The Open Agriculture Journal




ISSN: 1874-3315 ― Volume 14, 2020
RESEARCH ARTICLE

Evaluation of Different Substrates for Yield and Yield Attributes of Oyster Mushroom (Pleurotus ostreatus) in Crop-livestock Farming System of Northern Ethiopia



Negasi Tekeste1, *, Kindnew Dessie1, Kahsay Taddesse1, Assen Ebrahim2
1 Department of Plant Science, Aksum University, Shire campus, Shire, Ethiopia,
2 Department of Animal Science, Aksum University, Shire campus, Shire, Ethiopia

Abstract

Background:

In Tigray region of Ethiopia there is high rate of malnutrition which is severely affecting productivity of households. Cultivation of edible mushrooms can help to diversify income and mitigate malnutrition in the region.

Aim:

A laboratory experiment was carried out at Aksum University, northern Ethiopia aimed at evaluating the yield and yield attributes response of oyster mushroom to five types of substrates namely cotton seed hull, teff straw, barley straw, sesame stalk and sawdust.

Methods:

The experiment was set up in a Completely Randomized Design (CRD).

Results:

Findings of the experiment revealed that the type of substrate significantly (P≤0.05) affected days to mycelium invasion, days to pinhead formation, days to fruiting bodies formation and yield of Pleurotus ostreatus. Cotton seed hull was fastest in days to mycelium invasion with 15.66 days although in statistically parity with teff straw, barley straw and sesame stalk. Besides, cotton seed hull gave shortest days to pinhead formation, and days to fruiting bodies formation with 20.33 and 22.33 days respectively. The highest yield of 2170.33 gm kg-1 of substrate was obtained at cotton seed hull followed by barley straw which gave 1486.90 gm kg-1 of substrate and Teff straw which gave 1264.74 gm kg-1 of substrate.

Conclusion:

The experiment highlighted that cotton seed hull and barley straw can be used for mushroom production in the study area.

Keywords: Growth, Malnutrition, Mushroom, Production, Waste, Cultivation.


Article Information


Identifiers and Pagination:

Year: 2020
Volume: 14
First Page: 30
Last Page: 35
Publisher Id: TOASJ-14-30
DOI: 10.2174/1874331502014010030

Article History:

Received Date: 14/07/2019
Revision Received Date: 14/01/2020
Acceptance Date: 08/02/2020
Print publication date: 16/04/2020
Collection year: 2020

© 2020 Tekeste et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: (https://creativecommons.org/licenses/by/4.0/legalcode). This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Department of Plant Science, Aksum University, Shire campus, P.O.Box 314, Shire, Ethiopia;
E-mail: negasite@gmail.com






1. INTRODUCTION

Worldwide, malnutrition is an underlying cause for deaths of more than 3.5 million children under the age of 5 each year [1NNP. National Nutrition programme 2013; 74.]. About 178 million children around the world are stunted with 90% lives in 36 countries including Ethiopia [2Black RE, Allen LH, Bhutta ZA, et al. Maternal and child under nutrition: Global and regional exposures and health consequences. Lancet 2008; 371(9608): 243-60.]. Moreover, Ethiopian population is increasing at an alarming rate and in the near future, there will be a shortage of land for food production. Poor countries like Ethiopia are caught in a vicious circle of poverty, shortage of food and nutritional disorder. Erratic rainfall, shortage of land, low yield of traditional crops and low nutritional status of most crops especially in protein are among the causes of the aforementioned problems. Ethiopia has witnessed encouraging progress in reducing malnutrition over the past decade. However, baseline levels of malnutrition remain so high that the country must continue to make significant investments in nutrition [1NNP. National Nutrition programme 2013; 74.]. Malnutrition is one of the main public health and developmental problems in the country. Demographic and Health Survey (DHS) report of 2011 has revealed that about 44%, 10% and 29% of children under five were stunted, wasted and underweight [3Annonoums. Assessment report on Nutrition intervention status of the agriculture sector and training needs assessment on nutrition multi-sectoral linkages and nutrition sensitive agriculture. Report compiled by: UNICEF Mekelle Field Office & Agricultural Extension Services 2014. Tigray region BoARD]. When it comes to Tigray, the prevalence of children under five for stunting, wasting and underweight were 51%, 10% and 35%, respectively [3Annonoums. Assessment report on Nutrition intervention status of the agriculture sector and training needs assessment on nutrition multi-sectoral linkages and nutrition sensitive agriculture. Report compiled by: UNICEF Mekelle Field Office & Agricultural Extension Services 2014. Tigray region BoARD]. Moreover, there is high malnutrition in the region which has negatively affecting productivity of the population in both urban and peri-urban areas [3Annonoums. Assessment report on Nutrition intervention status of the agriculture sector and training needs assessment on nutrition multi-sectoral linkages and nutrition sensitive agriculture. Report compiled by: UNICEF Mekelle Field Office & Agricultural Extension Services 2014. Tigray region BoARD]. Food and Security Vulnerability Assessment conducted by the Central Statistics Agency and the World Food Program revealed that the poverty line and food poverty line of Tigray region was 24.5% and 30%, respectively [3Annonoums. Assessment report on Nutrition intervention status of the agriculture sector and training needs assessment on nutrition multi-sectoral linkages and nutrition sensitive agriculture. Report compiled by: UNICEF Mekelle Field Office & Agricultural Extension Services 2014. Tigray region BoARD].

Agricultural production is one important means of achieving food and nutrition security. Food self-sufficiency can be brought about through diversification of production and consumption. Therefore, strategies of agricultural production that do not require large area of land are gaining popularity [4MOARD (Ministry of Agriculture and Rural Development). Ethiopia’s Agriculture Sector Policy and Investment Framework: Ten Year Road Map (2010-2020), Mushroom Growers Handbook 1 2010; 300.]. One such strategy is the cultivation of edible mushrooms which are nutritious food and help to diversify farm income generation [5Kakon AJ, Choudhury MBK, Saha S. Mushroom is an Ideal Food Supplement. J Dhaka Nati Med Coll Hos 2012; 18(1): 58-62.
[http://dx.doi.org/10.3329/jdnmch.v18i1.12243]
]. Nowadays, the demand for mushrooms in Ethiopian cities is increasing [6Dawit A. Wild Mushrooms and Mushroom Cultivation Efforts in Ethiopia, 2014.]. The techniques used in the production system can also be handled by the poor, disabled people and women [7Nair (Tan) NG. Marshall E Make money by growing mushroom 2009.].

Mushroom is a fungus that is rich in protein and a high yielder that remains safe from natural calamities. Mushrooms are rich in protein compared with other vegetables, and its production can be one of the most promising and highly desirable activities in developing countries to reduce protein malnutrition [8Quimio TH, Chang ST, Roysee DJ. Technical Guidelines for Mushroom Growing in the Tropics (FAO Plant Production and Protection Papers). FAO, Rome, Italy 106., 9Chaube HS. Nutritional and Medicinal Values of Mushrooms 1995; 7-8.]. On a dry weight basis, protein content ranges between 21-30%. High concentration of lysine in mushroom protein makes it an ideal food to supplement the cereal diet for overcoming the lysine deficiency. Mushroom provides the highest amount of proteins. This is because mushroom could be produced 4-6 times a year. In addition, mushrooms supply carbohydrates, vitamins (B, C, D and K) and minerals like Ca, Na, P, and K [10Kimenju JW, Odero GOM, Mutitu EW, Wachira PM, Narla RD, Muiru WM. Suitability of Locally Available Substrates for Oyster Mushroom (Pleurotus ostreatus) Cultivation in Kenya. Asian J Plant Sci 2009; 8(7): 510-4.
[http://dx.doi.org/10.3923/ajps.2009.510.514]
]. They have medicinal properties such as anti-cancer, anti-cholesterol, and anti-tumor functions. They are useful against diabetes, ulcer and lung disease [11Shah MZ, Ashraf M, Ishtiaq MC. Comparative study on cultivation and yield performance of oyster on Different Substrates (Wheat Straw, Leaves, Saw Dust). Pak J Nutr 2004; 3: 158-60.
[http://dx.doi.org/10.3923/pjn.2004.158.160]
].

Furthermore, mushrooms are potential contributors to the world food supply since they have the ability to transform nutritionally worthless wastes into protein-rich food. Oyster mushrooms are rather easy to grow on a small scale on a wide range of substrates and different climatic conditions. They are characterized by the rapidity of growth under a wide range of temperature, the ability to colonize substrate in short duration and the potential to tolerate higher concentration of carbon dioxides, which acts as a protection against competitor molds [10Kimenju JW, Odero GOM, Mutitu EW, Wachira PM, Narla RD, Muiru WM. Suitability of Locally Available Substrates for Oyster Mushroom (Pleurotus ostreatus) Cultivation in Kenya. Asian J Plant Sci 2009; 8(7): 510-4.
[http://dx.doi.org/10.3923/ajps.2009.510.514]
]. Furthermore, it is fast growing, requires no casing, less fragile than others and has market in the dry form as well [12Dawit A. Mushroom Cultivation: a Practical Approach, Berhanena Selam printing Enterprise 1998; 43-186.]. They are by far the easiest and least expensive to grow and are the clear choice for gaining entry into the mushroom industry.

In Tigray regional state of Ethiopia, there is an abundance of agricultural waste products which in some areas is normally discarded while mushrooms can be successfully cultivated. Moreover [13Mahé S, Roos N, Benamouzig R, et al. Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 1996; 63(4): 546-52.
[http://dx.doi.org/10.1093/ajcn/63.4.546] [PMID: 8599318]
], highlighted that mushrooms have the capacity to transform agricultural waste into nutritious food and offer great opportunities for addressing the region’s food security challenges. Hence, improvement is required on the present nature of technical knowledge for sustainable mushroom yield through maintaining (low-cost) mushroom cultivation, availability of requisite raw materials (substrates of diverse origin) is mandatory. Besides, at present, in the central zone of the Tigray region, particularly in Aksum town and its surroundings, there is no modern way of mushroom production. Moreover, there is no research available on yield or other related attributes of oyster mushroom in relation to organic substrates for growing mushrooms in the study area. Accordingly, it has been suggested that there is no research on the substrate, mushroom type and other appropriate technology in Ethiopia [12Dawit A. Mushroom Cultivation: a Practical Approach, Berhanena Selam printing Enterprise 1998; 43-186.]. Therefore, the overall objective of the experiment is to evaluate different organic substrates on the yield and yield attributes of Oyster mushroom in cereal farming system of Aksum, central zone of Tigray, northern Ethiopia.

2. MATERIALS AND METHODS

2.1. Description of the Study Area

The study was conducted at Aksum university biotechnology laboratory located in Aksum town central zone of Tigray region, Northern Ethiopia. Axum town is situated at 38034’ and 39025’ east, and 13015’ and 14039’ north at an altitude of 2050 m.a.s.l with sub humid agro-ecology receiving a rainfall range of 300 to 800mm/annum. The area is mainly characterized with clay type of soil and commonly grown crops of Teff, Wheat, Barley and Faba bean. Aksum together with Lalay maychew district is characterized by crop-livestock type of farming system.

2.2. Substrate Collection and Preparation

The substrates were collected from different areas of central and western zones of tigray region. Consequently, five substrates teff straw, barley straw, sesame stalk, saw dust and cotton seed hull were used as potential substrates for Pleurotus ostreatus mushrooms cultivation. All substrates were cleaned with tap water and air dried while sesame, tef and barley straw substrates were chopped into pieces of about 2-4 cm size. All naturally dried substrates were subjected to three days of sun drying as a correction factor to balance the natural difference in percentage water holding capacity. Consequently, the substrates were soaked in water overnight and then sterilized by steam under the temperature range of 70 - 80°C [14Oei P, Van BR. Small-scale mushroom cultivation: Oyster, Shiitake and wood ear mushrooms 1st ed. 2005; 87.]. The substrates were then spread on the clean plastic covered floor for evaporation of excess moisture and when the water stopped dripping the straw was considered as the ready stage for spawning.

2.3. Spawning, Spawn Run and Harvesting

Substrates were spawned with 80gm seed of Pleurotus ostreatus mushroom in heat resistant transparent plastic bags of 40 cm X 60 cm filled with 1 kg moist substrate. Approximately, ten holes were made on each bag for adequate aeration and the plastic bags were tied and incubated in the dark in a well-ventilated room. After spawning, the bags were kept about 20 cm apart in a crop room at a temperature of 25ºC to 30ºC and humidity of 80-90%. Fruiting body started shortly after the substrate fully impregnated with mycelia growth. The humidity of the growing room was maintained at high humidity by sprinkling water on the floor and side hanging sacks twice a day. Harvesting was performed by gently pulling or twisting the mushrooms from the substrate. Harvesting was continued as long as the mycelium remained white and firm, and a total of three flushes were harvested.

2.4. Treatments and Experimental Design

This experiment comprised of five types of substrates. The substrates were saw dust, barley straw, tef straw, sesame straw and cotton seed hull. The experiment was set in a Completely Randomized Design (CRD) with three replications. Pleurotus ostreatus mushroom spawn was obtained from the YD Plant Micro-propagation PLC in Mekele city, capital of Tigray regional state of Ethiopia.

2.5. Data Collected

The following data were collected during the study

  • Days for the Completion of Invasion of Mycelium (MI) on different substrates
  • Appearance of Pin Heads Formation (PHF)
  • Days for Fruiting Bodies Formation (FBF) from the day of spawning of different substrates
  • Total yield: Data on the weight of mushrooms from each substrate blocks at first, second and third flush harvesting stages were recorded separately and their total weight was considered as total yield. The sensitive balance was used to measure the weight.
  • Biological efficiency: the weight of each dry substrate and total fresh mushroom weight per bag was recorded separately and then the biological efficiency (BE) of oyster mushrooms in each substrate was calculated by the formula of [15Chang ST, Lau OW, Cho KY. The cultivation and nutritional value of Pleurotus sajur-caju. European J. Appl Microbiol Biotechnol 1981; 12(1): 58-62.
    [http://dx.doi.org/10.1007/BF00508120]
    ]:
  • Production rate: On the basis of biological efficiency on each substrate and the time taken in days from spawning to harvesting, the production rate (PR) of oyster mushrooms in each substrate was calculated as described by the formula of [12Dawit A. Mushroom Cultivation: a Practical Approach, Berhanena Selam printing Enterprise 1998; 43-186.]:

PR = BE / Time

2.6. Data Analysis

The collected data were subjected to Analysis of Variance (ANOVA) and means were separated using Fisher’s Least Significant Difference (LSD) at 5% probability level [16Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research, second. 1984; 704.].

3. RESULTS AND DISCUSSION

3.1. Mycelium Invasion

Table 1 showed that substrates significantly (p<0.05) affected days to mycelium invasion (p<0.05). Days to mycelium invasion of 15.66 was obtained at cotton seed hull and sesame straw substrates although in statistical parity with barley straw and teff straw. However, longer time of 20 days was observed at saw dust substrate (Table 1). Similarly, [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.] highlighted that Sawdust took longer days for mycelium invasion while teff straw took less time (15.44 days) for mycelium invasion (MI), although statistically not significant with bean pod husk and wheat straw. Moreover, it was reported that Pleurotus ostreatus completed spawn running in 17- 20 days on different substrates [18Ahmed I, Syed RA. Economic Viability of Mushrooms cultivation to Poverty Reduction in Bangladesh. Trop Subtrop Agroecosystems 2008; 8(1): 93-9.]. According to a study [19Bhatti MA, Mir FA, Siddiq M. Effect of different bedding materials on relative yield of oyster mushroom in the successive flushes. Pak J Agric Res 1988; 8(3): 256-9.], the difference in the length of days taken to complete mycelium running of oyster mushroom on different substrates might be due to a variation in the chemical composition and the C: N ratio of substrates.

Table 1
effect of substrate type on mycelium invasion, pin head formation and days to fruiting body formation.


3.2. Pin Head Formation

Pin head formation of Oyster mushroom was significantly (p<0.05) affected by the different substrates (Table 1). Cotton seed hull took shorter time (20.33 days) to pinhead formation while sawdust took longer time (29 days) for pinhead formation (Table 1). In line with the findings, a study [20Mekonnen H, Semira T. Suitability of locally available substrates for oyster mushrooms cultivation in Mekelle City, Tigray, Ethiopia. Sky J Food Sci 2014; 3: 047-51.] highlighted that short pinning duration of 18 days was observed with cotton seed hull while sawdust takes a longer duration of 24 days. Moreover, a study indicated that Pleurotus ostreatus takes 23 - 27 days for pinhead formation [18Ahmed I, Syed RA. Economic Viability of Mushrooms cultivation to Poverty Reduction in Bangladesh. Trop Subtrop Agroecosystems 2008; 8(1): 93-9.]. The difference in the number of days taken to complete pinhead formation in Pleurotus ostreatus mushroom on different substrates might be due to the variation in the nutrient availability of the substrates, the temperature and RH of cropping room during the transferring of the bags [19Bhatti MA, Mir FA, Siddiq M. Effect of different bedding materials on relative yield of oyster mushroom in the successive flushes. Pak J Agric Res 1988; 8(3): 256-9., 21Dunkwal VY, Jood S. Effect of substrates on nutrient composition of oyster mushroom (Pleurotus sajor-caju). J Dairy Foods Home Sci 2009; 28: 132-6.].

3.3. Days For Fruiting Bodies Formation

It was observed that substrates significantly (p<005) affected days to fruiting body formation (p<005) (Table 1). Days to fruiting body formation occurred earlier in Cotton seed hull substrate with 22.33 days while sawdust took longer time of 31 days for fruiting body formation (Table 1). In line with the findings, maximum days for fruiting body formation of oyster mushroom were observed with sawdust substrate [20Mekonnen H, Semira T. Suitability of locally available substrates for oyster mushrooms cultivation in Mekelle City, Tigray, Ethiopia. Sky J Food Sci 2014; 3: 047-51.]. A previous study indicated that fruiting bodies of Pleurotus ostreatus appeared after 22 - 35 days of inoculation with sawdust [22Emiru B, Zenebech K, Kebede F. Effect of Substrates on the Yield, Yield Attribute and Dietary Values of Oyster Mushroom (Pleurotus Ostreatus) in the Pastoral Regions of Northern Ethiopia. Afr J Food Agric Nutr Dev 2016; 16(4): 11199-218.
[http://dx.doi.org/10.18697/ajfand.76.15695]
]. However, it was indicated that fruiting body formation after spawning occurred earlier in teff straw followed by wheat straw while bean pod husk and dried Khat leaves took longer for fruiting body formation, which might be due to high nitrogen content of the substrates [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.]. Dissimilarity in time for fruiting body formation might be due to the type of substrates and their nutrient compositions [23Ahlawat OP, Raj D, Sagar MP, Gupta P, Vijay B. Effect of recomposted spent mushroom substrate on yield and quality of cauliflower (Brassica oleracea L. var. botrytis). Mushroom Res 2006; 15(2): 149-52.].

3.4. Consecutive Flush Yields and Total Pleurotus Ostreatus Mushrooms Yield

The yield of Oyster mushrooms in each flush and the total mean yield for each substrate are presented in Table 2. The highest yield was obtained with cotton seed hull in the 1st and 2nd flushes while the lowest was observed with sesame stalk and sawdust substrates in all the three flushes of harvests. In the 3rd flush, the highest yield was obtained at barley straw followed by cotton seed hull substrate (Table 2). In all flushes of harvest, a declining trend in yield was observed from the first to third flush of harvest. This could be due to the diminishing nutrient content of substrates mushrooms consumed during growth. Contrary to the present experiment, a study [20Mekonnen H, Semira T. Suitability of locally available substrates for oyster mushrooms cultivation in Mekelle City, Tigray, Ethiopia. Sky J Food Sci 2014; 3: 047-51.] indicated that teff straw was not suitable for oyster mushroom production.

Total yield of oyster mushroom was significantly (p<0.05) affected by the different substrates (Table 2). A high yield of 2170.33 g kg-1 of dry substrate was obtained in Cotton seed hull substrate while the lowest yield of 838.43 g was obtained at sawdust substrate (Table 2). Similarly, 100% Cotton seed hull substrate gave better yield of Pleurotus ostreatus [22Emiru B, Zenebech K, Kebede F. Effect of Substrates on the Yield, Yield Attribute and Dietary Values of Oyster Mushroom (Pleurotus Ostreatus) in the Pastoral Regions of Northern Ethiopia. Afr J Food Agric Nutr Dev 2016; 16(4): 11199-218.
[http://dx.doi.org/10.18697/ajfand.76.15695]
]. Another study reported a significant variation in the total yield of oyster mushrooms among different substrates [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.]. Moreover, the highest yield of 810.10 g kg-1 for dry substrate was obtained for dried bean pod husk while sawdust resulted in lowest yield of 454.40 g kg-1 for dry substrate [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.]. This result was in line with that of [24Tripathi PP. Mushroom Cultivation 2005; 18-217.], who reported a yield of about 800 gram fresh mushrooms per kg of dry substrate under normal conditions. The difference in yield might be due to the nutrient composition of the substrates. Similarly, different substrates yield different levels of mushroom which is due to the difference in the biological and chemical composition of the different substrates [25Ragunathan R, Swaminathan KSM. Nutritional status of Pleurotus spp. grown on various agro-wastes. Food Chem 2003; 80(3): 371-5.
[http://dx.doi.org/10.1016/S0308-8146(02)00275-3]
]. Moreover, a study indicated that C: N ratio of the substrates used for the cultivation, affected the yield performance of Pleurotus ostreatus of mushroom [26Yildiz A, Karakaplan M. Evaluation of Some Agricultural Wastes for the Cultivation of Edible Mushrooms (Pleurotus ostreatus var. Salignus). J Food Sci Technol 2003; 40(3): 290-2.].

3.5. Biological Efficiency of Substrates

Table 2 showed that biological efficiency was significantly (P<0.001) affected by the different substrates tested. The highest biological efficiency of 72.34% was obtained for Cotton seed hull substrate followed by barley straw (49.56%). However, the lowest biological efficiency of 26.77% was observed for sesame stalk substrate which is in statistical parity with that of sawdust substrate which gave 27.62% biological efficiency. Similarly, 73.8% bioconversion efficiency of oyster mushroom was obtained for cotton seed waste supplemented with 1% wheat bran [12Dawit A. Mushroom Cultivation: a Practical Approach, Berhanena Selam printing Enterprise 1998; 43-186.]. Biological efficiency range of 73 to 100 was reported by [24Tripathi PP. Mushroom Cultivation 2005; 18-217.]. Moreover, lower biological efficiency of 15.14% of mushrooms grown on sawdust substrate [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.]. A previous study grew oyster mushroom on Lantana camara and wheat straw and reported a biological efficiency of 36% and 54.8% respectively [27Vats SK, Sood RP, Gulati A, Sharma OP. Lantana camara L. - A lignocellulosic substrate for cultivation of Pleurotus sajor caju. Bioresour Technol 1994; 48(1): 49-52.
[http://dx.doi.org/10.1016/0960-8524(94)90135-X]
]. In contrary, maximum biological efficiency of Pleurotus ostreatus mushroom was observed for sawdust substrate [28Mondal SR, Rehana J, Noman MS, Adhikary SK. Comparative study on growth and yield performance of oyster mushroom (Pleurotus florida) on different substrates. J Bang Agric Univ 2010; 8(2): 213-20.
[http://dx.doi.org/10.3329/jbau.v8i2.7928]
]. The variation in the biological efficiency of substrates might be due to the characteristics of the substrates. Moreover, it was suggested that the variation in biological efficiency of oyster mushroom may be due to the different substrates’ composition [29Islam MZ, Rahman MH, Hafiz F. Cultivation of Oyster Mushroom (Pleurotus flabellatus) on different substrates. Int J Sustain Crop Product 2009; 4: 45-8.]. Variation in the biological efficiency of different substrates was due to low lignolytic and cellulonitic activity of the substrates used for mushroom production [30Wang D, Sakoda A, Suzuki M. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 2001; 78(3): 293-300.
[http://dx.doi.org/10.1016/S0960-8524(01)00002-5] [PMID: 11341691]
].

3.6. Production Rate

Production rate was significantly (P<0.001) affected by the substrate (Table 3). The highest production rate of 3.24 was observed at cotton seed hull substrate followed by barley straw which gave 1.77. However, the lowest production rate of 0.89 was obtained at sawdust substrate and is in statistical parity with sesame stalk substrate which gave a production rate of 1.0 (Table 3). Similarly, a study indicated a higher production rate of 3.18 for bean pod husk substrate while the lowest production rate of 0.67 was obtained at sawdust substrate [17Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.].

Table 2
Effect of substrate type on consecutive flushes and total yield of Pleurotus ostreatus mushrooms


Table 3
Effect of substrate on biological efficiency and production rate of Pleurotus ostreatus mushrooms


CONCLUSION

Identifying a suitable substrate for mushroom production is an important task for improving food security and protein deficiency. Days for mycellilum invasion, days for pinhead formation and fruiting bodies formation and overall yield of Pleurotus ostreatus mushroom was significantly affected by the substrates tested. Thus, cotton seed hull substrate gave the highest yield followed by barley and teff straw substrates respectively. Therefore, these substrates could be used as potential substrates for mushroom production in the study area.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No animals/humans were used for studies that are the basis of this research.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

The authors highly acknowledge Aksum University for its financial support to the research.

ACKNOWLEDGEMENTS

The authors would like to thank the staff of the Aksum University department of biotechnology, especially the head of the department Mr. Zemariam for allowing to use the laboratory and its facilities for research and Mr. Hailemichael for his support in providing constructive comments during initiation of the research proposal and his support in cotton hull substrating and conducting the experiment. The authors would like to thank the laboratory technicians (Abebech and Takele) for the assistance rendered during the experiment by preparing the different materials and equipments for the experiment and cleaning and sanitizing the different materials as well as incubation and growing rooms.

REFERENCES

[1] NNP. National Nutrition programme 2013; 74.
[2] Black RE, Allen LH, Bhutta ZA, et al. Maternal and child under nutrition: Global and regional exposures and health consequences. Lancet 2008; 371(9608): 243-60.
[3] Annonoums. Assessment report on Nutrition intervention status of the agriculture sector and training needs assessment on nutrition multi-sectoral linkages and nutrition sensitive agriculture. Report compiled by: UNICEF Mekelle Field Office & Agricultural Extension Services 2014. Tigray region BoARD
[4] MOARD (Ministry of Agriculture and Rural Development). Ethiopia’s Agriculture Sector Policy and Investment Framework: Ten Year Road Map (2010-2020), Mushroom Growers Handbook 1 2010; 300.
[5] Kakon AJ, Choudhury MBK, Saha S. Mushroom is an Ideal Food Supplement. J Dhaka Nati Med Coll Hos 2012; 18(1): 58-62.
[http://dx.doi.org/10.3329/jdnmch.v18i1.12243]
[6] Dawit A. Wild Mushrooms and Mushroom Cultivation Efforts in Ethiopia, 2014.
[7] Nair (Tan) NG. Marshall E Make money by growing mushroom 2009.
[8] Quimio TH, Chang ST, Roysee DJ. Technical Guidelines for Mushroom Growing in the Tropics (FAO Plant Production and Protection Papers). FAO, Rome, Italy 106.
[9] Chaube HS. Nutritional and Medicinal Values of Mushrooms 1995; 7-8.
[10] Kimenju JW, Odero GOM, Mutitu EW, Wachira PM, Narla RD, Muiru WM. Suitability of Locally Available Substrates for Oyster Mushroom (Pleurotus ostreatus) Cultivation in Kenya. Asian J Plant Sci 2009; 8(7): 510-4.
[http://dx.doi.org/10.3923/ajps.2009.510.514]
[11] Shah MZ, Ashraf M, Ishtiaq MC. Comparative study on cultivation and yield performance of oyster on Different Substrates (Wheat Straw, Leaves, Saw Dust). Pak J Nutr 2004; 3: 158-60.
[http://dx.doi.org/10.3923/pjn.2004.158.160]
[12] Dawit A. Mushroom Cultivation: a Practical Approach, Berhanena Selam printing Enterprise 1998; 43-186.
[13] Mahé S, Roos N, Benamouzig R, et al. Gastrojejunal kinetics and the digestion of [15N]beta-lactoglobulin and casein in humans: the influence of the nature and quantity of the protein. Am J Clin Nutr 1996; 63(4): 546-52.
[http://dx.doi.org/10.1093/ajcn/63.4.546] [PMID: 8599318]
[14] Oei P, Van BR. Small-scale mushroom cultivation: Oyster, Shiitake and wood ear mushrooms 1st ed. 2005; 87.
[15] Chang ST, Lau OW, Cho KY. The cultivation and nutritional value of Pleurotus sajur-caju. European J. Appl Microbiol Biotechnol 1981; 12(1): 58-62.
[http://dx.doi.org/10.1007/BF00508120]
[16] Gomez KA, Gomez AA. Statistical Procedures for Agricultural Research, second. 1984; 704.
[17] Kidane M. Effect of different organic substrates and their pasturalization method on yield and quality of oyster mushroom (Pleurotus sajur- caju) MSc 2005.
[18] Ahmed I, Syed RA. Economic Viability of Mushrooms cultivation to Poverty Reduction in Bangladesh. Trop Subtrop Agroecosystems 2008; 8(1): 93-9.
[19] Bhatti MA, Mir FA, Siddiq M. Effect of different bedding materials on relative yield of oyster mushroom in the successive flushes. Pak J Agric Res 1988; 8(3): 256-9.
[20] Mekonnen H, Semira T. Suitability of locally available substrates for oyster mushrooms cultivation in Mekelle City, Tigray, Ethiopia. Sky J Food Sci 2014; 3: 047-51.
[21] Dunkwal VY, Jood S. Effect of substrates on nutrient composition of oyster mushroom (Pleurotus sajor-caju). J Dairy Foods Home Sci 2009; 28: 132-6.
[22] Emiru B, Zenebech K, Kebede F. Effect of Substrates on the Yield, Yield Attribute and Dietary Values of Oyster Mushroom (Pleurotus Ostreatus) in the Pastoral Regions of Northern Ethiopia. Afr J Food Agric Nutr Dev 2016; 16(4): 11199-218.
[http://dx.doi.org/10.18697/ajfand.76.15695]
[23] Ahlawat OP, Raj D, Sagar MP, Gupta P, Vijay B. Effect of recomposted spent mushroom substrate on yield and quality of cauliflower (Brassica oleracea L. var. botrytis). Mushroom Res 2006; 15(2): 149-52.
[24] Tripathi PP. Mushroom Cultivation 2005; 18-217.
[25] Ragunathan R, Swaminathan KSM. Nutritional status of Pleurotus spp. grown on various agro-wastes. Food Chem 2003; 80(3): 371-5.
[http://dx.doi.org/10.1016/S0308-8146(02)00275-3]
[26] Yildiz A, Karakaplan M. Evaluation of Some Agricultural Wastes for the Cultivation of Edible Mushrooms (Pleurotus ostreatus var. Salignus). J Food Sci Technol 2003; 40(3): 290-2.
[27] Vats SK, Sood RP, Gulati A, Sharma OP. Lantana camara L. - A lignocellulosic substrate for cultivation of Pleurotus sajor caju. Bioresour Technol 1994; 48(1): 49-52.
[http://dx.doi.org/10.1016/0960-8524(94)90135-X]
[28] Mondal SR, Rehana J, Noman MS, Adhikary SK. Comparative study on growth and yield performance of oyster mushroom (Pleurotus florida) on different substrates. J Bang Agric Univ 2010; 8(2): 213-20.
[http://dx.doi.org/10.3329/jbau.v8i2.7928]
[29] Islam MZ, Rahman MH, Hafiz F. Cultivation of Oyster Mushroom (Pleurotus flabellatus) on different substrates. Int J Sustain Crop Product 2009; 4: 45-8.
[30] Wang D, Sakoda A, Suzuki M. Biological efficiency and nutritional value of Pleurotus ostreatus cultivated on spent beer grain. Bioresour Technol 2001; 78(3): 293-300.
[http://dx.doi.org/10.1016/S0960-8524(01)00002-5] [PMID: 11341691]
Track Your Manuscript:


Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents




Webmaster Contact: info@benthamopen.net
Copyright © 2020 Bentham Open