The Open Microbiology Journal




ISSN: 1874-2858 ― Volume 13, 2019

Infective Arthritis: Bacterial 23S rRNA Gene Sequencing as a Supplementary Diagnostic Method



Claus Moser1, 2, Keld Andresen1, Anne Kjerulf1, 3, Suheil Salamon1, 4, Michael Kemp1, Jens Jørgen Christensen1, *
1 Department of Bacteriology, Mycology, and Parasitology, Statens Serum Institut, Copenhagen, and the Departments of Clinical Microbiology
2 Copenhagen University Hospital, Rigshos
3 Copenhagen University Hospital, Herlev
4 Vejle Sygehus, Denmark

Abstract

Consecutively collected synovial fluids were examined for presence of bacterial DNA (a 700-bp fragment of the bacterial 23S rRNA gene) followed by DNA sequencing of amplicons, and by conventional bacteriological methods. One or more microorganisms were identified in 22 of the 227 synovial fluids (9,7%) originating from 17 patients. Sixteen of the patients had clinical signs of arthritis. For 11 patients molecular and conventional bacterial examinations were in agreement. Staphylococcus aureus, Streptococcus dysgalactiae subspecies equisimilis and Streptococcus pneumoniae, were detected in synovial fluids from 6, 2 and 2 patients, respectively. In 3 patients only 23S rRNA analysis was positive; 2 synovial fluids contained S. dysgalactiae subspecies equisimilis and 1 S. pneumoniae). The present study indicates a significant contribution by PCR with subsequent DNA sequencing of the 23S rRNA gene analysis in recognizing and identification of microorganisms from synovial fluids.

Key Words: Synovial fluid, 23S rRNA, PCR, bacteria, infective arthritis.


Article Information


Identifiers and Pagination:

Year: 2008
Volume: 2
First Page: 85
Last Page: 88
Publisher Id: TOMICROJ-2-85
DOI: 10.2174/1874285800802010085

Article History:

Received Date: 16/5/2008
Revision Received Date: 23/5/2008
Acceptance Date: 29/5/2008
Electronic publication date: 13/6/2008
Collection year: 2008

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 865
Abstract HTML Views: 1110
PDF Downloads: 246
Total Views/Downloads: 2221

Unique Statistics:

Full-Text HTML Views: 531
Abstract HTML Views: 679
PDF Downloads: 152
Total Views/Downloads: 1362
Geographical View

© Moser et al.; Licensee Bentham Open

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.


* Address correspondence to this author at the Department of Bacteriology, Mycology and Parasitology, Statens Serum Institut, 2300-Copenhagen, Denmark; Tel: +4532683572; E-mail: jjc@ssi.dk




INTRODUCTION

Establishment of molecular methods for detection of microbiological etiologies of infectious diseases, including sequencing of the genes coding for bacterial rRNA, has provided new tools for identification of the etiology of infections [1Rantakokko-Jalava K, Nikkari S, Jalava J, et al. Direct amplification of rRNA genes in diagnosis of bacterial infections J Clin Microbiol 2000; 38: 32-9., 2Harmsen D, Karch H. 16S rDNA diagnosing pathogens a living tree ASM News 2004; 70: 19-24.]. The molecular methods are of special interest, when an etiology with fastidious bacteria difficult to culture or slow growing bacteria may be suspected [2Harmsen D, Karch H. 16S rDNA diagnosing pathogens a living tree ASM News 2004; 70: 19-24., 3Dostal S, Richter E, Harmsen D. Concise guide to mycobacteria and their molecular differentiation. Norderstedt, Germany: BoD GmbH 2003.]. Moreover, culture independent diagnostics are to prefer if antibiotic treatment has been initiated before sampling of material for microbiological testing [4Heijden IM, van der Wilbrink B, Vije AEM, Schouls LM, Breedveld FC, Tak PP. Detection of bacterial DNA in serial synovial samples obtained during antibiotic treatment from patients with septic arthritis Arthritis Rheum 1999; 42: 2198-03.].

Infective arthritis is a severe and painful condition which can be complicated by tissue destruction and permanent damage of the joint, and in addition, the mortality rate for in-hospital infective arthritis ranges from 7% to 15%, despite antibiotic use [5Margaretten ME, Kohlwes J, Moore D, Bent S, et al. Does this adult patient have septic arthritis? JAMA 2007; 297: 1478-88.]. Furthermore, a substantial proportion of synovial fluids are culture-negative even from patients with typical signs of infective arthritis, suggesting a role of fastidious or slow growing pathogens in such clinical presentations [6Yang S, Lin S, Kelen GD, et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens J Clin Microbiol 2002; 40: 3449-54.]. Since antibiotic treatment is possible in the case of a bacteriological etiology, rapid and correct diagnosis of the pathogen is mandatory [7Smith JW, Chalupa P, Shabaz Hasan M. Infectious arthritis clinical features, laboratory findings and treatment Clin Microbiol Infect 2006; 12: 309-14., 8Tarkowski A. Infectious arthritis Best Pract Res Clin Rheumatol 2006; 20: 1029-44.].

In the present study, 227 non-selected synovial fluids, both from native and artificial joints, consecutively sent to the laboratories of clinical microbiology in three different hospitals in the Copenhagen area of Denmark, were analysed for presence of a 700-bp segment of the bacterial 23S rRNA gene in parallel to conventional analysis by microscopy and culture.

MATERIALS AND METHODS

Specimen sampling and patients: All consecutively unselected synovial fluids, irrespective of tentative diagnosis, sent to the Departments/Unit of Clinical Microbiology, at Copenhagen University Hospitals, Rigshospitalet and Herlev Hospital, and at Statens Serum Institut, were included in the study. A substantial number of the synovial fluids were expected to be sterile. If possible the synovial fluids were divided before analysis. Otherwise, PCR was performed on the synovial liquid remaining after conventional microbiological examinations. The remaining fluid was kept at -20(C until molecular analysis.

Patient data, on the 17 patients from whom synovial fluids contained bacterial DNA and/or gave growth of bacteria, were obtained from the patient records. Six of the patients were females and 11 were males. The median age was 64-years with a range from 1 to 80 years (Table 1). Sixteen of the patients had clinical signs of arthritis, while status was unknown for one. Seven patients had an arthroplasty and 3 patients suffered from rheumatoid arthritis, of which 2 patients had both. In 5 of 7 patients arthroplasties had to be removed and in 1 patient with arthroplasty lifelong antibiotic treatment was initiated.

Table 1.

Data on 17 Patients Suspected of Infective Arthritis with Bacteria Detected/Identified in Synovial Fluids by 23S rRNA gene Analysis and/or Conventional Microbiological Detection (Microscopy/Culture)




Conventional microbiological examinations: Synovial fluids were centrifuged at 1,590 x g for 10 min. The supernatants were discarded, and the pellet resuspended in the remaining liquid. The suspensions were plated on a 5% horse-blood agar (SSI, Copenhagen, Denmark) and a chocolate agar with heat-treated defibrinated horseblood (SSI) and cultured for 2 days at 37 (C in a 5% CO2-enriched atmosphere. In addition, material was plated on agar selective for Gram negatives (SSI) and cultured for two days at 37 (C. Material on an additional chocolate plate was cultured in an anaerobic atmosphere and observed for bacterial growth at day 2 and 5. Each sample was analysed by microscopy after staining with Gram stain and methylene blue staining at a 1000x magnification.

DNA extraction: One ml of each sample was centrifuged at 16.000 x g for 10 min and the pellet resuspended in 200 µl of sterile PBS. The DNA was extracted using the QIAamp DNA Blood Mini Kit according to the manufacturers recommendations (Qiagen).

PCR assay: The primers used for the amplification of 23S rDNA were Uni-F (5`-TAA CGG TCC TAA GGT AGC GAA ATT-3`) and Uni-R (5`-GAT AGG GAC CGA ACT GTC TCA CG-3`), which produced a 700-bp fragment of 23S rDNA. The PCR mixture (50 µl total volume), contained 1 x PCR buffer, 2.5 mM MgCl2, 200 µM each deoxynucleoside triphosphate, 200 µM each primer and 1.25 U of Taq DNA polymerase (Qiagen). One and 5 µl samples were tested in PCR. The amplification profile was 95 oC for 15 min, followed by 40 cycles at 94 oC for 30 s, 60 oC for 30 s and 72 oC for 30 s. Amplicons were resolved on a 2% agarose gel, visualized by ethidium bromide under UV illumination and digitally recorded.

DNA sequencing: Both DNA strands of the amplicons were sequenced on an ABI PRISM 3100 Avant Genetic Analyzer (applied Biosystems) using Uni-F and Uni-R as sequencing primers and the BigDye v. 3.1 kit (Applied Biosystems). Sequencing data were edited using the SeqScape Software (Applied Biosystems) and only data from overlapping sequences were used in the data processing. Using default parameters in the BLAST search engine, the edited sequencing data were then compared to sequences deposited in the “Bacteria” NCBI database (National Center for Biotechnology Information,www.ncbi.nlm.nih.gov/BLAST.Blast files were stored electronically and later evaluated with respect to %/number of identities, MaxScore (bits) and E-values for the best and the next best matches [6Yang S, Lin S, Kelen GD, et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens J Clin Microbiol 2002; 40: 3449-54., 9Altschul SF, Madden TL, Scäffer AA. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs Nucleic Acid Res 1997; 25: 3389-402.].

RESULTS

Microbiological examinations:For 11 patients molecular and conventional bacterial examinations were in agreement (cases 1,2,4,7-12,15,17) (Table 1). Staphylococcus aureus, Streptococcus dysgalactiae subspecies equisimilis and Streptococcus pneumoniae, were detected in synovial fluids from 6, 2 and 2 patients, respectively. Coagulase negative staphylococci (CNS) were grown in addition to S. dysgalactiae subspecies equisimilis from one patient (case 7) and their presence interpreted as a contamination. In one patient as well Citrobacter freundii as Pseudomonas aeruginosa was grown and 23S rRNA analysis demonstrated C. freundii, but polymicrobial infection could not be excluded. In 3 patients each only culture (cases 13,14,16) or 23S rRNA analysis (cases 3,5,6), respectively, was positive. Of the solely culture positive cases, S. aureus was grown in 2 synovial fluids and CNS in 1 synovial fluid, while the 23S rRNA analysis examinations, in the cases with S. aureus grown, were insufficient because of less than 1 ml fluid examined/inhibition of PCR reaction. Of the solely 23S rRNA analysis positive synovial fluids 2 contained S. dysgalactiae subspecies e-quisimilis and 1 S. pneumoniae. For the 23S rRNA positive synovial fluids, differences in percentage of similarity and Maxscore between best and second best taxon match resulted in good favor of the identified microorganism.

In synovial fluids from nine patients microorganism were detected by microscopy, either streptococci (n = 4; cases 1-4) or staphylococci (n = 5; cases 8-12). As well culture as 23S rRNA gene analysis were positive in these instances, except in one patient (case 3) only having pneumococci detected by the 23S rRNA gene analysis. No microorganisms were seen in synovial fluids from 8 patients. From three patients S. dysgalactiae subspecies equisimilis, was detected by 23S rRNA gene analysis, but only grown from 1 patient and from 3 patients S. aureus was grown, but only detected by 23S rRNA gene analysis in synovial fluid from 1 patient. The last 2 patients (case 16 and 17) had CNS grown and a suspected polymicrobial etiology by both methods, respectively.

DISCUSSION

The aim of the present study was to investigate to what extent PCR of the bacterial 23S rRNA gene and DNA sequencing of the amplicon could add to microbiological diagnosis obtained by culturing of synovial fluid. PCR and DNA sequencing resulted in identification of an infecting organism in three patients, whom were negative by culture. This is equivalent to an 17% increase in positive rate. Though the number of examined synovial fluids preferably could be higher, PCR and DNA sequencing contributed importantly in the microbiological diagnosis of patients suspected of infective arthritis in agreement with recent literature [10Ferroni A. Epidemiology and bacteriological diagnosis of paediatric acute osteoarticular infections Arch Pediatr 2007; 14: S91-6.-12Chometon S, Benito Y, Chaker M. Specific Real-Time Polymerase Chain Reaction Places Kingella kingae as the Most Common Cause of Osteoarticular Infections in Young Children Ped Infect Dis J 2007; 26: 377-81.]. Both, among synovial fluids with and without a positive microscopy for microorganisms 23S rRNA gene analysis added to defining a bacterial etiology. However, culture is still mandatory as the primary analysis giving the possibility of susceptibility testing [10Ferroni A. Epidemiology and bacteriological diagnosis of paediatric acute osteoarticular infections Arch Pediatr 2007; 14: S91-6.]. Especially in children positive rates have been increased when using improved culture methods, i.e. inoculation of synovial fluid into blood-culture bottles, and when using universal eubacterial ribosomal DNA (rDNA) PCR methods [10Ferroni A. Epidemiology and bacteriological diagnosis of paediatric acute osteoarticular infections Arch Pediatr 2007; 14: S91-6., 11Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a Broad Range Polymerase Chain Reaction to the Diagnosis of Osteoarticular Infections Caused by Kingella kingae Description of Twenty-four Recent Pediatric Diagnoses Ped Infect Dis J 2005; 24: 692-96.]. Ferroni [10Ferroni A. Epidemiology and bacteriological diagnosis of paediatric acute osteoarticular infections Arch Pediatr 2007; 14: S91-6.] even recommends if the culture is negative to carry out a universal PCR or a PCR targeted to the main bacterial etiologies responsible for infective arthritis.

In a study on diagnosis of joint infection by PCR on swabs or synovial fluids from 154 patients, no significant gain was achieved as compared to conventional culturing [13Jalava J, Skurnik M, Toivanen A, Toivanen P, Eerola E. Bacterial PCR in the diagnosis of joint infection Ann Rheum Dis 2001; 60: 287-89.]. In particular, no exotic bacteria were identified. However, in another study on material dislodged from retrieved prostheses, bacterial DNA was identified by PCR in 72% of 120 patients as compared to positive culture in 22%. This indicates that the incidence of prosthetic joint infections is grossly underestimated [14Tunney MM, Patrick S, Curran MD. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene J Clin Microbiol 1999; 37: 3281-90.]. However, the bacterial DNA was not identified further.

The main etiologic agents of infective arthritis are Gram-positive cocci such as Staphylococcus aureus, beta-hemolytic streptococci and to a lesser extend Streptococcus pneumoniae [11Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a Broad Range Polymerase Chain Reaction to the Diagnosis of Osteoarticular Infections Caused by Kingella kingae Description of Twenty-four Recent Pediatric Diagnoses Ped Infect Dis J 2005; 24: 692-96.], which also was the case in this study. Positive findings by PCR were considered of clinical significance in the present study, since only significant pathogens were identified, and clinical signs of infection were present in all 15 cases. In children Kingella kingae has been recognized as the etiologic agent in approximately 15% of cases in which a microorganism is recognized [11Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a Broad Range Polymerase Chain Reaction to the Diagnosis of Osteoarticular Infections Caused by Kingella kingae Description of Twenty-four Recent Pediatric Diagnoses Ped Infect Dis J 2005; 24: 692-96., 12Chometon S, Benito Y, Chaker M. Specific Real-Time Polymerase Chain Reaction Places Kingella kingae as the Most Common Cause of Osteoarticular Infections in Young Children Ped Infect Dis J 2007; 26: 377-81.]. Only few children were included in our study, which may explain that no arthritis cases caused by K. kingae were found. Detection of microorganisms which are difficult to culture is considered a major advantage for the new molecular diagnostic methods [1Rantakokko-Jalava K, Nikkari S, Jalava J, et al. Direct amplification of rRNA genes in diagnosis of bacterial infections J Clin Microbiol 2000; 38: 32-9., 2Harmsen D, Karch H. 16S rDNA diagnosing pathogens a living tree ASM News 2004; 70: 19-24.]. Streptococci are to a certain degree troublesome in culturing, especially if antibiotics have been administered prior to sampling. Indeed, in the 3 23S rRNA gene analysis positive, but culture negative samples, S. dysgalactiae subspecies equisimilis (n=2) and S. pneumoniae (n=1) were detected supporting superior detection in such situations by PCR for 23S the rRNA gene analysis [15Drancourt M, Roux V, Fournier P-E, Raoult D. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococci, Enterococcus, Gemmela, Abiotrophia, and Granulicatella J Clin Microbiol 2004; 42: 497-504.].

Molecular diagnostic methods allows detection of microorganisms that are difficult to culture, including bacteria considered as exotic. In other sites of infection, e.g. infective endocarditis Coxiella burnetii, Bartonella henselae and Tropheryma whipplei has been detected and identified by DNA amplification and sequencing [16Gauduchon V, Chalabreysse L, Etienne J, et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue J Clin Microbiol 2003; 41: 763-6.]. In agreement with previous reports, the present study did not find exotic bacteria in joint fluids. This, probably reflects that such organisms are indeed very rare causes of infective arthritis [7Smith JW, Chalupa P, Shabaz Hasan M. Infectious arthritis clinical features, laboratory findings and treatment Clin Microbiol Infect 2006; 12: 309-14., 8Tarkowski A. Infectious arthritis Best Pract Res Clin Rheumatol 2006; 20: 1029-44.].

Advantage of examining for bacterial ribosomal genes is predicted in the cases where antibiotics have been given prior to isolation of the samples. Such benefit of using the molecular method was achieved for 2 of the PCR positive, but culture negative samples. In 1 case (case 3) streptococci were identified by microscopy. This patient was admitted with pneumonia and sepsis and pneumococci were cultured from the blood, and the patient eventually died. In another case (case 6) a new sampling of synovial fluid three weeks later was culture positive with an identical microorganism. This patient had an arthroplasty related infection, and was treated with penicillin and dicloxacillin. Finally, the arthroplasty was removed and the patients had an arthrodesis. In the third patient (case 5) synovial fluid was positive for bacterial DNA of the 23S rRNA gene,but culture negative; additional findings were a positive blood-culture with S. dysgalactiae and sign of ostitis with several illuminations on a bone scintigraphy.

There is good agreement in identification of microorganisms when using phenotypic and ribosomal gene sequencing methods [17Lepp PW, Relman DA. Molecular phylogenetic analysis In: Persing DH, Tenover FC, Versalovic J, Eds. (Chapter 13) Molecular Microbiology Diagnostic Principles and Practice. Washington DC: ASM Press 2004.]. Also, in the present study no conflicting results were seen in identifications done on phenotypic characterization or 23S rRNA gene analysis. The same organisms were identified when both methods were positive, except the 2 cases where more than 1 microorganism was identified in the same synovial fluid. Two synovial fluids both harboured two microorganisms identified by culture, whereas PCR for 23S rRNA genes only identified 1 microrganism in each of the 2 samples. Detection of 2 or more significant pathogens requires separation of DNA products after the PCR reaction, forenstance by denaturating gradient gel electrophoresis. In the case where as well C. freundii as P. aeruginosa were isolated both pathogens were thought to be of significance, whereas the coagulase-negative staphylococci detected in case 10 were considered as a contaminant.

In conclusion, the present study indicates a significant contribution by use of bacterial 23S rRNA gene analysis in detection and identification of microorganisms from synovial fluids. Continued suspicion of infective arthritis despite of negative cultures should lead to the use of molecular diagnostics

ACKNOWLEDGMENTS

We are grateful to Rimtas Dargis for excellent technical assistance, and to the Departments/Unit of Clinical Microbi-ology involved for collaboration on data and specimens.

REFERENCES

[1] Rantakokko-Jalava K, Nikkari S, Jalava J, et al. Direct amplification of rRNA genes in diagnosis of bacterial infections J Clin Microbiol 2000; 38: 32-9.
[2] Harmsen D, Karch H. 16S rDNA diagnosing pathogens a living tree ASM News 2004; 70: 19-24.
[3] Dostal S, Richter E, Harmsen D. Concise guide to mycobacteria and their molecular differentiation. Norderstedt, Germany: BoD GmbH 2003.
[4] Heijden IM, van der Wilbrink B, Vije AEM, Schouls LM, Breedveld FC, Tak PP. Detection of bacterial DNA in serial synovial samples obtained during antibiotic treatment from patients with septic arthritis Arthritis Rheum 1999; 42: 2198-03.
[5] Margaretten ME, Kohlwes J, Moore D, Bent S, et al. Does this adult patient have septic arthritis? JAMA 2007; 297: 1478-88.
[6] Yang S, Lin S, Kelen GD, et al. Quantitative multiprobe PCR assay for simultaneous detection and identification to species level of bacterial pathogens J Clin Microbiol 2002; 40: 3449-54.
[7] Smith JW, Chalupa P, Shabaz Hasan M. Infectious arthritis clinical features, laboratory findings and treatment Clin Microbiol Infect 2006; 12: 309-14.
[8] Tarkowski A. Infectious arthritis Best Pract Res Clin Rheumatol 2006; 20: 1029-44.
[9] Altschul SF, Madden TL, Scäffer AA. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs Nucleic Acid Res 1997; 25: 3389-402.
[10] Ferroni A. Epidemiology and bacteriological diagnosis of paediatric acute osteoarticular infections Arch Pediatr 2007; 14: S91-6.
[11] Verdier I, Gayet-Ageron A, Ploton C, et al. Contribution of a Broad Range Polymerase Chain Reaction to the Diagnosis of Osteoarticular Infections Caused by Kingella kingae Description of Twenty-four Recent Pediatric Diagnoses Ped Infect Dis J 2005; 24: 692-96.
[12] Chometon S, Benito Y, Chaker M. Specific Real-Time Polymerase Chain Reaction Places Kingella kingae as the Most Common Cause of Osteoarticular Infections in Young Children Ped Infect Dis J 2007; 26: 377-81.
[13] Jalava J, Skurnik M, Toivanen A, Toivanen P, Eerola E. Bacterial PCR in the diagnosis of joint infection Ann Rheum Dis 2001; 60: 287-89.
[14] Tunney MM, Patrick S, Curran MD. Detection of prosthetic hip infection at revision arthroplasty by immunofluorescence microscopy and PCR amplification of the bacterial 16S rRNA gene J Clin Microbiol 1999; 37: 3281-90.
[15] Drancourt M, Roux V, Fournier P-E, Raoult D. rpoB gene sequence-based identification of aerobic Gram-positive cocci of the genera Streptococci, Enterococcus, Gemmela, Abiotrophia, and Granulicatella J Clin Microbiol 2004; 42: 497-504.
[16] Gauduchon V, Chalabreysse L, Etienne J, et al. Molecular diagnosis of infective endocarditis by PCR amplification and direct sequencing of DNA from valve tissue J Clin Microbiol 2003; 41: 763-6.
[17] Lepp PW, Relman DA. Molecular phylogenetic analysis In: Persing DH, Tenover FC, Versalovic J, Eds. (Chapter 13) Molecular Microbiology Diagnostic Principles and Practice. Washington DC: ASM Press 2004.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open