Table 3: Overview of in vivo and in situ studies that were identified for the chosen calcium phosphates including aims, methods, and main outcomes. Please note that the presented calcium phosphates are mostly incorporated into oral care products like toothpastes and mouthrinses.

Name of the Calcium Phosphate Phases Including Abbreviations In vivo Studies In situ Studies
Hydroxyapatite (HAP), Ca5(PO4)3(OH) Kani et al. [58]
Aim: Analysis of the anti-caries effects of a hydroxyapatite toothpaste compared to a placebo toothpaste
Methods: DMFT-indices
Outcome: HAP reduces caries within a cohort of Japanese schoolchildren
Kensche et al. [45]
Aim: Analysis of hydroxyapatite particles in oral biofilm management
Methods: DAPI and live/dead staining, SEM
Outcome: HAP particles reduce initial biofilm formation on enamel surfaces comparable to chlorhexidine
Makeeva et al. [59]
Aim: Analysis of caries resistance of tooth enamel and teeth sensitivity after using a hydroxyapatite-toothpaste
Methods: Assessment of enamel remineralization rate, dynamics of enamel acid resistance and teeth sensitivity
Outcome: HAP remineralized enamel and led to an increased acid resistance
Hannig et al. [57]
Aim: Analysis of a hydroxyapatite mouthwash in oral biofilm management
Methods: DAPI and live/dead staining
Outcome: HAP-containing mouthrinse reduces initial biofilm formation comparable to chlorhexidine
Harks et al. [60]
Aim: Analysis of a hydroxyapatite-toothpaste in periodontitis patients
Methods: Plaque formation rate, plaque control record, gingival index, bleeding on probing, pocket probing depth
Outcome: HAP toothpaste improves periodontal health
Najibfard et al. [35]
Aim: Analysis of the potential of a hydroxyapatite toothpaste in the remineralization of early caries lesions
Methods: Microradiography
Outcome: HAP remineralizes initial caries lesions comparable to fluoride
Lelli et al. [46]:
Aim: Analysis of the potential of a hydroxyapatite toothpaste in remineralization of enamel
Methods: SEM, TEM, EDX, XRD
Outcome: HAP builds a protective layer on the enamel surface
Hegazy et al. [62]
Aim: Analysis of a hydroxyapatite mouthwash in controlling plaque accumulation, gingivitis and remineralization
Methods: Plaque and gingival indices, DIAGNOdent
Outcome: HAP reduces plaque and gingival index and remineralizes early caries lesions
β-tricalcium phosphate (β-TCP), β-Ca3(PO4)2 Vogel et al. [65]
Aim: Analysis of calcium phosphate concentrations in plaque, plaque fluid and saliva
Methods: Analysis of pH, free and total calcium, total phosphate
Outcome: Deposition of calcium in the plaque and saliva after using β-TCP chewing gum
None
Amorphous calcium phosphate (ACP),
Cax(PO4)yn H2O
Li et al. [73]
This review shows that CPP-ACP has a significant remineralizing effect
Lussi & Ganss [17]
In this overview, the authors state CPP-ACP to be as effective as low-concentrated fluorides (cosmetic use) and less effective than high concentrated fluorides in preventing and remineralizing eroded lesions
Pukallus et al. [74]
Aim: Analysis of a CPP-ACP cream in reducing mutans streptococci colonization and prevent early childhood caries
Methods: Reduction in mutans streptococci colonization
Outcome: CPP-ACP reduces mutans streptococci with 24 month old children, but not the caries prevalence
Wiegand & Attin [80]
Aim: Analysis of the effect of milk and CPP-ACP pastes on erosion
Methods: Profilometry
Outcome: CPP-ACP is not effective in reducing enamel and dentine loss
Hedge et al. [76]
Aim: Comparison of salivary flow rate, pH and buffering capacity before/after chewing a CPP-ACP gum
Methods: Collection of unstimulated and stimulated saliva; analysis of salivary flow rate, pH, and buffering capacity
Outcome: CPP-ACP used in chewing gums increases salivary buffer capacity compared to a chewing gum without
Meyer-Lückel et al. [81]
Aim: Evaluate the remineralizing potential of a fluoride-free CPP-ACP-containing cream after the use of a fluoride-toothpaste compared to the prolonged use of a fluoride-toothpaste
Methods: Transversal microradiography
Outcome: CPP-ACP is less effective in remineralizing caries lesions compared to prolonged application of fluoride toothpaste
Vlacic et al. [77]
Aim: Management and treatment of root caries
Methods: Laser fluorescence
Outcome: This case report shows CPP-ACP to be effective in stabilizing root caries lesions
Kensche et al. [82]
Aim: Influence of calcium phosphate based products on erosion
Methods: Quantitative analysis of calcium and phosphate, SEM, TEM
Outcome: Improvement of erosion protective properties using CPP-ACP was not as high as with fluorides
Yengopal et al. [83]
This systematic review shows short-term remineralizing effects and caries preventing long-term effects
Bailey et al. [78]
Aim: Effects of a remineralizing cream in post-orthodontic subjects
Methods: ICDAS II
Outcome: Regression of white spot lesions (ICDAS II code 2 and 3) compared to placebo (31%)
Shen et al. [79]
Aim: Analysis of the potential of calcium phosphate based products to remineralize enamel lesions
Methods: Quantitative analysis of calcium, phosphate and fluoride; transverse microradiography
Outcome: Enamel lesion remineralization of CPP-ACP was significantly higher compared to placebo, 1000 ppm fluoride and 5000 ppm fluoride; highest remineralization was identified with a combination of CPP-ACP and 900 ppm fluoride
Calcium phosphosilicate (CSPS),
45% SiO2, 24.5% CaO, 24.5% Na2O, 6% P2O5
Tai et al. [89]
Aim: Analysis of anti-gingivitis and anti-plaque effects of a bioactive glass-containing toothpaste
Methods: Plaque index, gingival bleeding index
Outcome: Bioactive glass-containing toothpaste significantly reduces gingival bleeding and supragingival plaque compared to a placebo
Parkinson et al. [94]
Aim: Investigate the effect of CSPS alone and in addition with SMFP on the enamel remineralization
Methods: Surface microhardness (Knoop hardness)
Outcome: CSPS and SMFP have both the same cariostatic effect
Parkinson et al. [95]
Aim: Elucidate potential interactions of CSPS on the efficacy of SMFP to promote remineralization
Methods: Surface microhardness and transverse microradiography
Outcome: CSPS has the same remineralizing effect as fluoride (SMFP) and does not improve the cariostatic effect of SMFP
Calcium glycerophosphate
(CGP),
C3H7CaO6P
Bowen et al. [99]
Aim: Test the caries activity after addition of CGP to the diet of monkeys
Methods: 11 monkeys received a carbohydrate-rich-diet. 5 monkeys were additionally fed with 1% CGP within the diet. After 30 months, carious lesions were identified
Outcome: CGP as monkey diet addition shows a significantly cariostatic effect compared to no intervention
None
Brook et al. [100]
Aim: Determine the calcium and phosphate concentration in dental plaque after consuming milk cereal tablets with 1% CGP
Methods: 14 children consumed 4 times a day for 3 months tablets with 1% CGP. Before, in between and after the study plaque samples were analyzed
Outcome: No increase in calcium-levels in the plaque
Edgar et al. [105]
Aim: Identify the anti-caries effect of CGP
Methods: 8 volunteers rinsed for 18 days with 50% sucrose solution (9 times daily for 2 min.). Half of the time (9 days) CGP (1%) was added to the solution. After this study period, NaF (2%) was topically applied
Outcome: Neither CGP nor 2% fluoride application were able to inhibit demineralization of teeth that were not cleaned for 18 days and exposed to sucrose
Wycoff et al. [102]
Aim: Effect of mouthrinses with CGP on the amount and chemical composition of dental plaque
Methods: 60 children between 13 and 16 years of age were separated into three groups: 10 mL of mouthrinse twice daily with (i) 0,5% CGP, (ii) 1,5% CGP and (iii) placebo. Duration: 8 weeks. Analysis of plaque weight and chemical composition
Outcome: CGP as mouthrinse shows increased phosphate in the plaque