The Open Microbiology Journal




ISSN: 1874-2858 ― Volume 13, 2019
LETTER

Risk Factors for Acquisition of Fluoroquinolone or Aminoglycoside Resistance in Addition to Carbapenem Resistance in Pseudomonas aeruginosa



Kosuke Kosai1, *, Norihito Kaku2, Naoki Uno2, Tomomi Saijo3, Yoshitomo Morinaga2, Yoshifumi Imamura3, Hiroo Hasegawa1, Taiga Miyazaki4, Koichi Izumikawa4, Hiroshi Mukae3, Katsunori Yanagihara2
1 Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
2 Department of Laboratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
3 Department of Respiratory Medicine, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
4 Department of Infectious Diseases, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan

Abstract

Background:

Carbapenems, fluoroquinolones (FQs), and aminoglycosides (AGs) are key drugs for treating Pseudomonas aeruginosa infections, and accumulation of drug resistances make antibiotic therapy difficult.

Methods:

We evaluated 169 patients with imipenem (IPM)-resistant P. aeruginosa and compared patient background and microbiological characteristics between groups with or without FQ resistance. Similar analyses were performed for AG.

Results:

Of the 169 IPM-resistant strains, 39.1% showed resistance to FQs and 7.1% to AGs. The frequency of exposure to FQs within 90 days previously was higher in the group with FQ resistance (45.5%) than in the group without FQ resistance (13.6%). Similarly, 33.3% of patients in the group with AG resistance had been previously administered AGs, higher than the 7.6% of patients without AG resistance. Frequencies of metallo-β-lactamase (MBL) production were higher in the group with FQ or AG resistance (16.7% or 33.3%) than in the group without FQ or AG resistance (2.9% or 6.4%). Multivariate analyses showed exposures to FQs or AGs were related to the respective resistances. MBL production was a common factor for resistance to FQs or AGs, in addition to IPM-resistant P. aeruginosa.

Conclusion:

As well as promoting appropriate use of antibiotics, MBL production should be detected as a target of intervention for infection control.

Keywords: Metallo-β-lactamase, Drug resistance, Infection control, Antibiotic therapy.


Article Information


Identifiers and Pagination:

Year: 2017
Volume: 11
First Page: 92
Last Page: 97
Publisher Id: TOMICROJ-11-92
DOI: 10.2174/1874285801711010092

Article History:

Received Date: 10/02/2017
Revision Received Date: 31/03/2017
Acceptance Date: 26/04/2017
Electronic publication date: 31/05/2017
Collection year: 2017

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 1061
Abstract HTML Views: 762
PDF Downloads: 300
ePub Downloads: 289
Total Views/Downloads: 2412

Unique Statistics:

Full-Text HTML Views: 504
Abstract HTML Views: 464
PDF Downloads: 202
ePub Downloads: 180
Total Views/Downloads: 1350
Geographical View

© 2017 Kosai et al.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Department of Laboratory Medicine, Nagasaki University Hospital, 1-7-1 Sakamoto, Nagasaki, Nagasaki 852-8501, Japan, Tel: +81-95-819-7574; Fax: +81-95-819-7422, E-mail: k-kosai@nagasaki-u.ac.jp




INTRODUCTION

Pseudomonas aeruginosa is an important pathogen for nosocomial infections. P. aeruginosa displays not only intrinsic resistance, but also the ability to acquire resistance during antibiotic therapy [1Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J Hosp Infect 2006; 64: 7-15.
[http://dx.doi.org/10.1016/j.jhin.2006.04.015]
]. Furthermore, the acquisition of drug-resistant pathogens by an individual patient involves numerous factors, such as microbial selection by antibiotic pressures and in-hospital transmission from other patients or medical environments.

Carbapenems, fluoroquinolones (FQs), and aminoglycosides (AGs) are key drugs for treating P. aeruginosa infections, and accumulation of drug resistances make antibiotic therapy difficult. The Japan Nosocomial Infections Surveillance (JANIS), a program of the Ministry of Health Labour and Welfare, reported in 2013 that 78.3% and 84.0% of P. aeruginosa strains were susceptible to imipenem (IPM) and meropenem, 84.0% and 94.8% to gentamicin and amikacin, and 78.6% to levofloxacin, respectively [2Japan Nosocomial Infections Surveillance (JANIS) website http://www.nih-janis.jp/] These susceptibility rates have been gradually improving in recent years in Japan, but drug-resistant P. aeruginosa remains an important issue from the perspective of patient outcomes and infection control [3Micek ST, Wunderink RG, Kollef MH, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219.
[http://dx.doi.org/10.1186/s13054-015-0926-5]
, 4Ciofi Degli Atti M, Bernaschi P, Carletti M, et al. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect Dis 2014; 14: 494.
[http://dx.doi.org/10.1186/1471-2334-14-494]
].

A previous study reported that the mortality rate for ventilator-associated pneumonia due to P. aerugii.e.nosa depended on the adequacy of initial empiric therapy in terms of susceptibility, regardless of the use of monotherapy or combination therapy. Furthermore, the use of a β-lactam plus FQ or AG was the major therapeutic option if combination therapy was empirically selected [5Garnacho-Montero J, Sa-Borges M, Sole-Violan J, et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007; 35: 1888-95.
[http://dx.doi.org/10.1097/01.CCM.0000275389.31974.22]
]. In addition, empiric combination therapy may improve patient outcomes, by increasing the likelihood of adequate coverage [6Bassetti M, Villa G, Pecori D. Antibiotic-resistant Pseudomonas aeruginosa: focus on care in patients receiving assisted ventilation. Future Microbiol 2014; 9: 465-74.
[http://dx.doi.org/10.2217/fmb.14.7]
].

Whether P. aeruginosa displays resistance to FQs or AGs in addition to β-lactams is therefore considered critical as a preliminary step to multidrug-resistance. However, few studies have evaluated this issue in detail. The objective of this study was to investigate risk factors for the acquisition of resistance to FQs or AGs in imipenem-resistant P. aeruginosa.

METHODS

Study Design and Clinical Data Collection

We investigated 169 patients from whom IPM-resistant strains of P. aeruginosa were isolated at Nagasaki University Hospital between January 2010 and December 2012. If IPM-resistant P. aeruginosa was repeatedly identified from a single patient during the study period, de-duplication was performed. First, strains were selected by the priority order according to the pattern of resistance, as follows: 1) presence of resistance to both FQs and AGs; 2) presence of resistance to either FQs or AGs; or 3) presence of resistance to neither FQs nor AGs. The first identified strain among those with the same pattern of resistance was then included in this study. This process was performed regardless of specimen type.

Patients were divided into two groups according to the presence or absence of resistance to FQs (ciprofloxacin and/or levofloxacin). We compared patient backgrounds and microbiological characteristics between groups. Furthermore, we analysed risk factors for the acquisition of FQ resistance in IPM-resistant P. aeruginosa. Similar analyses were then carried out for AGs (gentamicin and/or amikacin).

We evaluated the presence of exposure to intravenously administered antibiotics within 90 days prior to the identification of IPM-resistant P. aeruginosa. Antipseudomonal penicillins (APPs) included piperacillin and piperacillin/tazobactam. Cefmetazole and flomoxef were included as second-generation cephalosporins in this study.

This study was approved by the institutional review board of Nagasaki University Hospital. Informed consent was not required because the study was retrospective and the data were obtained within the context of normal daily practice.

Antimicrobial Susceptibility Testing and Detection of Metallo-β-Lactamase

Susceptible, intermediate, and resistant strains were decided according to Clinical and Laboratory Standard Institute (CLSI) M100-S21. Bacterial identification and minimum inhibitory concentration (MIC) measurements were performed using a BD Phoenix automated microbiology system (BD Diagnostics, Sparks, MD). If the MIC for ceftazidime (CAZ) against P. aeruginosa was ≥ 32 µg/mL and that of IPM was ≥ 8 µg/mL, metallo-β-lactamase (MBL) was examined using an MIC plate with CAZ containing 400 µg/mL of sodium mercaptoacetate (SMA). Ranges for MIC measurements were 16-128 µg/mL for CAZ and 8-32 µg/mL for CAZ with SMA in the plate. Bacterial isolates were considered as MBL producers if the MIC of CAZ was reduced by three or more doubling dilutions in the presence of SMA.

Statistical Analysis

The difference in age between groups was analysed using Mann-Whitney U test, because age was not normally distributed. Fisher’s exact test was used to compare categorical data between groups. We conducted uni- and multivariate analyses using a logistic regression model. Variables with values of P < 0.2 in univariate analysis were selected and adjusted by forward stepwise selection in multivariate analysis to identify risk factors for the acquisition of resistance to FQs or AGs. Data were analysed using SPSS for Windows version 16.0J (SPSS, Chicago, IL) and P values of 0.05 were considered statistically significant.

RESULTS

Patient Characteristics

Details of the 169 patients enrolled in the study are presented in Table 1. Of the 169 IPM-resistant strains, 66 strains (39.1%) showed resistance to FQs. Frequencies of exposure to FQs and AGs within 90 days previously were significantly higher for the group with FQ resistance (45.5% and 16.7%, respectively) than in the group without FQ resistance (13.6%, P < 0.001 and 4.9%, P = 0.015, respectively). Conversely, 4.5% of patients in the group with FQ resistance had been administered a second-generation cephalosporin, lower than the 14.6% of patients without FQ resistance (P = 0.043).

Twelve strains (7.1%) showed AG resistance. The frequency of exposure to AGs within 90 days previously was higher in the AG-resistant group (33.3%) than in the group without AG resistance (7.6%, P = 0.017).

No significant differences between the groups with or without FQ resistance were seen in age, sex, identification at ≥30 days after hospitalization, comorbidities, use of immunosuppressive drugs (anticancer drugs, steroid or other immunosuppressive agents) and use of medical devices. Similar results were seen in comparisons between groups with or without AG resistance.

Table 1
Baseline characteristics of patients with imipenem-resistant pseudomonas aeruginosa stratified by presence of FQ or AG resistance.


Antimicrobial Susceptibility and MBL Production

Fig. (1) shows the resistance rates of strains stratified by the presence of FQ or AG resistance. The rates of resistance to β-lactams and gentamicin were significantly higher in strains with FQ resistance than in those without FQ resistance. Strains with AG resistance had higher rates of resistance to ceftazidime, cefepime and ciprofloxacin, compared with strains without AG resistance. MBL-producing strains were seen more frequently in strains with FQ or AG resistance (16.7% or 33.3%, respectively) than in those without FQ or AG resistance (2.9%, P = 0.003 or 6.4%, P = 0.010, respectively).

Fig. (1)
The resistance rates of strains stratified by the presence of fluoroquinoloneor aminoglycosideresistance in imipenem-resistant Pseudomonas aeruginosa.


Risk Factors for Acquisition of FQ or AG Resistance

Univariate and multivariate logistic regression analyses of risk factors for acquisition of FQ or AG resistance are shown in Table 2. Exposure to FQs or AGs showed clear relationships to resistances to those respective drug classes [odds ratio (OR), 5.73; 95% confidence interval (CI), 2.67–12.30 or OR, 9.00; 95% CI, 1.92–42.19, respectively]. In contrast, previous use of APPs reduced the risk of acquiring AG resistance. MBL was a common factor associated with resistance to FQs or AGs in IPM-resistant P. aeruginosa (OR, 7.90; 95% CI, 2.01–31.04 or OR, 8.49; 95% CI, 1.87–38.52, respectively).

Table 2
Univariate and multivariate analyses of risk factors for acquisition of fluoroquinolone or aminoglycoside resistance in addition to imipenem resistance in Pseudomonas aeruginosa.


DISCUSSION

Our results indicated antimicrobial exposures as risk factors for the acquisition of FQ or AG resistance in IPM-resistant P. aeruginosa, supporting previous report [1Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J Hosp Infect 2006; 64: 7-15.
[http://dx.doi.org/10.1016/j.jhin.2006.04.015]
]. Furthermore, MBL represented an independent factor for the accumulation of FQ or AG resistance in addition to IPM resistance, although production of MBL was not a direct contributor to FQ or AG resistance. Several mechanisms underlying drug resistance have been reported, such as efflux pump and co-production of both IMP-type MBL and aminoglycoside acetyl-transferases [7Tojo M, Tada T, Shimojima M, et al. Dissemination in Japan of multidrug-resistant Pseudomonas aeruginosa isolates producing IMP-type metallo-beta-lactamases and AAC(6')-Iae/AAC(6')-Ib. J Infect Chemother 2014; 20: 586-8.
[http://dx.doi.org/10.1016/j.jiac.2014.04.014]
]. Accumulation of drug resistance would involve these mechanisms, along with propagation of plasmids for resistant genes and antibiotic selection pressure. The reason why previous use of APPs correlated negatively with AG resistance remains unclear.

Several host factors, medical devices and medical environments have been reported as risk factors for drug-resistant P. aeruginosa [8Voor In 't Holt AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk risrii factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58: 2626-37.
[http://dx.doi.org/10.1128/AAC.01758-13]
]. However, no differences in patient backgrounds other than previous use of antibiotics were evident between the groups with and without FQ or AG resistance in this study. This was attributed to the patients included in this study having already acquired IPM-resistant P. aeruginosa, with the divided groups representing relatively similar populations with regard to host and medical backgrounds.

Some limitations must be considered when interpreting the present results. First, prevalence of drug-resistant P. aeruginosa and rates of strains producing MBL would vary widely by geographic region. Our results might therefore not be applicable to other institutions. Second, because of our de-duplication processes, rates of FQ or AG resistance among strains with IPM-resistance would have seemed higher than they actually were. Third, since other mechanisms of drug-resistance were not evaluated, particularly with regard to FQs and AGs, the direct relationship between MBL production and FQ or AG resistance remains unclear. Additionally, not all MBL producers could be detected, because ranges of MIC measurement were limited in CAZ and CAZ/SMA for MBL detection and MBL genes were not evaluated. As our previous study reported, use of real-time polymerase chain reactions would be useful for detecting P. aeruginosa and MBL gene [9Motoshima M, Yanagihara K, Yamamoto K, et al. Quantitative detection of metallo-beta-lactamase of blaIMP-cluster-producing Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis for rapid diagnosis and treatment of nosocomial infection. Diagn Microbiol Infect Dis 2008; 61: 222-6.
[http://dx.doi.org/10.1016/j.diagmicrobio.2008.01.018]
].

This study identified antimicrobial exposure and production of MBL as independent risk factors for FQ or AG resistance in IPM-resistant P. aeruginosa in our hospital setting. As well as promoting appropriate use of antibiotics, MBL production should be detected as a target of intervention for infection control, because this function is spreading between bacterial species and represents a risk factor for the accumulation of drug resistance. Quick and accurate detection of MBL genes as with phenotype should be performed as needed.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

Animals did not participate in this research. All human research procedures followed were in accordance with the ethical standards of the committee responsible for human experimentation (institutional and national), and with the Helsinki Declaration of 1975, as revised in 2008.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors have no conflicts of interest to declare in relation to this article.

FUNDING SOURCE

Internal funding.

ADDITIONAL INFORMATION

This work was presented as an ePoster at the 25th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID).

ACKNOWLEDGEMENTS

None.

REFERENCES

[1] Falagas ME, Kopterides P. Risk factors for the isolation of multi-drug-resistant Acinetobacter baumannii and Pseudomonas aeruginosa: A systematic review of the literature. J Hosp Infect 2006; 64: 7-15.
[http://dx.doi.org/10.1016/j.jhin.2006.04.015]
[2] Japan Nosocomial Infections Surveillance (JANIS) website http://www.nih-janis.jp/
[3] Micek ST, Wunderink RG, Kollef MH, et al. An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 2015; 19: 219.
[http://dx.doi.org/10.1186/s13054-015-0926-5]
[4] Ciofi Degli Atti M, Bernaschi P, Carletti M, et al. An outbreak of extremely drug-resistant Pseudomonas aeruginosa in a tertiary care pediatric hospital in Italy. BMC Infect Dis 2014; 14: 494.
[http://dx.doi.org/10.1186/1471-2334-14-494]
[5] Garnacho-Montero J, Sa-Borges M, Sole-Violan J, et al. Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Crit Care Med 2007; 35: 1888-95.
[http://dx.doi.org/10.1097/01.CCM.0000275389.31974.22]
[6] Bassetti M, Villa G, Pecori D. Antibiotic-resistant Pseudomonas aeruginosa: focus on care in patients receiving assisted ventilation. Future Microbiol 2014; 9: 465-74.
[http://dx.doi.org/10.2217/fmb.14.7]
[7] Tojo M, Tada T, Shimojima M, et al. Dissemination in Japan of multidrug-resistant Pseudomonas aeruginosa isolates producing IMP-type metallo-beta-lactamases and AAC(6')-Iae/AAC(6')-Ib. J Infect Chemother 2014; 20: 586-8.
[http://dx.doi.org/10.1016/j.jiac.2014.04.014]
[8] Voor In 't Holt AF, Severin JA, Lesaffre EM, Vos MC. A systematic review and meta-analyses show that carbapenem use and medical devices are the leading risk risrii factors for carbapenem-resistant Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58: 2626-37.
[http://dx.doi.org/10.1128/AAC.01758-13]
[9] Motoshima M, Yanagihara K, Yamamoto K, et al. Quantitative detection of metallo-beta-lactamase of blaIMP-cluster-producing Pseudomonas aeruginosa by real-time polymerase chain reaction with melting curve analysis for rapid diagnosis and treatment of nosocomial infection. Diagn Microbiol Infect Dis 2008; 61: 222-6.
[http://dx.doi.org/10.1016/j.diagmicrobio.2008.01.018]

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open