The Open Anesthesia Journal


Formerly: The Open Anesthesiology Journal

ISSN: 2589-6458 ― Volume 13, 2019
RESEARCH ARTICLE

The Use of Milrinone Versus Conventional Treatment for the Management of Life-Threatening Bronchial Asthma



Amr Sobhy*, Doaa M. K. Eldin, Hany V. Zaki
Department of Anesthesia, Ain Shams University, Cairo, Egypt

Abstract

Background and Aims:

In our study, we investigated the effectiveness of intravenous milrinone in life-threatening bronchial asthma as compared to conventional treatment.

Methods:

Fifty patients aged 18-50 years, presenting with life-threatening asthma were enrolled in a Randomised Controlled Trial (RCT). They were randomly allocated into Group C (25 patients): who received the standard pharmacotherapy and placebo, and Group M (25 patients): who in addition to the standard therapy, received 25 μg milrinone as an initial slow IV bolus diluted in 10 ml of normal saline. The following data were recorded: PEFR (Peak Expiratory Flow Rate) expressed as a percentage of the patient’s previous value, Respiratory Rate (RR), MABP (Mean Arterial Blood Pressure), arterial blood gases, and the number of patients requiring mechanical ventilation. Differences between groups were tested using Analysis of Variance (ANOVA) for quantitative variables with post hoc using the Least Significant Difference (LSD) test, and Chi square test for categorical variables.

Results:

Group M showed marked improvement in PEFR that was highly significant (P < 0.001) 10 min after injection and significant after one hour from the start of treatment in comparison to Group C. There was also an improvement in RR and PO2 that was significant in group M. Milrinone was associated with a reduction in MABP only after 10 min from injection, and showed a statistically significant decrease in the number of patients requiring mechanical ventilator support (P ˂ 0.05).

Conclusion:

Milronine is a promising agent as a rescue drug in the treatment of life-threatening bronchial asthma.

Keywords: Milrinone, Status asthmatics, Phosphodiesterase 3 inhibitors, Bronchial asthma, Randomised controlled trial, Airways.


Article Information


Identifiers and Pagination:

Year: 2019
Volume: 13
First Page: 12
Last Page: 17
Publisher Id: TOATJ-13-12
DOI: 10.2174/2589645801913010012

Article History:

Received Date: 16/01/2019
Revision Received Date: 25/03/2019
Acceptance Date: 02/04/2019
Electronic publication date: 30/04/2019
Collection year: 2019

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 1086
Abstract HTML Views: 430
PDF Downloads: 202
ePub Downloads: 165
Total Views/Downloads: 1883

Unique Statistics:

Full-Text HTML Views: 833
Abstract HTML Views: 290
PDF Downloads: 131
ePub Downloads: 100
Total Views/Downloads: 1354
Geographical View

© 2019 Sobhy et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Department of Anesthesia, Ain Shams University, Cairo, Egypt; Tel: 002010694383;
Email: dr.amrsobhy2013@gmail.com





1. INTRODUCTION

Asthma is a chronic disease of the airways, characterized by variable and recurring symptoms, airflow obstruction, bron-chial hyper responsiveness and inflammation. In severe exacer-bations, intensive care admission may be necessary. Pharmaco-logical treatment includes β2 agonists, steroids, anti-cholinergic agents, magnesium sulphate, and sometimes aminophylline [1Beute J. Emergency treatment of status asthmaticus with enoximone. Br J Anaesth 2014; 112(6): 1105-8.[http://dx.doi.org/10.1093/bja/aeu048] [PMID: 24638233] ].

While most of the cases of bronchial asthma can be cont-rolled with medication, it is estimated that 5-10% of asthmatic patients worldwide are considered to have the most severe persistent form of the disease that does not respond well to standard treatment. These people are likely to have more frequent attacks and are more at risk of a fatal attack [2Asthma and Allergy Foundation of America. Available from http://www.aafa.org2018.].

In the past 25 years, literature has suggested the therapeutic potential of phosphodiesterase inhibitors in asthma however none of these drugs have been used clinically for this indication [3Fujimura M, Kamio Y, Myou S, Hashimoto T, Matsuda T. Effect of a phosphodiesterase 3 inhibitor, cilostazol, on bronchial hyperresponsiveness in elderly patients with asthma. Int Arch Allergy Immunol 1997; 114(4): 379-84.[http://dx.doi.org/10.1159/000237698] [PMID: 9414143] ].

Milrinone is a bipyridine compound that selectively inhi-bits phosphodiesterase iso-enzyme 3 (PDE-3). Phosphodie-sterases are a family of enzymes that inactivate cAMP and cGMP. Inhibition of PDE results in increased cAMP and intra-cellular ionized calcium in the myocyte, resulting in increased myocardial contractility. In smooth muscle cells, PDE inhi-bitors cause an increase in cAMP and cGMP resulting in relaxation of bronchial smooth muscle cells and broncho-dilatation [4Katzung BG, Parmley WW. Drugs used in Heart Failure.Basic and Clinical Pharmacology 10th ed. 10th ed.2007; 198-210.].

Milrinone is active orally as well as parenterally but is available only in parenteral form. It has an elimination half life of 3-6 hours with 10-40% being excreted in the urine [4Katzung BG, Parmley WW. Drugs used in Heart Failure.Basic and Clinical Pharmacology 10th ed. 10th ed.2007; 198-210.].

The objective of this study is to assess the effectiveness of using milrinone as a rescue drug in life-threatening bronchial asthma.

2. METHODS

In a randomised prospective controlled trial, parallel study was conducted after approval of the Research Ethics Commi-ttee (REC), with trial registry number PACTR20180 2002998973. An informed written consent was obtained from every patient or his/her first kin relative. A total of fifty patients were enrolled from November 2017 till April 2018.

Patients included in this study were of both sexes, aged 18-50 years old, presenting with life-threatening asthma accor-ding to the criteria of the British Guideline on the management of asthma 2008, revised October 2014 [5British Guideline on the Managament of Asthma. May 2008 revised 2014. Available from http://www.sign.ac.uk/pdf/sign101.pdf]. Life-threatening asthma is defined as any one or more of the following criteria:

  1. PEFR (Peak Expiratory Flow Rate) < 33% of best or predicted
  2. SpO2 (Oxygen Saturation) < 92%
  3. PaO2 (Arterial Partial Pressure of Oxygen) < 8 kPa (60 mm Hg)
  4. Normal PaCO2 (Arterial Partial Pressure of Carbon Dioxide) (4.6-6.0 kPa) (35-45 mm Hg)
  5. Silent chest
  6. Cyanosis
  7. Poor respiratory effort
  8. Arrhythmia
  9. Exhaustion, altered conscious level
  10. Hypotension

Patients excluded from this study were those with pre-existing heart failure, hypotensive patients, stenotic or obstruc-tive valvular disease or other outlet obstruction, patients with pre-existing arrhythmia or pneumonia and those who required mechanical ventilation in the first hour of the study.

Immediately following admission, a detailed history was taken regarding physical health, coexisting medical problems, current medications, allergies, if possible and thorough clinical examination (chest auscultation, respiratory muscle paradox, Respiratory Rate RR). Blood pressure, heart rate, ECG. Base-line ABG (Arterial Blood Gas) and Peak Expiratory Flow Rate (PEFR) were monitored of the patients.

All eligible patients received conventional treatment for life-threatening asthma according to the latest British Guideline on the management of asthma 2008, revised October 2014 [5British Guideline on the Managament of Asthma. May 2008 revised 2014. Available from http://www.sign.ac.uk/pdf/sign101.pdf]. Treatment consisted of: Supplementary O2 to all hypoxaemic patients (SpO2 < 92%) to maintain SPO2 level 94-98%, high dose inhaled β2 agonist or nebulized β2 agonist (salbutamol), nebulized ipratropium bromide (0.5 mg every 20 minutes repeated three times, then 4-6 hourly), hydrocortisone 100 mg/ 6 hours, and magnesium sulphate 1.2-2 g intravenous (IV) infusion over 20 minutes.

Patients were mechanically ventilated (after failed medical treatment) with non-invasive ventilation (or invasive ventila-tion in case of its contraindication or failure) according to the following criteria:

  1. Resistant hypoxaemia to FiO2 > 0.6 with PaO2 < 60mmHg.
  2. Hypercapnia PaCO2 > 50mmHg or with pH < 7.2
  3. Severe tachypnoea with RR > 40.
  4. Disturbed conscious level.
  5. Haemodynamic disturbance related to respiratory failure (dysrhythmias, hypotension 30% reduction of basal blood pressure level).

Patients were then randomly assigned by computer generated random sequence into two groups C & M, 25 patients each:

Group C: Received the standard pharmacotherapy as described above and placebo (10 ml saline IV).

Group M: in addition to the therapy given to group C, received 25 μg milrinone as an initial slow IV bolus diluted in 10 ml of normal saline. Within 10 minutes, if this dose did not provide effective relief it was followed by another slow IV bolus dose of 25 μg milrinone.

The following data were collected and recorded: respira-tory rate every 10 min for clinical purposes and recorded after 1 hour, PEFR expressed as a percentage of the patient’s best predicted value, measured by peak flowmeter assessed at 10 min and after 1 hour, MABP (Mean Arterial Blood Pressure) assessed at 10 min and after 1 hour, SPO2 continuously applied and recorded after 1 hour. PaO2 and PaCO2 were measured and recorded after 1 hour, as well as the number of patients requi-ring mechanical ventilation after failed medical therapy.

The primary endpoint of the study is to assess the relief of status asthmaticus by milrinone in the form of improvement in PEFR, and the secondary endpoint is to evaluate the effective-ness of milrinone in reducing the number of patients requiring mechanical ventilation.

The points at which the study was terminated include severe hypotension, malignant arrhythmias, and mechanical ventilation within the first hour.

Sample size calculation was done using PS (version 3.0.43, Department of Biostatistics, Vanderbilt University, located in Nashville, United States), based upon the assumption that using milrinone may improve PEFR as a percentage of predicted value by 20% and taking power 0.81 and alpha error 0.05. A minimum sample size of 25 patients was calculated for each group. Eligible patients were randomly assigned following

Table 1
Baseline and demographic data recorded.


Table 2
PEFR measured 10 minutes and 1 hour after the start of treatment.


Table 3
Parameters measured after 1 hour from the start of treatment.


simple randomization procedures by an independent resear-cher, using computer generated random sequence into two treatment groups. The allocation sequence was concealed from the researchers enrolling and assessing patients in sequentially numbered, opaque, sealed and stapled envelopes containing cards with the treatment code. Aluminum foil was put inside to render the envelope impermeable to intense light. After assessing eligibility, the patient was enrolled and then the intervention was allocated. The name and date of birth of the patient were written on the envelope. Carbon paper inside the envelope transferred this information onto the allocation card inside, and then the envelope was opened

2.1. The Clinical Trial Registry is the Pan African Clinical Trial Registry PACTR201802002998973

Preparation of the different medications was performed by an independent nurse according to the treatment codes. The patients, the enrolling and assessing physicians, and data analysts were kept blind to the allocation arms of the study.

Data were entered into a computer and checked for comp-leteness and consistency. Treatment groups were analysed as coded. Quantitative variables were described as means and standard deviations. Categorical variables were described as numbers and percentages. Differences between groups were tested using Analysis of Variance (ANOVA) for quantitative variables with post hoc using the Least Significant Difference (LSD) test, and Chi square test for categorical variables. All analyses were performed on an intention-to-treat basis with two-sided level of significance at P-value ≤ 0.05 using IBM-SPSS program version 21.

3. RESULTS

A total of fifty patients were enrolled in this trial, 25 patients in each of the treatment groups. Age and gender were homogeneously distributed in both groups. As regards, baseline values of the parameters measured (PEFR, RR, PaO2, SPO2, pH, PaCO2 and MABP) there was no statistically significant difference between both groups (P > 0.05) (Table 1). None of the patients in our study experienced severe hypotension, malignant arrhythmias or required mechanical ventilation during the first hour.

PEFR measured 10 minutes after injection improved from 31.08% to 64.89% in group M, and improved from 32.49% to 51.74% in the control group. The difference between both measurements at 10 minutes was highly significant (P < 0.001). PEFR measurements at one hour were 77.65% in group M, compared to 70.75% in group C (P = 0.002) (Table 2).

Measurements of RR and PaO2 one hour after injection revealed highly significant improvement in group M as compared to group C (P < 0.001). SpO2 improved in both groups as compared to baseline readings, but the difference between both groups was not statistically significant (P = 0.884). PaCO2 and pH did not show any statistical difference between both groups after one hour (P values 0.085, 0.717 respectively) (Table 3).

Regarding the number of patients requiring mechanical ventilation nine out of 25 patients in group C needed mechanical ventilation (36%) compared to three out of 25 patients in group M (12%). This difference was statistically significant (P = 0.047) (Table 3).

Serial blood pressure readings showed a drop in mean arterial blood pressure 10 minutes after the start of treatment in the milrinone group (74.98 ± 4.12 mmHg) as compared to group C (97.53% ± 5.26 mmHg) which was statistically highly significant (P ˂ 0.001). However one hour after the start of treatment there was no significant difference between MABP readings in both groups (P ˂ 0.654) (Table 4).

4. DISCUSSION

The treatment of status asthmaticus in refractory bronchial asthma presents a challenge to the physician and health services. In our study, we investigated the effectiveness of intravenous milrinone as a rescue drug in life-threatening bron-chial asthma as compared to conventional treatment.

Our results showed that milrinone caused a significant improvement in PEFR both at 10 minutes after injection (64.89%), and almost reaching normal values (77.65%) one hour after injection. This was associated with a significant improvement in respiratory rate and PaO2. Other variables such as SpO2, PaCO2 and pH showed clinical improvement com-pared to baseline readings but did not show significant diff-erence between the milrinone and the control group in com-parison. The relationship between PaO2 and SpO2 in the oxy-haemoglobin dissociation curve is S-shaped rather than linear. Consequently, wide changes in PaO2 are met by minor changes in SpO2 causing the difference between both groups to be statistically non-significant.

Milrinone group showed a significant reduction in the overall number of patients requiring mechanical ventilation. Regarding the haemodynamic effects, the milrinone group showed a transient drop in Mean Arterial Blood Pressure (MABP) 10 minutes after the injection that did not persist even one hour after the injection. This drop in MABP was statistically significant as compared to the control group, yet clinically it was not significant as it did not drop below 70 mmHg. None of the patients in our study developed malignant arrhythmias.

Since the early 1990s, the sparse research into PDE 3 inhibitors for pulmonary uses did not lead to the use of any of these drugs in the treatment of bronchial asthma. However several previous studies have studied the effect of various members of PDE 3 family on bronchial asthma and acute exacerbations of COPD.

The results of our study correlate with those of Beute, 2014 [1Beute J. Emergency treatment of status asthmaticus with enoximone. Br J Anaesth 2014; 112(6): 1105-8.[http://dx.doi.org/10.1093/bja/aeu048] [PMID: 24638233] ] who examined the effect of another member of the PDE 3 inhibitors, enoximone, for the emergency treatment of status asthmaticus. Eight patients with status asthmaticus, six of whom were maximally treated, were consequently treated with enoximone in their refractory phase. A rapid bolus of 100 mg enoximone was administered intravenously followed by an infusion of 8 mg/hr. It was found that treatment with enoxi-mone worked instantaneously. Resolution of asthma symptoms was immediate. The onset of action was within seconds of the start of injection, suggesting an effect at first passage through the lungs, resolving bronchospasm. Bronchodilation was imme-diate without any cardiovascular side effects. It also enabled shorter hospital and ICU stays, and reduced the risk for mechanical ventilation.

One of the earliest studies was performed on selective PDE 3 inhibitors by Leeman and colleagues in 1987. A group of 19 patients admitted to intensive care with decompensated COPD was treated with enoximone 3 mg/kg over 15 minutes. Heart rate, mean systemic arterial pressure, arterial blood gases, respiratory rate, minute ventilation, lung resistance and lung compliance were recorded as baseline measurements at 30 and 60 minutes after the end enoximone infusion. They recorded an increase in heart rate in mechanically ventilated patients only. Lung resistance decreased and dynamic lung compliance increased after enoximone infusion in spontaneously breathing patients. Side effects recorded in one patient which were significant, such assystemic hypotension, poorly tolerated tac-hycardia, atrial fibrillation bradycardia, dyspnoea, facial flush and headache. Side effects were attributed to excessive sys-temic vasodilation. They concluded that enoximone was effec-tive in reducing bronchomotor tone, and that the high freq-uency of side effects was probably due to the high excessive intravenous dose of enoximone [6Leeman M, Lejeune P, Melot C, Naeije R. Reduction in pulmonary hypertension and in airway resistances by enoximone (MDL 17,043) in decompensated COPD. Chest 1987; 91(5): 662-6.[http://dx.doi.org/10.1378/chest.91.5.662] [PMID: 2952467] ].

Our results also agree with those of Fujimura and colleagues 1995, who studied the effect of cilostazol, another selective PDE3 inhibitor, on bronchial responsiveness in normal subjects. A group of eight healthy subjects received 200 mg of oral cilostazol or placebo in random order. The subjects underwent metacholine challenge test. The concentration of metacholine causing a 20% fall in FEV1 and the mean value of maximum expiratory flow on the flow-volume curve were recorded. They demonstrated that cilostazol reduced bronchial responsiveness in healthy volunteers and asthmatics. However, all subjects complained of headache ranging from mild to severe when cilostazol was given which may be attributed to cerebral vasodilator effect [7Fujimura M, Kamio Y, Saito M, Hashimoto T, Matsuda T. Bronchodilator and bronchoprotective effects of cilostazol in humans in vivo. Am J Respir Crit Care Med 1995; 151(1): 222-5.[http://dx.doi.org/10.1164/ajrccm.151.1.7812559] [PMID: 7812559] ].

Table 4
MABP values measured 10 minutes and 1 hour after the start of treatment.


A further study by Fujimura and coworkers in 1997, examined the effect of a single oral dose of cilostazol on bronchial hyper-responsiveness in elderly asthmatic patients with clinically stable asthma. Each subject received 100 mg of cilostazol, 200 mg of theophylline as a positive control or placebo in a random order. The subjects then underwent a metacholine challenge test of 3 hours after each drug admi-nistration. The mean value of provocative concentration of metacholine causing a 20% fall in FEV1 was recorded. Their study suggested that cilostazol has bronchodilator and broncho-protective effects in elderly asthmatic patients [3Fujimura M, Kamio Y, Myou S, Hashimoto T, Matsuda T. Effect of a phosphodiesterase 3 inhibitor, cilostazol, on bronchial hyperresponsiveness in elderly patients with asthma. Int Arch Allergy Immunol 1997; 114(4): 379-84.[http://dx.doi.org/10.1159/000237698] [PMID: 9414143] ].

The effect of aerosolized PDE 3 inhibitor olprinone was studied by Fujimura and colleagues in 1999. They performed a double-blinded randomized trial in which aerosolized olprinone was compared to salbutamol and vehicle in nine asthmatic patients on three occasions one week apart. Olprinone at a dose of 2 mg, salbutamol at a dose of 2.5 mg (dissolved in D-sorbitol solution), or vehicle was inhaled from a nebulizer. Spirometry was assessed over 60 min. Significant increases in FEV1 were observed until 45 min after inhalation of olprinone without adverse cardiovascular effects. Mean maximal increases in FEV1 were 16.0 ± 4.0 and 20.5 ± 4.2% with olprinone and salbutamol, respectively (P = 0.28). They concluded that the bronchodilator effect of olprinone was greater than that of salbutamol in four of the nine patients. Their results suggested that inhaled olprinone may be useful as airway smooth muscle relaxant in the treatment of asthma [8Myou S, Fujimura M, Kamio Y, et al. Bronchodilator effect of inhaled olprinone, a phosphodiesterase 3 inhibitor, in asthmatic patients. Am J Respir Crit Care Med 1999; 160(3): 817-20.[http://dx.doi.org/10.1164/ajrccm.160.3.9812065] [PMID: 10471602] ].

Previous animal studies on milrinone have shown that it was as effective as an inhibitor of antigen-induced broncho-constriction in isolated rat lungs [9Post MJ, te Biesebeek JD, Wemer J, van Rooij HH, Porsius AJ. Effects of milrinone, sulmazole and theophylline on adenosine enhancement of antigen-induced bronchoconstriction and mediator release in rat isolated lungs. Pulm Pharmacol 1991; 4(4): 239-46.[http://dx.doi.org/10.1016/0952-0600(91)90017-W] [PMID: 1725275] ]. Further studies showed that intra-tracheal administration of milrinone effectively reduced bronchoconstriction in cats in a dose-dependent fashion without substantial systemic side effects. There were no treatment-associated changes in mean arterial pressure or heart rate [10Hu H, Takata M, Kusakawa I, Fujita M, Miyasaka K. Intratracheal administration of phosphodiesterase III inhibitor attenuates bronchoconstriction in cats: A preliminary report. Pediatr Pulmonol 1995; 19(6): 360-4.[http://dx.doi.org/10.1002/ppul.1950190609] [PMID: 7567216] ]. Another contradictory study showed that intra-venous injection of milrinone showed weak, or no, inhibitory effects against bronchoconstriction produced by aerosolized antigen or histamine in anesthetized ventilated guinea pigs [11Ortiz JL, Vallés JM, Martí-Cabrera M, Cortijo J, Morcillo EJ. Effects of selective phosphodiesterase inhibitors on platelet-activating factor- and antigen-induced airway hyperreactivity, eosinophil accumulation, and microvascular leakage in guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 1996; 353(2): 200-6.[http://dx.doi.org/10.1007/BF00168758] [PMID: 8717161] ]. Inhaled zardaverine, a dual inhibitor of PDE3 and PDE4, also exhibited a bronchodilator effect in asthmatic animals [12Brunnée T, Engelstätter R, Steinijans VW, Kunkel G. Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur Respir J 1992; 5(8): 982-5.[PMID: 1426207] ].

Although it is expected that PDE inhibitors may produce a profound drop in arterial blood pressure due to their vasodilator effects, in our study, milrinone did not result in profound haemodynamic instability. A reason might be that in heart failure milrinone is given in much higher doses as compared to our study. An initial loading dose of 50 mcg/kg over 10 minutes followed by 0.375-0.75 mcg/kg/min is the dose described for the treatment of severe congestive heart failure [13Milrinone Dosage forms and strengths https://reference.medscape. com/drug/milrinone-342433]. The dose used in our study was considerably lower and the duration of administration was substantially shorter.

Limitations of our study were that we did not assess the effectiveness of continuous infusion of milrinone, and whether or not continuous infusion may possibly reduce the duration of mechanical ventilation and ICU stay.

CONCLUSION AND RECOMMENDATIONS

We conclude that milrinone is a promising agent as a rescue drug in the treatment of life-threatening bronchial asthma with minimal hemodynamic side effects.

ETHICS APPROVAL AND CONSENT TO PARTICI-PATE

The study was conducted after approval of the Research Ethics Committee (REC), with trial registry number PACTR20180 2002998973.

HUMAN AND ANIMAL RIGHTS

No Animals were used in this research. All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2013.

CONSENT FOR PUBLICATION

An informed written consent was obtained from every patient or his/her first kin relative.

AVAILABILITY OF DATA AND MATERIALS

Not applicable.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Beute J. Emergency treatment of status asthmaticus with enoximone. Br J Anaesth 2014; 112(6): 1105-8.[http://dx.doi.org/10.1093/bja/aeu048] [PMID: 24638233]
[2] Asthma and Allergy Foundation of America. Available from http://www.aafa.org2018.
[3] Fujimura M, Kamio Y, Myou S, Hashimoto T, Matsuda T. Effect of a phosphodiesterase 3 inhibitor, cilostazol, on bronchial hyperresponsiveness in elderly patients with asthma. Int Arch Allergy Immunol 1997; 114(4): 379-84.[http://dx.doi.org/10.1159/000237698] [PMID: 9414143]
[4] Katzung BG, Parmley WW. Drugs used in Heart Failure.Basic and Clinical Pharmacology 10th ed. 10th ed.2007; 198-210.
[5] British Guideline on the Managament of Asthma. May 2008 revised 2014. Available from http://www.sign.ac.uk/pdf/sign101.pdf
[6] Leeman M, Lejeune P, Melot C, Naeije R. Reduction in pulmonary hypertension and in airway resistances by enoximone (MDL 17,043) in decompensated COPD. Chest 1987; 91(5): 662-6.[http://dx.doi.org/10.1378/chest.91.5.662] [PMID: 2952467]
[7] Fujimura M, Kamio Y, Saito M, Hashimoto T, Matsuda T. Bronchodilator and bronchoprotective effects of cilostazol in humans in vivo. Am J Respir Crit Care Med 1995; 151(1): 222-5.[http://dx.doi.org/10.1164/ajrccm.151.1.7812559] [PMID: 7812559]
[8] Myou S, Fujimura M, Kamio Y, et al. Bronchodilator effect of inhaled olprinone, a phosphodiesterase 3 inhibitor, in asthmatic patients. Am J Respir Crit Care Med 1999; 160(3): 817-20.[http://dx.doi.org/10.1164/ajrccm.160.3.9812065] [PMID: 10471602]
[9] Post MJ, te Biesebeek JD, Wemer J, van Rooij HH, Porsius AJ. Effects of milrinone, sulmazole and theophylline on adenosine enhancement of antigen-induced bronchoconstriction and mediator release in rat isolated lungs. Pulm Pharmacol 1991; 4(4): 239-46.[http://dx.doi.org/10.1016/0952-0600(91)90017-W] [PMID: 1725275]
[10] Hu H, Takata M, Kusakawa I, Fujita M, Miyasaka K. Intratracheal administration of phosphodiesterase III inhibitor attenuates bronchoconstriction in cats: A preliminary report. Pediatr Pulmonol 1995; 19(6): 360-4.[http://dx.doi.org/10.1002/ppul.1950190609] [PMID: 7567216]
[11] Ortiz JL, Vallés JM, Martí-Cabrera M, Cortijo J, Morcillo EJ. Effects of selective phosphodiesterase inhibitors on platelet-activating factor- and antigen-induced airway hyperreactivity, eosinophil accumulation, and microvascular leakage in guinea pigs. Naunyn Schmiedebergs Arch Pharmacol 1996; 353(2): 200-6.[http://dx.doi.org/10.1007/BF00168758] [PMID: 8717161]
[12] Brunnée T, Engelstätter R, Steinijans VW, Kunkel G. Bronchodilatory effect of inhaled zardaverine, a phosphodiesterase III and IV inhibitor, in patients with asthma. Eur Respir J 1992; 5(8): 982-5.[PMID: 1426207]
[13] Milrinone Dosage forms and strengths https://reference.medscape. com/drug/milrinone-342433

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open