The Open Public Health Journal




ISSN: 1874-9445 ― Volume 13, 2020
RESEARCH ARTICLE

A Cross-Sectional Study: Predicting Health Risks Among Female University Students



Qassim I. Muaidi1, Mohammad Ahsan1, *
1 Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdul Rahman bin Faisal University, Dammam, Saudi Arabia

Abstract

Background:

Good health is very important in our lives and plays a significant role. Many health risks are associated with an unhealthy lifestyle. These risks are responsible for raising the risk of chronic heart diseases and other health complications. Females are not exempted from these issues.

Objective:

To identify the obesity-associated health risks of female students by using selected anthropometric measurements.

Methods:

A cross-sectional study was conducted including 300 females aged 20.82 ± 5.23 years from the college of applied medical sciences, Imam Abdulrahman bin Faisal University. The anthropometric measurements (body mass index, percentage of body fat, visceral fat area, waist circumference, waist-hip ratio,and waist-height ratio) were taken with the help of an auto-calibrated bioelectric impedance device. The waist-height ratio was determined by dividing waist circumference with height. Cross tabulation was done to scrutinize the participant’s levels at risk and high risk. Linear regression analysis was done to see the relationship and prediction between selected anthropometric measurements.

Results:

The finding showed that BMI level was high in 55% of participants, Waist-height ratio over the average level was 46.67% and 21% of participants had a visceral fat area on risk. Linear regression analysis showed a strong association among body mass index, percentage of body fat, visceral fat area, waist circumference, waist-hip ratio,and waist-height ratio and statistically significant to each other at the 0.01 level.

Conclusion:

The selected anthropometric measurements can be used to identify health-related risks. Though, when any anthropometric measurement dichotomized as standard or high, BMI is the best measure to predict health risk.

Keywords: Good health, Health risks, Female students, Risk of chronic heart diseases, Anthropometric measurements, Health-related risks.


Article Information


Identifiers and Pagination:

Year: 2020
Volume: 13
First Page: 316
Last Page: 322
Publisher Id: TOPHJ-13-316
DOI: 10.2174/1874944502013010316

Article History:

Received Date: 25/12/2019
Revision Received Date: 25/04/2020
Acceptance Date: 05/05/2020
Electronic publication date: 28/06/2020
Collection year: 2020

© 2020 Muaidi and Ahsan.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Department of Physical Therapy, College of Applied Medical Sciences, Imam Abdul Rahman bin Faisal University, Dammam, Saudi Arabia; Tel: +966503385534, +96633331244; Fax: +9663333 0225; E-mail: mahsan@iau.edu.sa





1. INTRODUCTION

Health is a state of complete physical, mental, and social well-being and not merely the absence of disease or infirmity [1World Health Organization. 1958.The First ten years of the World Health Organization Geneva: World Health Organization http://www.who.int/iris/handle/10665/37089]. For better health, a person needs to have a balanced diet and regular exercise. Health is affected by many factors-those linked to poor health, disability, disease, and injury are known as health risks. A health risk might be associated with many factors like genetic conditions, lifestyle factors, specific sports or activities, and some situations or incidence [2Kasper DL, Ed. Harrison’s Principles of Internal Medicine 19th ed. 2015.]. Health risks often coexist and interact with one another. The weight gain, high blood pressure, and high cholesterol are the result of inactiveness. These significantly enhance the chance of developing chronic heart diseases and other health problems. Contemporary threats of health are primarily the consequence of risk behavior and related outcome such as enhanced Body Mass Index (BMI), Percentage of Body Fat (PBF), Visceral Fat Area (VFA) Waist Circumference (WC), Waist-hip Ratio (WHR), Waist-height Ratio (WHtR). All these measures are also associated with increased risk of chronic disease morbidity-namely disability, depression, type 2 diabetes, cardiovascular disease, certain cancers-and mortality.

The BMI used to determine the level of body fat and a good measure of health risk that can appear with enhanced body fat. BMI categorization is being universally used in many survey-based kinds of research to assess the mortality risk in a different classification [3Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015; 33(7): 673-89.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
]. The high BMI may predict health risk for many diseases as type 2 diabetes, heart disease, high blood pressure, breathing problems, certain cancer, and elevated mortality risk [4National Institutes of Health Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. National Institutes of Health, NHLBI:. Bethesda MD. 1998.https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm]. Body fat percentage is also related to the risk of metabolic syndrome [5Zhu S, Wang Z, Shen W, Heymsfield SB, Heshka S. Percentage body fat ranges associated with metabolic syndrome risk: results based on the third National Health and Nutrition Examination Survey (1988-1994). Am J Clin Nutr 2003; 78(2): 228-35.
[http://dx.doi.org/10.1093/ajcn/78.2.228] [PMID: 12885702]
]. Enhanced abdominal fat is a notable risk factor for disease as excess body fat. Harvard University observes that 10% of total fat is probable to store as visceral fat. Visceral fat developed by excess intra-abdominal adipose tissue accumulation. Visceral fat considered as more significant health risk than the waist, hip, and thigh fat, not only for diabetes but for many other diseases too [6Okauchi Y, Kishida K, Funahashi T, et al. 4-year follow-up of cardiovascular events and changes in visceral fat accumulation after health promotion program in the Amagasaki Visceral Fat Study. Atherosclerosis 2010; 212(2): 698-700.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.06.011] [PMID: 20627199]
]. Ding et al. found that visceral fat area was correlated with a higher thirty-day morbidity rate after surgery and hence more appropriate and precise than BMI [7Riss S, Bittermann C, Schwameis K, et al. Determinants for postoperative complications after laparoscopic intestinal resection for Crohn’s disease. Surg Endosc 2012; 26(4): 933-8.
[http://dx.doi.org/10.1007/s00464-011-1970-0] [PMID: 22002203]
].

Many anthropometric measurements have been studied earlier to find out the leading causes of metabolic syndrome. Lean et al. suggested that WC used as a clinical tool for assessments and interpretation of health risks associated with obesity [8Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ 1995; 15;311(6998): 158-61.
[http://dx.doi.org/10.1136/bmj.311.6998.158]
] and associated with cardiovascular disease risk factors independent of BMI [9Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk-factors-prevalence study in a random sample. BMJ 1995; 25;311(7017): 1401-5.
[http://dx.doi.org/10.1136/bmj.311.7017.1401]
]. WC indicated as a symptom of adiposity-related morbidities [10Lam BC, Koh GH, Chen C, Wong MK, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (Bai), Waist Circumference (WC), Waist-to-hip Ratio (WHR) and Waist-to-height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS One 2015; 16;10(4): e0122985.
[http://dx.doi.org/10.1371/journal.pone.0122985]
]. Waist-hip ratio is the most common measure of visceral adipose tissue, as it revealed a strong correlation with increased risk of various health outcomes as well as mortality in most of the population [11Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty GD. Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes Rev 2011; 12(9): 680-7.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00879.x] [PMID: 21521449]
]. WHR is a valid parameter to establish the obesity level. The value of WHR on Myocardial Infarction (MI) risk varies as per gender differences. The high WHR increase MI risk and higher WHR values were strongly predictive of MI in women than men [12Cao Q, Yu S, Xiong W, et al. Waist-hip ratio as a predictor of myocardial infarction risk: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97(30)e11639
[http://dx.doi.org/10.1097/MD.0000000000011639] [PMID: 30045310]
]. Many types of research have demonstrated the superiority of WHtR to WC as an anthropometric measure associated with many diseases as diabetes, CVD, hypertension, chronic kidney disease and metabolic syndrome [13Odagiri K, Mizuta I, Yamamoto M, Miyazaki Y, Watanabe H, Uehara A. Waist to height ratio is an independent predictor for the incidence of chronic kidney disease. PLoS One 2014; 12;9(2): e88873.
[http://dx.doi.org/10.1371/journal.pone.0088873]
].

The BMI less than 18.5 is consider as a low level of health, the range of BMI between 18.5-24.9 is consider as healthy, and BMI over 25 is indicated as health at risk. The PBF between 19.0-29.0 is indicated as healthy. The waist circumference less than 88 cm. signifies healthy students. The visceral fat area is considered normal as range 40-80. The waist circumference of more than 88 cm is considered as a health risk factor. For the waist-hip ratio, the range 0.70-0.85 was considered normal, and the waist-height ratio range 0.42-0.48 implied as normal for female students. In this research, we outline the prevalence and trends of obesity, which can be associated with anthropometric measurements that lead the life at risk.

2. METHODOLOGY

This cross-sectional study was conducted including 300 female participants. The sample has randomly chosen from the College of Applied Medical Sciences. The sample size was considered appropriate to identify risk factors with 95% confidence and a precision rate of 4.5%. There was no pregnancy period and no specific medical problems reported in these participants. Before conducting the tests, all participants were informed of the data would be used for the research. The participants were completely aware of the importance of precision of information during assessment taken. The deanship approved this study of research from Imam Abdulrahman bin Faisal University, Dammam, Saudia Arabia.

2.1. Anthropometric Measurements

All participants were instructed to take off their shoes, jewelry, heavy clothing items and wrap their hair correctly that does not alter the effect to measure height and weight before step on the devices. An auto-calibrated digital scale (Detecto model-750, USA) was used to measure height and weight at the nearest 0.1 cm. and 0.01 kg, respectively. An auto-calibrated bioelectric impedance (BIA) device (iOi 253, Jowan Medical, SK) ran to measure BMI, PBF, VFA, WC, and WHR. To measure all these anthropometric measurements, participants stepped on to the foot electrodes of a BIA device. The measurement carried out was as follows: All participants came to the lab in the morning with empty stomach. The necessary personal details of participants such as age, gender, and height were inputted to the device via a digital keyboard. Participants were asked to be griped hand-held electrodes at 300 angles of the arms and press the button attached to it. Hand-held electrodes send a low and safe electric current through the hand and body to the leg. The participant stands erect and does not talk during measurement. The measurement completes within 1-2 minutes. The waist-height ratio was determined by dividing waist-circumference with height.

2.2. Statistical Analysis

The Statistical Package for Social Science (SPSS V-21) used for data analysis. The data screened for normality and outliers, and descriptive statistics expressed with means and Standard Deviation (SD) for all outcome measures. Levene’s test used to assess the equality of variance for the variables prior to proceed to further statistical analysis. Cross tabulation was done to scrutinize the participant’s level at risk and high risk. Linear regression analysis was done to assess the relationship between selected anthropometric (percentage of body fat, body mass index, visceral fat, waist circumference, waist-hip ratio, and waist-height ratio) variables obtained through BIA. To understand the association between the measured variable, scatter plots are also drawn.

3. RESULTS

Most of the female students were young with an average age 20.8±5.23 years; Height was 157.07±5.78cm, body mass 57.45±13.25kg, BMI 23.18±4.7kg/m, PBF 30.10±6.58%, VCA 59.12±34.20cm2, WC 76.87±8.88cm, WHR .78±.06, WHtR .49±.06.

Fig. (1) shows the categories of anthropometric measurements on the basis of their levels. The light gray bar depicts the below optimal range, green bar stands for the optimal range, and red bar denotes for beyond optimal range i.e., participants at risk. The figure shows that BMI was the highest risk factor, with 165 female students. WHtR on second highest risk factor with 140 female students.VFA on the third highest risk factor with 63. While WC, WHR, and PBF, were on risk with 40, 39, and 33, respectively.

Fig. (1)
Categorizations of anthropometric measurement on the basis of their levels.


According to the WC, most females (260) were healthy, whereas WHR indicate 246 healthy females, and PBF also indicate 209 females with no health risk. Whereas, WHtR, VFA, and BMI showed more than 50% females were on the health risk either by below or high level of measurement Table 1.

According to Table 2, among all female students for selected variables, 55 participants fell at risk and 33 participants at a high-risk category of BMI as well as for PBF, WC, VFA, WHR, and WHtR. While there are many participants, who also are at-risk category according to a particular parameter such as 174(58%) for PBF, 40(13.33%) for WC, 63(21%) for VFA, 189(63%) for WHR, and 140(46.67%) for WHtR.

Table 3 shows that the p-value is .000 for all variables; the association between BMI and other variables is significant. From the R column in the table, the correlation coefficient, R, is .938, .963, .762, .907, .917 and .941 for PBF, WC, HC, VFA, WHR and WHtR, respectively. Therefore, we can conclude that BMI is positively associated with other variables, and the association is strong (R is positively and very closed to 1). From column B, we can conclude that on average for every number of BMI, they get 1.305, 1.809, .747, 6.562, .012, and .011 chance of health risk for other variables.

4. DISCUSSION

The present study investigated how anthropometric parameters (WC, VFA, PBF, and WHR) were associated with BMI (Fig. 2). Elevated BMI level or other anthropometric parameters is the alarm for different health complications and cardiovascular diseases such as diabetes, hypertension, types of cancer, sleep apnea, fatty liver, and kidney disease. In this study, we found a positive, strong association between BMI and WHR in female students, and the association between BMI and anthropometric parameters was positively significant.

Table 1
Descriptive statistics information on anthropometric measures of female students.


Fig. (2)
The figures (A, B, C, D, & E) show the linear relationship (R2) amongst BMI and other parameters such as PBF (0.879), WC (0.928), VFA (0.824), WHR (0.841), and WHtR (0.885). WHR showed the most reliable linear relationship with BMI. A significant positive correlation amongst the BMI and other parameters found.


Table 2
Classification of different anthropometric measurement on the basis of BMI categories.


Table 3
Linear regression analysis (Coefficient) between selected variables.


This research reported that WHtR was the second-highest risk factor for 140 female students, and it confirmed is from Fig. (1) and Table 1. Earlier researches indicated that WHtR was better than the WC and BMI in predicting blood lipid abnormalities in the Chinese population [14He Y, Zeng Q, Tian J, Chen Z, Zhao X. Waist-to-height ratio as a predictor of dyslipidemia for Chinese adults. Zhonghua Jiankang Guanlixue Zazhi 2013; 1: 9-13.]. A cross-sectional study indicated that WHtR was the strongest predictor for CKD, followed by BMI and WC [15He Y, Li F, Wang F, Ma X, Zhao X, Zeng Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. Medicine (Baltimore) 2016; 95(25)e3769
[http://dx.doi.org/10.1097/MD.0000000000003769] [PMID: 27336864]
]. A meta-analysis supported that WHtR significantly better than WC for CVD, hypertension, and another outcome for women and men [16Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 2012; 13(3): 275-86.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00952.x] [PMID: 22106927]
].

CONCLUSION

The results indicated that the visceral fat area was the third highest risk factor, with 63 female students according to Table 1 and Fig. (1). Visceral fat area is not only a predictor of hypertension but also a crucial factor of many severe diseases. A study revealed that a higher percentage of participants with VFA ≥100 cm2 had diabetes, hypertension, obesity, hypertriglyceridemia, and hypo-HDL cholesterolemia in the Romanian population [17Hancu A, Radulian G. Correlation of visceral fat area with metabolic risk factors in romanian patients: A cross-sectional study. 2015; 22(4): 393-402.
[http://dx.doi.org/10.1515/rjdnmd-2015-0046]
]. Hayashi et al. investigated a study for 10-11 years with adult participants and found that an increase of VFA is associated with a 3.82 higher risk of developing impaired glucose tolerance. The association remained statistically significant after adjustment for the total subcutaneous fat area, total fat area, or abdominal subcutaneous fat area [18Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity and the risk of impaired glucose tolerance: a prospective study among Japanese Americans. Diabetes Care 2003; 26(3): 650-5.
[http://dx.doi.org/10.2337/diacare.26.3.650] [PMID: 12610016]
].

According to the findings of this research, Fig. (1) shows that 40 female students at risk. While Table 1 showed, only 80 female students were on health risk with WC. A meta-analysis and systematic review reported that WC is superior to WHR, and WHR is a more reliable measure for abdominal obesity and visceral fat [19Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One 2013; 8(2)e56415
[http://dx.doi.org/10.1371/journal.pone.0056415] [PMID: 23409182]
]. World Health Organization recommended that the risk of cardiovascular disease and type II diabetes is better diagnosed when using both WC and BMI [20Consultation Obesity W. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i-xii, 1-253.
[PMID: 11234459]
] while other studies showed that visceral fat is a more reliable predictor of hypertension than BMI [21Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes, hypertension and hypertension-diabetes co-morbidity in England. Public Health Nutr 2008; 11(5): 521-7.
[http://dx.doi.org/10.1017/S1368980007000845] [PMID: 17767799]
].

It is demonstrated that 189 female students according to Table 1 and Fig. (1), only 39 female students were on health risk associated with WHR. A meta-analysis was conducted with twelve case-control studies in fourteen eligible trails and showed that higher WHR were more strongly prognostic of myocardial infarction risk in females [22Elsayed EF, Tighiouart H, Weiner DE, et al. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. Am J Kidney Dis 2008; 52(1): 49-57.
[http://dx.doi.org/10.1053/j.ajkd.2008.04.002] [PMID: 18514990]
]. Some studies suggested that WC, WHR, WHtR, and central obesity index are the risk factors for foreseeing myocardial infraction, which might additionally overcome the BMI limitation [23de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 2007; 28(7): 850-6.
[http://dx.doi.org/10.1093/eurheartj/ehm026] [PMID: 17403720]
]. The WHR more clinically relevant than BMI and evidence increased attention, particularly in terms of the acute onset of disease, to reduce the risk of morbidity.

Percentage of body fat was the least health risk factor with only 33 female students as per Fig. (1) and Table 1 also indicated that 174 female students were on health risk. Bohn et al. found PBF and BMI were similar in predicting hypertension, but the correlation between blood pressure and BMI was stronger than PBF [24Bohn B, Muller MJ, Simic-Schleicher G, et al. BMI or BIA: Is body mass index or body fat mass a better predictor of cardiovascular risk in overweight or obese children and adolescents? A German/Austrian/Swiss multicenter apv analysis of 3,327 children and adolescents. Obes Facts 2015; 8(2): 156-65.
[http://dx.doi.org/10.1159/000381227]
]. A study by Romero-Corral et al. indicated that individuals with high body fat but a healthy weight were more predisposed to diabetes mellitus II than those who were overweight but had average fat mass [25Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J 2010; 31(6): 737-46.
[http://dx.doi.org/10.1093/eurheartj/ehp487] [PMID: 19933515]
]. A study with two measures of obesity (BMI & PBF) performed on the Thai population. The study showed that Thai women have higher PBF and its associated with cardiometabolic risk profiles [26Vanavanan S, Srisawasdi P, Rochanawutanon M, Kumproa N, Kruthkul K, Kroll MH. Performance of body mass index and percentage of body fat in predicting cardiometabolic risk factors in Thai adults. Diabetes Metab Syndr Obes 2018; 11: 241-53.
[http://dx.doi.org/10.2147/DMSO.S167294] [PMID: 29910627]
].

The study concludes that there is a positive strong association between BMI and other anthropometric variables, which is also statistically significant. All these anthropometric obesity variables might be the causes of many health risks such as cardiovascular disease, diabetes, hypertension, type of cancer, sleep apnea, fatty liver, and kidney disease for females. Despite the limitations of this study by gender, area, and population-specific, it provides further insight into the obesity-related health risks. This observation is not only essential to find out the level of anthropometric parameters but also to draw the attention of students and public health authorities involved in planning the prevention, management, and educate the communities.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

This study was approved by the Ethics Committee of Deanship of scientific research, Imam Abdulrahman bin Faisal University, Saudi Arabia with approval number IRB-2017-03-165.

HUMAN AND ANIMAL RIGHTS

Not applicable.

CONSENT FOR PUBLICATION

Written informed consent was obtained from each participants prior to the study.

AVAILABILITY OF DATA AND MATERIALS

Not applicaple.

FUNDING

None.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

Declared none.

REFERENCES

[1] World Health Organization. 1958.The First ten years of the World Health Organization Geneva: World Health Organization http://www.who.int/iris/handle/10665/37089
[2] Kasper DL, Ed. Harrison’s Principles of Internal Medicine 19th ed. 2015.
[3] Hruby A, Hu FB. The Epidemiology of Obesity: A Big Picture. Pharmacoeconomics 2015; 33(7): 673-89.
[http://dx.doi.org/10.1007/s40273-014-0243-x] [PMID: 25471927]
[4] National Institutes of Health Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults: The Evidence Report. National Institutes of Health, NHLBI:. Bethesda MD. 1998.https://www.nhlbi.nih.gov/health/educational/lose_wt/risk.htm
[5] Zhu S, Wang Z, Shen W, Heymsfield SB, Heshka S. Percentage body fat ranges associated with metabolic syndrome risk: results based on the third National Health and Nutrition Examination Survey (1988-1994). Am J Clin Nutr 2003; 78(2): 228-35.
[http://dx.doi.org/10.1093/ajcn/78.2.228] [PMID: 12885702]
[6] Okauchi Y, Kishida K, Funahashi T, et al. 4-year follow-up of cardiovascular events and changes in visceral fat accumulation after health promotion program in the Amagasaki Visceral Fat Study. Atherosclerosis 2010; 212(2): 698-700.
[http://dx.doi.org/10.1016/j.atherosclerosis.2010.06.011] [PMID: 20627199]
[7] Riss S, Bittermann C, Schwameis K, et al. Determinants for postoperative complications after laparoscopic intestinal resection for Crohn’s disease. Surg Endosc 2012; 26(4): 933-8.
[http://dx.doi.org/10.1007/s00464-011-1970-0] [PMID: 22002203]
[8] Lean ME, Han TS, Morrison CE. Waist circumference as a measure for indicating need for weight management. BMJ 1995; 15;311(6998): 158-61.
[http://dx.doi.org/10.1136/bmj.311.6998.158]
[9] Han TS, van Leer EM, Seidell JC, Lean ME. Waist circumference action levels in the identification of cardiovascular risk-factors-prevalence study in a random sample. BMJ 1995; 25;311(7017): 1401-5.
[http://dx.doi.org/10.1136/bmj.311.7017.1401]
[10] Lam BC, Koh GH, Chen C, Wong MK, Fallows SJ. Comparison of Body Mass Index (BMI), Body Adiposity Index (Bai), Waist Circumference (WC), Waist-to-hip Ratio (WHR) and Waist-to-height Ratio (WHtR) as predictors of cardiovascular disease risk factors in an adult population in Singapore. PLoS One 2015; 16;10(4): e0122985.
[http://dx.doi.org/10.1371/journal.pone.0122985]
[11] Czernichow S, Kengne AP, Stamatakis E, Hamer M, Batty GD. Body mass index, waist circumference and waist-hip ratio: which is the better discriminator of cardiovascular disease mortality risk?: evidence from an individual-participant meta-analysis of 82 864 participants from nine cohort studies. Obes Rev 2011; 12(9): 680-7.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00879.x] [PMID: 21521449]
[12] Cao Q, Yu S, Xiong W, et al. Waist-hip ratio as a predictor of myocardial infarction risk: A systematic review and meta-analysis. Medicine (Baltimore) 2018; 97(30)e11639
[http://dx.doi.org/10.1097/MD.0000000000011639] [PMID: 30045310]
[13] Odagiri K, Mizuta I, Yamamoto M, Miyazaki Y, Watanabe H, Uehara A. Waist to height ratio is an independent predictor for the incidence of chronic kidney disease. PLoS One 2014; 12;9(2): e88873.
[http://dx.doi.org/10.1371/journal.pone.0088873]
[14] He Y, Zeng Q, Tian J, Chen Z, Zhao X. Waist-to-height ratio as a predictor of dyslipidemia for Chinese adults. Zhonghua Jiankang Guanlixue Zazhi 2013; 1: 9-13.
[15] He Y, Li F, Wang F, Ma X, Zhao X, Zeng Q. The association of chronic kidney disease and waist circumference and waist-to-height ratio in Chinese urban adults. Medicine (Baltimore) 2016; 95(25)e3769
[http://dx.doi.org/10.1097/MD.0000000000003769] [PMID: 27336864]
[16] Ashwell M, Gunn P, Gibson S. Waist-to-height ratio is a better screening tool than waist circumference and BMI for adult cardiometabolic risk factors: systematic review and meta-analysis. Obes Rev 2012; 13(3): 275-86.
[http://dx.doi.org/10.1111/j.1467-789X.2011.00952.x] [PMID: 22106927]
[17] Hancu A, Radulian G. Correlation of visceral fat area with metabolic risk factors in romanian patients: A cross-sectional study. 2015; 22(4): 393-402.
[http://dx.doi.org/10.1515/rjdnmd-2015-0046]
[18] Hayashi T, Boyko EJ, Leonetti DL, et al. Visceral adiposity and the risk of impaired glucose tolerance: a prospective study among Japanese Americans. Diabetes Care 2003; 26(3): 650-5.
[http://dx.doi.org/10.2337/diacare.26.3.650] [PMID: 12610016]
[19] Vissers D, Hens W, Taeymans J, Baeyens JP, Poortmans J, Van Gaal L. The effect of exercise on visceral adipose tissue in overweight adults: a systematic review and meta-analysis. PLoS One 2013; 8(2)e56415
[http://dx.doi.org/10.1371/journal.pone.0056415] [PMID: 23409182]
[20] Consultation Obesity W. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser 2000; 894: i-xii, 1-253.
[PMID: 11234459]
[21] Hirani V, Zaninotto P, Primatesta P. Generalised and abdominal obesity and risk of diabetes, hypertension and hypertension-diabetes co-morbidity in England. Public Health Nutr 2008; 11(5): 521-7.
[http://dx.doi.org/10.1017/S1368980007000845] [PMID: 17767799]
[22] Elsayed EF, Tighiouart H, Weiner DE, et al. Waist-to-hip ratio and body mass index as risk factors for cardiovascular events in CKD. Am J Kidney Dis 2008; 52(1): 49-57.
[http://dx.doi.org/10.1053/j.ajkd.2008.04.002] [PMID: 18514990]
[23] de Koning L, Merchant AT, Pogue J, Anand SS. Waist circumference and waist-to-hip ratio as predictors of cardiovascular events: meta-regression analysis of prospective studies. Eur Heart J 2007; 28(7): 850-6.
[http://dx.doi.org/10.1093/eurheartj/ehm026] [PMID: 17403720]
[24] Bohn B, Muller MJ, Simic-Schleicher G, et al. BMI or BIA: Is body mass index or body fat mass a better predictor of cardiovascular risk in overweight or obese children and adolescents? A German/Austrian/Swiss multicenter apv analysis of 3,327 children and adolescents. Obes Facts 2015; 8(2): 156-65.
[http://dx.doi.org/10.1159/000381227]
[25] Romero-Corral A, Somers VK, Sierra-Johnson J, et al. Normal weight obesity: a risk factor for cardiometabolic dysregulation and cardiovascular mortality. Eur Heart J 2010; 31(6): 737-46.
[http://dx.doi.org/10.1093/eurheartj/ehp487] [PMID: 19933515]
[26] Vanavanan S, Srisawasdi P, Rochanawutanon M, Kumproa N, Kruthkul K, Kroll MH. Performance of body mass index and percentage of body fat in predicting cardiometabolic risk factors in Thai adults. Diabetes Metab Syndr Obes 2018; 11: 241-53.
[http://dx.doi.org/10.2147/DMSO.S167294] [PMID: 29910627]
Track Your Manuscript:


Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents




Webmaster Contact: info@benthamopen.net
Copyright © 2020 Bentham Open