Table 3: Clinical studies showing no difference in clinical outcome between patients with healed and structurally failed rotator cuff repairs.

Author Year Level of evidence Sample Follow-up Technique Outcomes Conclusion
Jost et al. [44] 2000 Prospective 20 patients
(mean age 59 years)
- Open repair MRI evaluation 1) 16/20 patients smaller re- rupture
2) Fatty degeneration of SS and IS, atrophy of SS and GH osteoarthritis progressed significantly
3) Clinical outcome significantly correlated with postoperative tear, stage of postoperative fatty degeneration of IS and SSC, postoperative acromiohumeral distance, postoperative GH osteoarthritis (p<0,05)
 Finally: significantly decreased pain (p=0,0026) and improved function (p=0,0005) and strength (p=0,0137) despite failure of repair
Voigt et al. [35] 2010 Level IV 51 patients 12 months Arthroscopic suture bridge repair of supraspinatus MRI
SST and Constant score
1) Re-tear rate 28,9% with no significant difference in clinical outcome between intact R.C. and re-tear group, but structural failure is not compatible with clinical failure
2) Age>60 negatively influenced tendon healing
Kim et al. [37] 2012 Retrospective 77 patients - Arthroscopic suture bridge repair of full thickness cuff tears MRI
U/S
UCLA, ASES, Constant-Murley scores
1) Postoperative clinical outcomes improved in all patients without difference between healed R.C. and structural failure (p=0,438, p=0,625 and p-0,898 for UCLA, ASES and Constant score
Rhee et al. [51] 2014 Level III case-control study 238 patients (two groups>70 years old and <70 years old) Short mean follow-up
(at least 6 months)
- MRI 1) Both groups significant improvement in clinical outcomes with no significant difference between (p=0,161)
2) Retear rate 39,8% <70, 51,1% >70
3) Retear rate increased significantly depending on intraoperative size but not on age
4) No comparison of the functional outcome between re-tear and intact R.C. groups
McElvany
et al. [2]
2015 Systematic review and meta-analysis - At least 6 months All techniques Radiological 1) Mean re-tear rate 26,6%
2) Clinical outcomes were improved both in re-tear and in intact R.C. group
3) Re-tear rate associated with greater degree of fatty infiltration, larger tear size, advanced age and double-row repairs
Lubiatowski
et al. [53]
2012 Retrospective study of 111 cases 111 cases At least 6 months All techniques UCLA, ASES and SST scores
Radiological
1) No significant difference in shoulder scores and patients’ satisfaction depending on quality of healing
2) Incomplete R.C. healing in 26% of cases
3) R.C. integrity after open or arthroscopic repair did not seem to affect clinical scores although recurrent tears may result in lower muscle strength, endurance and active motion
Russell et al. [61] 2014 Systematic review and meta-analysis of Level I and Level II studies 14 studies (861 patients) At least 1 year All techniques UCLA, ASES, Constant score 1) Not clinically important improvement regardless of the structural integrity of the repair
2) Patients with intact repairs significantly greater strength in forward elevation and external rotation to those with retears
Choi et al. [54] 2012 Comparative study 41 arthroscopic rotator cuff repair 28 months
(average)
Double-pulley suture bridge repair ASES, Constant score, UCLA 1) Retear rate 19,5%
2) 75% within 6 months after operation and 25% >1year
3) Functional and clinical improvement independent of tear size and R.C. integrity
Kim et al. [49] 2014 Level IV retrospective study 24 patients with full thickness rotator cuff tear - - MRI and ultrasound scan
ASES, VAS, UCLA, Constant-Murley, ROM
1) Retear rate of 47,8% (smaller size than the initial)
2) No significant difference in clinical results between intact and retear group
Sugaya et al. [52] 2007 Level IV study 106 patients At least 6 months Arthroscopic double-row rotator cuff repair MRI and ultrasonography 1) Arthroscopic double-row rotator cuff repair improved integrity compared with open and mini-open repair
2) Re-tear rates depend on initial tear size
3) Functional improvement depends on initial tear size
4) Function of R.C. remains even when small R.C. defects are recognized postoperatively by MRI
Paxton et al. [56] 2013 - - 10 years - ASES, SST and Constant scores
Ultrasound
Clinical improvement to those patients despite re-tear
Conclusion: no structural healing is critical for massive tears due to the long-term satisfactory results at least in older patients
Moraiti et al. [55] 2015 Multicenter, prospective, comparative study of 40 patients <50 years
and 40 >70 years
Level IV therapeutic case series
80 patients 1 year Arthroscopic repair MRI and ultrasound
Constant and modified Constant scores, patients’ satisfaction
1) Healing rate lower in the older age group which was characterized by greater retraction in frontal plane and greater fatty infiltration
2) Functional outcome and satisfaction equal to both groups

ASES: American Shoulder and Elbow Surgeons, GH: glenohumeral, IS: infraspinatus, MRI: magnetic resonance imaging, R.C.: rotator cuff, SS: supraspinatus, SSC: subscapularis, SST: Simple Shoulder Test, UCLA: University of California at Los Angeles, VAS: visual analog scale