattering. Z Phys C 1995; 65: 285-91.]models are shown in Table2 for two values of the strangeness suppression parameter λs. The measured inclusive cross section is close to the CDM prediction with λs = 0.22 and λs = 0.286 to the MEPS prediction with .

Table 2

Monte Carlo predictions for different settings of the strangeness suppresion factor λs




3.2. Differential Cross Sections

Differential cross sections of and Λ production are shown in Figs. (2a, b, 3a) as a function of Q2, and as a function of the kinematic variable of the neutral strange hadrons in the laboratory frame, η along with the predictions of the MEPS and CDM models. The cross sections fall rapidly as Q2 grows. The figures also include the ratios of predicted to measured cross sections for a better shape comparison. Apart from small normalisation differences the models describe the shapes of the measured cross sections as a function of Q2 and η reasonably well.

Fig (2)

Differential production cross sections as a function of (a) the photon virtuality squared Q2 , (b) its pseudorapidity η and (c) ratio of to charged particle production as a function of η in comparison to RAPGAP (MEPS) and DJANGOH (CDM). The inner (outer) error bars show the statistical (total) errors. The ratios “MC/Data” are shown for the different Monte Carlo predictions. For comparison, the data points are put to one.



Fig (3)

The Q2 dependence of (a) differential Λ production cross section, (b) ratio R(DIS) of Λ production to DIS cross section and (c) asymmetry AΛ in comparison to RAPGAP (MEPS) and DJANGOH (CDM) with two different values of λΛ. The inner (outer) error bars show the statistical (total) errors. The “MC/Data” ratios are shown for different Monte Carlo predictions. For the ratios the data points are put at one for comparison.



3.3. Ratio of Production to Charged Particle Production

By normalising the production cross section to the cross section of charged particle production many model dependent uncertainties, like the cross section dependence on proton PDFs, cancel thus enhancing the sensitivity to details of the fragmentation process. In Fig. (2c) the ratio of production to the cross section charged particle procduction is shown as a function of η in comparison to the expectations from DJANGOH using three different values of λs ranging from 0.220 to 0.35. The ratio in η is well described by the model in shape and a high sensitivity on λs is observed in the absolute value of this ratio, demonstrating the clear potential of using this ratio for extracting the strangeness suppression factor λs.

3.4. Λ Production to DIS Cross Section Ratio

In Fig. (3b) the ratio ofproduction to DIS cross section is shown as a function of Q2 in comparison to the expectations from RAPGAP and DJANGOH both using λs = 0.286 and λs = 0.220. The DJANGOH prediction with λs = 0.286 yields the worst description of the data by overshooting them significantly independent of Q2. For the same strangeness suppression factor also RAPGAP tends to yield ratios larger than observed in data for Q2 < GeV2. The best description is provided by DJANGHO using λs = 0.220.

3.5. Asymmetries

The asymmetry is defined as:


This observable could shed light on the mechanism of baryon number transfer in ep scattering. A significant positive asymmetry would be an indication for the baryon number transfer from the proton to the Λ baryon. If present such an effect should be more pronounced in the positive region in the laboratory frame. For the kinemaic region defined in table 1 the asymmetry is measured to be


In Fig. (3c) the asymmetry AΛ is shown as a function of Q2. The data show no evidence for a non-vanishing asymmetry in the phase space region investigated.

CONCLUSION

This paper presents a study of inclusive production of and Λ in DIS at low Q2 and Λ high Q2 measured with the H1 detector at HERA. The cross sections of and Λ production are measured as a function of the DIS kinematic variable Q2 and of strange hadron production variables in the laboratory frame. In addition results on the ratio of production cross section to the charged particle cross section, the Λ production to DIS cross section ratio and the asymmetry are presented. The measurements are compared to model predictions of DJANGOH, based on the colour-dipol model (CDM) and RAPGAP based on DGLAP matrix element calculations supplemented with parton showers (MEPS). Within the uncertainties both models provide a reasonable description of the data. The sensitivity of the ratio of to charged particle production cross sections on the strangeness suppression factor λs is demonstrated, however, a detailed understanding of concurrent processes of production is mandatory prior to the determination of λs. The measured visible Λ cross section is found to be described best by the CDM using and the MEPS model using λs = 0.220 . When investigating theproduction to DIS cross section ratio the best agreement is observed for the CDM with λs = 0.220. The asymmetry is found to be consistent with zero.

CONFLICT OF INTEREST

The author confirms that this article content has no conflicts of interest.

NOTES

In this paper "electron" is used to denote both electron and positron.

Unless otherwise noted, charge conjugate states are always implied.

ACKNOWLEDGEMENS

Declared none.

REFERENCES

[1] Sjöstrand T. High-energy physics event generation with PYTHIA 5.7 and JETSET 7.4 Comput Phys Commun 1994; 82: 74-89.
[2] (a) Sjöstrand T. The Lund Monte Carlo for jet fragmentation and E+ E- Physics Jetset Version 6.2 Comput Phys Commun 1986; 39: 347-407.; (b) Sjöstrand T, Bengtsson M. The Lund Monte Carlo for jet fragmentation and E+ E- physics. Jetset Version 6.3: An Update Comput Phys Commun 1987; 43: 367-79.; (c) Andersson B, Gustafson G, Ingelman G, Sjöstrand T. Parton fragmentation and string dynamics Phys Rept 1983; 97: 31-145.
[3] (a) Abt I, Ahmed T, Aid S, et al. [H1 Collaboration]. The H1 detector at HERA Nucl Instrum Meth A 1997; 386: 310-47.; (b) Abt I, Ahmed T, Aid S et al. [H1 Collaboration]. The tracking, calorimeter and muon detectors of the H1 experiment at HERA Nucl Instrum Meth A 1997; 386: 348-96.
[4] Nakamura K. (Particle Data Group). Review of particle physics J Phys G 2010; 37: 075021.
[5] Jung H. Hard diffractive scattering in high-energy e p collisions and the Monte Carlo generator RAPGAP Comp Phys Commun 1995; 86: 147-61.
[6] Buchmüller W, Ingelman G, Schuler GA, Siesberger H. DJANGO Proceedings of physics at HERA DESY Hamburg 1992; 1419
[7] (a) Andersson B, et al. Coherence effects in deep inelastic scattering Z Phys C 1989; 43: 625-32.; (b) Lönnblad L. Rapidity gaps and other final state properties in the colour dipole model for deep inelastic scattering. Z Phys C 1995; 65: 285-91.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents




Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open