The Open Ophthalmology Journal




ISSN: 1874-3641 ― Volume 13, 2019

Radiological Pitfalls in Patients with Inducible Dynamic Proptosis



Sharon R Morris 1, Jean-Louis DeSousa1, Ian Francis 2, Lekha Chandrasekharan2, Raman Malhotra1, *
1 Corneoplastic Unit, Queen Victoria Hospital, Holtye Road, East Grinstead, West Sussex RH19 3DZ, UK
2 Department of Radiology, Queen Victoria Hospital, Holtye Road, East Grinstead, West Sussex RH19 3DZ, UK

Abstract

We report two patients presenting with marked clinical unilateral enophthalmos who had positional variability and dynamic proptosis on valsalva. On orbital imaging, enophthalmos was not documented and in fact, globe proptosis of the same side was reported for one of the patients. During CT and MRI scanning patients are often instructed to hold their breath to eliminate motion artefact. This may inadvertently induce dynamic proptosis. The radiological pitfalls of imaging patients with inducible dynamic proptosis and how to identify such patients are discussed.

Keywords: CT, MRI, dynamic, proptosis, valsalva.


Article Information


Identifiers and Pagination:

Year: 2008
Volume: 2
First Page: 91
Last Page: 93
Publisher Id: TOOPHTJ-2-91
DOI: 10.2174/1874364100802010091

Article History:

Received Date: 12/2/2008
Revision Received Date: 14/3/2008
Acceptance Date: 17/4/2008
Electronic publication date: 5/5/2008
Collection year: 2008

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 1160
Abstract HTML Views: 557
PDF Downloads: 241
Total Views/Downloads: 1958

Unique Statistics:

Full-Text HTML Views: 624
Abstract HTML Views: 343
PDF Downloads: 144
Total Views/Downloads: 1111
Geographical View

© Morris et al. ; Licensee Bentham Open

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.5/), which permits unrestrictive use, distribution, and reproduction in any medium, provided the original work is properly cited.


* Address correspondence to this author at the Corneoplastic Unit, Queen Victoria Hospital, Holtye Road, East Grinstead, West Sussex RH19 3DZ, UK; Tel: +44 (0) 1342 414549; Fax: +44 (0) 1342 414106; E-mail: raman.malhotra@qvh.nhs.uk




INTRODUCTION

Dynamic globe proptosis may be present spontaneously, for example, due to carotid-cavernous fistulae (classic “pulsatile proptosis”). Alternatively, it is often only inducible - the eye may only be seen to proptose forward with positional change or the valsalva manoeuvre, which is often required during routine orbital imaging. Awareness of this condition is essential in aiding the correct diagnosis and appropriate management. We report two cases that presented for surgical correction of their enophthalmos which was not detected radiologically, with a report of globe proptosis in one instance. These cases serve as a reminder of the radiological difficulties in imaging patients with inducible dynamic proptosis and how best to identify these patients.

PATIENTS

Case 1:

A 29 year old man had been diagnosed with a left facial and orbital low-flow arteriovenous malformation. In the past, he had undergone embolization treatment in 1983, and endoscopic ND Yag laser of the oral cavity with transcutaneous laser of the lower eyelid, cheek and upper lip in 2001. The latter was repeated in 2003.

He was referred for consideration of treatment to correct progressive enophthalmos. He was found to have 1mm medial and 2mm inferior displacement of the left globe with 7mm left enophthalmos on sitting and resting supine. On performing the valsalva manoeuvre his left enophthalmos reversed and his globe was proptosed. His optic nerve function was intact with full extraocular movements, normal intraocular pressures and fundi.

A CT scan of the orbits was performed during which the patient lay supine and was given standard departmental instructions to hold his breath, look straight ahead and remain still, in order to avoid movement artefact. The coronal images revealed demineralisation and deficiency of the orbital floor with a soft tissue mass involving the lateral orbit, face and extension into the infratemporal and pterygoid fossa and parapharyngeal space. Despite having 7mm of left enophthalmos on lying supine clinically, only minimal enophthalmos of the left globe was evident radiologically (Fig. 1a-c).

Fig. (1a)

Patient lying supine, resting.



Fig. (1b)

Patient supine, during valsalva.



Fig. (1c)

In contrast to the clinical picture, this Axial CT scan image, per-formed during an inadvertent Valsalva manoeuvre, shows only minimal left enophthalmos (highlighted by the broken lines).



Fig. (2a)

Patient sitting.



Fig. (2b)

Patient lying supine, resting.



Fig. (2c)

T1 weighted MRI scan showing right sided herniation of brain con-tents through the orbital bony structural abnormality with proptosis of the globe.



Fig. (1a) shows a very marked left sided enophthalmos on lying supine which measured 7mm on Hertel exophthalmometry and is demonstrated in the photograph by the distance of the left globe from a horizontal line drawn at the level of the superior limbus of the other eye. On undergoing valsalva manoeuvre, this enophthalmos virtually disappears (Fig. 1b).

The disparity between the globe position on CT and the last clinic visit necessitated a repeat assessment. This was essential to exclude a new change prior to embarking on surgical implantation of a high density porous polyethelyene (Medpor®) enophthalmic wedge implant, in order to augment his orbital volume and increase the anterior projection of his globe into a more aesthetic position.

Case 2

A 24 year old woman was originally referred for consideration to improve facial asymmetry due to progressive right globe enophthalmos with inferior displacement (Fig. 2a). A diagnosis of neurofibromatosis was made and confirmed as type 1 with spontaneous mutation on the basis of multiple café au lait patches, axillary freckling, dermal neurofibromas and right sphenoid wing hypoplasia.

On examination she had 7mm medial and 3mm inferior globe displacement with marked right enophthalmos. She had no diplopia in primary position but she had a global reduction in right eye movements especially in abduction and elevation. Her optic nerve function was normal and her remaining ocular examination was unremarkable.

On lying supine, the right globe became proptosed by 1mm relative to the left eye (Fig. 2b).

A pre-operative MRI scan was perfomed to enable surgical planning for correction of the enophthalmos. This was perfomed supine, eyes in primary position and the patient was asked to breath-hold in order to minimise movement artefact for image capture. The axial scans showed deficient greater and lesser wings of sphenoid on the right side with deficiency of the left side of the planum sphenoidale (involving the left sphenoidal sinus) and right anterior clinoid processes. Brain herniation through the bony deficiency was evident and the right globe was reported as proptosed (Fig. 2c).

After consideration, the patient chose not to undergo surgical intervention.

Fig. (2a) shows marked right sided enophthalmos in the sitting position, as demonstrated by the right globe distance from a horizontal line drawn from the left cornea, with reversal and mild proptosis on lying supine (Fig. 2b).

DISCUSSION

Dynamic proptosis is defined as exophthalmos occurring when a variable force is applied to the orbital contents [1Bullock J, Bartley G. Dynamic proptosis Am J Ophth 1986; 102: 104-10.]. Reported aetiologies include orbital vascular malformations – such as orbital varices, carotid-cavernous fistulae, intracavernous aneurysms and combined venous lymphatic malformations (or so-called lymphangiomas), as well as bony wall abnormalities arising from neurofibromatosis, previous surgery, paranasal mucoceles and meningoencephaloceles, malignancy and dermoid cysts [1Bullock J, Bartley G. Dynamic proptosis Am J Ophth 1986; 102: 104-10.]. Dynamic proptosis may be spontaneous (“pulsatile proptosis”) or inducible, requiring positional change or the valsalva manoeuvre to elicit. Such manoeuvres are often required during routine orbital imaging. Therefore, inducible dynamic proptosis may mask marked clinical enophthalmos when imaging, as in case 1, or be misinterpreted to be static proptosis only, as in our second case.

Dynamic proptosis occurs when a variable force is applied to the orbital contents, either from haemodynamic changes to the arterial or venous system, or from absent orbital bony architecture (as above), thereby allowing transmission of brain pulsations or mechanical pressure from muscles of mastication. Therefore, manoeuvres such as forced expiration, coughing, straining, leaning forward or change in head position, jugular compression, clenching of the jaw and the valsalva manoeuvre may accentuate proptosis. During CT/MR imaging, the patient is placed supine and may be asked to breath-hold to reduce motion artefact. As a result, dynamic proptosis may be inadvertently induced.

Enophthalmos is a recognized feature in patients with orbital varices and is thought to be due to fat atrophy [2Rootman J, Chang W, Jones D. Diseases of the orbit In: Rootman J, Ed. A multidisciplinary approach. Second Edition. Philadelphia: J.B. Lippincott Co 2003.]. Orbital venous malformations may be missed on plain axial CT scans, even with contrast enhancement, but can be clearly defined with the use of the valsalva manoeuvre [3Shields JA, Dolinskas C, Augsburger JJ, et al. Demonstration of orbital varix with computed tomography and valsalva maneuver Am J Ophth 1997; 1: 108-9.-5Gorospe L, Royo A, Berrocal T, et al. Imaging of orbital disorders in paediatric patients Eur Radiol 2003; 13: 2012-26.]. It is also well known that the dependent head position with hyperextension of the neck required for direct coronal CT scans, can better demonstrate such malformations [6Winter J, Centeno RS, Bentson JR. Maneuver to aid diagnosis of orbital varix by computed tomography Am J Neuroradiol 1982; 3: 39-40.]. MRI does not require changes in head position to achieve coronal images but image capture takes longer than CT and utilisation of breath-holding to avoid motion artefact is necessary. Prone positioning with increased intra-abdominal pressure has been used in MRI to specifically highlight orbital venous malformations [7Manfre L, Lagalla R, Pappalardo S, et al. Orbital varice a tricky diagnosis in MRI Eur Radiol 1995; 5: 33-5.].

Typically, in enophthalmic patients, imaging is used pre-operatively to aid assessment of orbital volume and space for potential placement of implants. Surgical implants are used for cases where the clinical enophthalmos usually measures greater than 2mm. In the surgical planning of case 1, the size of orbital implant was based on a clinical volume assessment of the left orbit alone. Quantitative orbital volume assessment from axial CT images has been used as a predictive marker for surgical outcomes in determination of the size of orbital implant used [8Fan X, Li J, Zhu J. Computer-assisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures Ophth Plast Reconst Surg 2003; 19(3): 207-11.]. To the best of our knowledge, quantitative assessment of dynamic orbital volume in patients with inducible proptosis has not been performed.

Currently, the speed of multiplanar image capture for CT is faster than MRI and can be performed without breath holding, although, unless specifically excluded, it remains present within most departmental protocols. Our experience would advise that when imaging is performed in cases of possible proptosis, the supine patient should be instructed to look straight ahead and breathe normally, to enable assessment of the globe position without inducing valsalva. The ophthalmologist needs to bear in mind the positioning of these patients when requesting imaging and assessing the radiological orbital volume. An alternative approach would be to use cone-beam CT. This technique is able to provide images up to the skull base with the patient in an upright position, and so allows orbital imaging without the induction of positional globe proptosis. However, access to this facility is limited.

CONCLUSION

In summary, the above two cases highlight the radiological pitfalls in imaging enophthalmic patients with inducible dynamic proptosis. If the dynamic proptosis phenomenon is not recognized then it can lead to erroneous radiological reporting with no bearing at all on the appearance of the patient in a chair, facing the clinician. If clinical suspicion of inducible dynamic proptosis exists, then alerting the radiologist to perform positional orbital imaging with and without valsalva manoeuvre is recommended.

REFERENCES

[1] Bullock J, Bartley G. Dynamic proptosis Am J Ophth 1986; 102: 104-10.
[2] Rootman J, Chang W, Jones D. Diseases of the orbit In: Rootman J, Ed. A multidisciplinary approach. Second Edition. Philadelphia: J.B. Lippincott Co 2003.
[3] Shields JA, Dolinskas C, Augsburger JJ, et al. Demonstration of orbital varix with computed tomography and valsalva maneuver Am J Ophth 1997; 1: 108-9.
[4] Takechi A, Uozumi KK, Yano T, et al. Embolization of orbital varix Neuroradiol 1994; 36: 487-9.
[5] Gorospe L, Royo A, Berrocal T, et al. Imaging of orbital disorders in paediatric patients Eur Radiol 2003; 13: 2012-26.
[6] Winter J, Centeno RS, Bentson JR. Maneuver to aid diagnosis of orbital varix by computed tomography Am J Neuroradiol 1982; 3: 39-40.
[7] Manfre L, Lagalla R, Pappalardo S, et al. Orbital varice a tricky diagnosis in MRI Eur Radiol 1995; 5: 33-5.
[8] Fan X, Li J, Zhu J. Computer-assisted orbital volume measurement in the surgical correction of late enophthalmos caused by blowout fractures Ophth Plast Reconst Surg 2003; 19(3): 207-11.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open