The Open Civil Engineering Journal




ISSN: 1874-1495 ― Volume 13, 2019
RESEARCH ARTICLE

Emergency Restoration of High Voltage Transmission Lines



Karthi. K Vadivel*
Lead Engineer, Ulteig Engineers Inc. Minnesota, USA

Abstract

Background:

Blackouts on high voltage (HV) transmission lines occur due to harsh weather and non-climatic reasons such as human errors and mechanical failures. While it is impossible to prevent all such situations, utility officials and contractors can be equipped to meet such emergencies.

Objective:

This paper discusses: (1) the economic impact of climatic events in the USA and economic justification for having Emergency Restoration (ER) plans and, (2) emergency restoration procedures for downed transmission lines in Oman. Key aspects of emergency restoration procedures are discussed.

Keywords: Economic impact, Emergency, High voltage, Restoration, Transmission lines, Blackouts.


Article Information


Identifiers and Pagination:

Year: 2017
Volume: 11
Issue: Suppl-2, M6
First Page: 778
Last Page: 785
Publisher Id: TOCIEJ-11-778
DOI: 10.2174/1874149501711010778

Article History:

Received Date: 01/3/2017
Revision Received Date: 28/4/2017
Acceptance Date: 10/06/2017
Electronic publication date: 15/10/2017
Collection year: 2017

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 2100
Abstract HTML Views: 911
PDF Downloads: 957
ePub Downloads: 824
Total Views/Downloads: 4792

Unique Statistics:

Full-Text HTML Views: 1324
Abstract HTML Views: 516
PDF Downloads: 370
ePub Downloads: 205
Total Views/Downloads: 2415
Geographical View

© 2017 Karthi. K. Vadivel.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Ulteig Engineers Inc. 4285 North Lexington Avenue, St. Paul, Minnesota 55126, USA, Tel: (651) – 415, 3808, Fax: (888)-858-3440, E-Mail: karthi.kv@ulteig.com




1. INTRODUCTION

High voltage electric transmission lines carry electrical energy from power generating stations to substations. These transmission lines function in a wide range of terrains, climates and physical environments and are always at risk to experience catastrophic events, both weather-related and man-made. Weather-related events include high winds, ice buildup, ice storms, flash floods, rock or mud slides, erosion of foundations and much more. Sudden power blackouts caused by nature are very common; however, non-climatic events are just as likely. These include human error, vehicle accidents, vandalism/sabotage, terrorism, design defects and poor maintenance protocols.

All high voltage transmission lines are exposed to a certain level of damage risk, threatening to disrupt or impair critical power supply infrastructure and affect public safety. Utilities cannot escape these emergencies; therefore, it is important to know their cause and quickly, efficiently respond to the problem. Emergency situations may include failure of structural systems and foundations (including guy wires and anchors), failure of conductor splices and damage to conductor strands leading to conductor failure. Structural damage may also occur due to degradation of conductors due to wild fires, snapped conductors from falling trees, insulator breakage, failure of cross-arms and buckling of tower angle members or connection failures.

In all these cases, the demand is to restore the system to normalcy rapidly. The primary concern in Emergency Restoration is to revive the transmission network, get the line back into operation as quickly as possible and to restore electricity supply to the affected consumers. The other important concern is to minimize the economic impact of the costs associated with the devastation and rebuilding. While the cost to rebuild or restore a failed transmission line is inversely proportional to the restoration time, the total losses are directly proportional to the outage time. Therefore, one can view any Emergency Restoration Plan as a combination of technical or engineering processes and financial planning.

This paper presents a brief discussion on the impact of typical storm-related blackouts, and their financial impact followed by a review of procedures used during emergency restoration of three damaged high-voltage transmission lines in Oman.

2. ECONOMIC IMPACT OF MAJOR CLIMATIC EVENTS

2.1. Storm-Related Blackouts in The U.S

According to studies from the reported incidents in the United States for the period 1992-2011 [1Evan Mills, "Electric Grid Disruptions and Extreme Weather", Lawrence Berkeley National Laboratory, .US Disaster Reanalysis Workshop, National Climatic Data Center (NCDC), 2012.], nearly 78% of electric grid disruptions are weather related, affecting 178 million customers. Fig. (1) shows the historical “Grid Disturbance” data from the US Department of Energy [2R.J. Campbell, "Weather-Related Power Outages and Electric System Resiliency", Report R42696, Report for Congress, .Washington DC, USA Congressional Research Service.].

Fig. (1)
Causes of Grid Disruptions in USA.


Table 1 shows the causes of large blackouts in the United States between 1984 and 2006. It can be seen that nearly 44% are weather-related. Table 2 gives a representative idea of the economic impact of weather-related outages between 1989 and 2004 as compiled by one utility.

Utilities use two types of indices, namely SAIFI and SAIDI, to benchmark reliability of their power supply systems [3G. Peters, A.M. DiGioia, C. Hendrickson, and J. Apt, "Transmission Line Reliability: Climate Change and Extreem Weather", Working Paper CEIC-05-06, . Carnegie Mellon Electricity Industry Center, Pittsburgh, Pennsylvania, USA.
[http://dx.doi.org/10.1061/40790(218)2]
, 4B. Johnson, After the Disaster: Utility Restoration Cost Recovery., Edison Electricity Institute: Washington, DC, USA, .] and to develop effective emergency restoration plans.

Table 1
Causes of Large Blackouts in the United States. [NERC, 1984-2006].


Table 2
Economic Impact of Major Climatic Events. [Duke Power].


SAIFI is the System Average Interruption Frequency Index and represents the average number of times per year that the power supply to the customer is interrupted, expressed as interruptions per customer per year.

SAIDI is the System Average Interruption Duration Index and represents the average amount of time per year that power supply to a customer is interrupted, expressed in minutes per customer per year.

These two indices are defined as follows:

(1)
(2)

One problem with these indices is the lack of consistency in that they normally do not include storm-related outages. Some jurisdictions in the USA and elsewhere consider storm-related outages as “extreme events” and do not include them in power disruption statistics. Also, as stated by Campbell [3G. Peters, A.M. DiGioia, C. Hendrickson, and J. Apt, "Transmission Line Reliability: Climate Change and Extreem Weather", Working Paper CEIC-05-06, . Carnegie Mellon Electricity Industry Center, Pittsburgh, Pennsylvania, USA.
[http://dx.doi.org/10.1061/40790(218)2]
], what is considered unusual weather in one region may be normal in another region. In one study [4B. Johnson, After the Disaster: Utility Restoration Cost Recovery., Edison Electricity Institute: Washington, DC, USA, .], it was found that the total SAIDI outage duration time, including storm-related events is about 3 hours, translating into a 50% percentile annual unserved electricity cost of nearly $2.5 Billion.

2.2. Economic Justification for an Emergency Response System

CIGRE [7"CIGRE Technical Brochure 175, Management of Existing Overhead Transmission Lines", SC 22, Working Group 13, .] states that one of management’s top goals in an Investor Owned Utility environment is “to minimize the net present value of annual expenditures over a given investment period”. Lindsey [5Keith Lindsey, “Transmission Emergency Restoration Systems for Public Power”, Publication No. 07T-005., ERS Public Power, .] gives the economic justification for having an Emergency Restoration System in terms of a Net Present Value (NPV) approach as:

(3)

where:

NPV = Net Present Value of annual utility expenditures

n = period taken into consideration in years (i = 0 is initial investment)

r = discount rate

Ci = Annual expenditure in the Year “i” = Ei + Ri

Ei = Deterministic costs or planned expenditures in the Year “i”

Ri = Probabilistic costs associated with risk of failure in the Year “i”

NPV includes both known (normal operations, maintenance, and investments) and anticipated costs. For a high-voltage overhead transmission line asset, all relevant cost factors (both deterministic and probabilistic) have to be taken into consideration during a given investment period. The probabilistic cost factor Ri is called the Risk of Failure and is defined as follows:

(4)

Risk of failure during a time interval may be defined in economic terms such as NPV and is a function of time since both the probability of failure and the consequences are functions of time. In general, the risk of failure R is also a function of planned expenditure E.

(5)

From the above equations it is clear that risk can be controlled by either:

(a) Controlling the likelihood or chance of failure-initiating event

(b) Controlling the magnitude of resulting consequences including cost

Item (b) is the fundamental basis of economic justification of any emergency restoration process or plan. Proper planning for outages and rapid restoration helps minimize the costs of consequences.

3. EFFECTIVE EMERGENCY RESTORATION

When a high voltage transmission line goes down with one or several damaged structures, the responsible utility incurs huge monetary losses and hundreds of non-transmission (outage) hours. Given that the total losses and/or damages are directly proportional to the outage duration, time is a crucial factor in reinstating or remediating the damaged/fallen structure(s). In some cases, the process of formally rebuilding a new line can take as long as 5 to 6 weeks.

However, by using an effective Emergency Restoration Plan, the damaged/fallen transmission structures (towers or poles) can be replaced in a few hours depending on the nature and depth of the damage. Proper planning not only maximizes restoration efficiency but can also minimize inventory levels.

An effective Emergency Restoration Plan contains three (3) essential elements:

1. Planning

2. Emergency Materials

3. Training

Planning includes determining which transmission lines are important, the possible ways in which they can fail and how best to restore them. This includes general information about existing structures and foundations, data on past climate-related failures, weather criteria and structural loading and extent/location of damages.

To perform any quick emergency restoration work, critical materials must be readily available for use. The inventory must include standard wire sizes in sufficient quantities. If the line consisted of poles, then the inventory stock must have a reasonable number of poles of similar size and strength. Structures used for restoration can be modular, temporary or permanent.

An important part of any restoration is the training of field personnel in the erection of the replacement structures, stringing and guying operations etc. A rapid mobilization of trained work force is vital to the process of emergency restoration.

4. EMERGENCY RESTORATION ACTIONS

The author was personally involved with the following high voltage line restoration projects in Oman, each highlighting one of the three types of damages: weather-related (storms), incident-related (an accident or unintended activity) and design-related (defective design or failure to follow established design protocol).

Fig. (2)
Collapsed Double Circuit 132 kV Tower during Cyclone GONU.


Fig. (3)
Emergency Restoration of One Circuit of the Damaged 132 kV Line with Wood Poles.


4.1. Restoration 1 - Weather-Related Damage

Cyclone GONU of 2007 was one of the strongest tropical cyclones to hit Oman. At its peak, GONU sustained wind speeds of 220 km/h (138 mph) [6O.H. Abdalla, and T.M. Alkhusaibi, "M.A-Thani and M.N. Al-Mazrouey, “Restoration of a 132 kV Overhead Transmission Line Affected by Tropical Cyclone Gonu in Oman", IEEE/PES Conference, .Chicago, Illinois, USA.]. Strong winds coupled with heavy rains and flash floods knocked out power lines and other critical infrastructure. The flooding and wind caused widespread damages to several transmission installations in the country including the main 132 kV Interconnected Transmission Network in the Eastern region. This includes the collapse of several transmission towers, disrupting power to approximately 19,000 customers. GONU is estimated to have caused damages up to US $4 Billion. Fig. (2) shows the image of one of the collapsed lattice towers. The emergency restoration procedure was aimed at quickly reinstating at least one circuit of the double circuit line with temporary wooden poles (see Fig. 3).The overall task was doubly challenging because there were no access roads to the affected site. The line was restored completely in 8 days [6O.H. Abdalla, and T.M. Alkhusaibi, "M.A-Thani and M.N. Al-Mazrouey, “Restoration of a 132 kV Overhead Transmission Line Affected by Tropical Cyclone Gonu in Oman", IEEE/PES Conference, .Chicago, Illinois, USA.].

Fig. (4)
Tower Collapse due to Rock Slide.


The restoration process consisted of:

1. A simple design with standard weather criteria for the re-route

2. Required wood poles and other materials shifted to the affected site from inventory stock collected from every region of the country.

3. Special construction methods devised for quick restoration.

4.2. Restoration 2 - Incident-related Damage

This particular incident illustrates the dangers to a transmission line during work on a neighboring road close to the transmission line route. In spite of safety measures adopted by the roads department, huge pieces of rock debris slipped and fell directly onto the foot of the tower causing immediate collapse. Fig. (4) Shows the collapsed lattice tower. After inspecting the area, repair work commenced within a few hours. Readily-available movable transmission towers were used to restore one circuit of the double circuit 132 kV transmission line temporarily, while permanent restoration with a new concrete foundation and tower erection was performed simultaneously. The line was energized within 12 hours of the incident although permanent restoration took 7 days to complete with a new foundation and tower.

The restoration process consisted of:

1. Temporary movable towers

2. Simultaneous construction of a new tower with new foundation

4.3. Restoration 3 - Design-related Damage

Fig. (5) shows a typical example of hardware failure from a 220 kV transmission line in Oman, where conductors are not suitably damped per original design requirement. The resulting fatigue from repeated wire vibration due to galloping broke the connection hardware, later determined to be a ball-eye fitting. Replacement parts of ball-eye fitting and additional vibration dampers were ordered on an urgent basis. The line was restored within a short scheduled outage during which the repair work was completed.

Fig. (5)
Ball Eye fitting Replacement.


The restoration process consisted of:

1. Determining the cause of failure as due to galloping

2. Replacing the hardware fittings

3. Adding more vibration dampers to the conductors to increase damping

(Dog bone dampers as shown in the figure)

The three restoration activities discussed above highlight the importance of utilizing available inventory, devising quick construction methods, deployment of temporary structures and why conformance to design protocols is critical to avoid hardware failures.

CONCLUSION

In the previous sections, the economics of weather-related transmission line failures was discussed. For utilities, having an effective Emergency Restoration plan, can help control the financial impact of losses due to weather-related power outages. Examples of structural, foundation and hardware failures on high voltage transmission lines in Oman and restorative processes adopted were provided.

Effective emergency restoration procedures capable of being activated at short notice must be in place with all utility companies. These procedures must be based on the knowledge of stock materials in storage, trained workforce, available equipment and resource mobilization while responding to power blackouts caused by nature. Since new materials and techniques are constantly being developed, these ER procedures require periodic review with updated technologies.

NOTATION

SAIFI  = System Average Interruption Frequency Index
SAIDI  = System Average Interruption Duration Index
NPV  = Net Present Value of Annual utility expenditures
n  = period taken into consideration in years (i = 0 is initial investment)
r  = discount rate
Ci  = Annual expenditure in the year “i” = Ei + Ri
Ei  = Deterministic costs or planned expenditures in the year “i”
Ri  = Probabilistic costs associated with risk of failure in the year “i”

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] Evan Mills, "Electric Grid Disruptions and Extreme Weather", Lawrence Berkeley National Laboratory, .US Disaster Reanalysis Workshop, National Climatic Data Center (NCDC), 2012.
[2] R.J. Campbell, "Weather-Related Power Outages and Electric System Resiliency", Report R42696, Report for Congress, .Washington DC, USA Congressional Research Service.
[3] G. Peters, A.M. DiGioia, C. Hendrickson, and J. Apt, "Transmission Line Reliability: Climate Change and Extreem Weather", Working Paper CEIC-05-06, . Carnegie Mellon Electricity Industry Center, Pittsburgh, Pennsylvania, USA.
[http://dx.doi.org/10.1061/40790(218)2]
[4] B. Johnson, After the Disaster: Utility Restoration Cost Recovery., Edison Electricity Institute: Washington, DC, USA, .
[5] Keith Lindsey, “Transmission Emergency Restoration Systems for Public Power”, Publication No. 07T-005., ERS Public Power, .
[6] O.H. Abdalla, and T.M. Alkhusaibi, "M.A-Thani and M.N. Al-Mazrouey, “Restoration of a 132 kV Overhead Transmission Line Affected by Tropical Cyclone Gonu in Oman", IEEE/PES Conference, .Chicago, Illinois, USA.
[7] "CIGRE Technical Brochure 175, Management of Existing Overhead Transmission Lines", SC 22, Working Group 13, .

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open