The Open Rheumatology Journal




ISSN: 1874-3129 ― Volume 13, 2019

The Nature of Increased Circulating CD4+CD25-Foxp3+ T Cells in Patients with Systemic Lupus Erythematosus: A Novel Hypothesis



Bing Yan*, Yi Liu
Department of Rheumatology, West China Hospital of Sichuan University, China

Abstract

The forkhead family transcriptional factor (Foxp3) is an important lineage marker for regulatory T (Treg) cells. Foxp3 expression is primarily restricted to CD4+CD25+ cell population. Recently, an intriguing phenomenon is highlighted that there is a considerable amount of CD4+CD25-Foxp3+ T cells present in the peripheral blood of patients with systemic lupus erythematosus (SLE). Up to now, it is still an open question as to the nature of this cell subset. Following an analyses of the available phenotypic characteristics of CD4+CD25-Foxp3+ T cell subset along with some new findings in research of Treg in human SLE, we propose the hypothesis: the increased circulating CD4+CD25-Foxp3+ T cells in patients with SLE may constitute a peripheral reservoir of CD4+CD25+ Foxp3+ Treg cells. Under the condition of autoimmune response reactivated, CD4+CD25-Foxp3+ T cells could be recruited to expand the Treg pool upon CD25 regaining, for the effort to try to reverse a homeostatic imbalance shift to more aggressive expansion of autoreactive T cells and B cells. This hypothesis, if confirmed, would provide a new strategy for the treatment of SLE via the generation of therapeutic regulatory T cells.

Keywords: Foxp3, regulatory T cells, systemic lupus erythematosus..


Article Information


Identifiers and Pagination:

Year: 2009
Volume: 3
First Page: 22
Last Page: 24
Publisher Id: TORJ-3-22
DOI: 10.2174/1874312900903010022

Article History:

Received Date: 23/3/2009
Revision Received Date: 13/4/2009
Acceptance Date: 21/4/2009
Electronic publication date: 09/6/2009
Collection year: 2009

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 950
Abstract HTML Views: 1160
PDF Downloads: 263
Total Views/Downloads: 2373

Unique Statistics:

Full-Text HTML Views: 556
Abstract HTML Views: 662
PDF Downloads: 165
Total Views/Downloads: 1383
Geographical View

© Yan and Liu; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the Department of Rheumatology, West China Hospital of Sichuan University, No. 37, Guoxue Alley, Chengdu, Sichuan, Province 610041, China; Tel: +86 28 80770771; Fax: +86 28 85422394; E-mail: yanbing732002@yahoo.com.cn




INTRODUCTION

CD4+CD25+Foxp3+ regulatory T (Treg) cells play a crucial role in maintaining peripheral tolerance and provide prevention from autoimmune disease [1Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance Cell 2008; 133(5): 775-87.]. It is well known that the milestone in Treg research is the discovery of the function of Foxp3. Mutation in the Foxp3 gene has been identified as the disease-causative gene in Scurfy mouse, which spontaneously develops severe autoimmunity, as well as a similar human disease called IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome) [2Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse Nat Genet 2001; 27(1): 68-73., 3Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 Nat Genet 2001; 27(1): 20-1.]. Both of these diseases arise from a lack of functional Treg cells. Foxp3 is the key molecule not only for the development and function of thymus-derived, naturally occurring Treg (nTreg) cells but also for the induced Treg (iTreg) cells which are generated in the periphery. Retroviral transduction of the Foxp3 gene converts naïve CD4+CD25-T cells to phenotypical and functional Treg cells [4Hori S, Nomura T, Sakaguchi S, et al. Control of regulatory T cell development by the transcription factor Foxp3 Science 2003; 299(5609): 1057-61.]. Such transduced cells display in vivo and in vitro suppressive activity. Naïve CD4+ T cells can differentiate into Foxp3+ Treg cells in the periphery in the presence of IL-2 and TGF-ß [5Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells J Immunol 2007; 178(4): 2018-7., 6Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells J Immunol 2007; 178(7): 4022-6.]. Although transient up-regulation of Foxp3 expression has been observed in human T cells upon activation, conflicting data have also been published concerning the suppressive capacity of T cells with transient Foxp3 expression [7Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells J Clin Invest 2003; 112(9): 1437-43.-9Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells Eur J Immunol 2007; 37(1): 129-38.].

Foxp3 remains the specific intracellular marker for Treg to date. CD25 retains the conventional surface marker enabling easy isolation of Treg cell subset ex vivo. Foxp3 expression is primarily restricted to CD4+CD25+ cell population. In addition, Foxp3 expression is also detectable at a low level in CD4+CD25 cells in mice and humans [10Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3 Immunity 2005; 22(3): 329-41., 11Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level Eur J Immunol 2005; 35(6): 1681-91.]. Partly because of very limited amount, CD4+CD25Foxp3+ T cell subset attracted little attention in the past years. Very recently, four separate groups have reported one after another that there is a considerable amount of CD4+CD25Foxp3+ T cells present in the peripheral blood of patients with systemic lupus erythematosus (SLE) [12Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients Eur J Clin Invest 2007; 37(12): 987-6.-16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.]. The proportion of CD4+CD25Foxp3+ T cells within CD4+ lymphocytes is nearly up to 8% [16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.]. SLE is a disorder of immune regulation characterized by the breakdown of peripheral tolerance to self-antigens and the production of various autoantibodies. Many T-cell and B-cell abnormalities have been described [17Mittal G, Mason L, Isenberg D. Immunopathogenesis of systemic lupus ertyhematosus Future Rheumatol 2007; 2(1): 93-103.], and these include the perturbation of Treg cell subset revealed in recent years [18Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future Arthritis Res Ther 2008; 10(6): 227-35.]. However, the nature of CD4+CD25Foxp3+ T cell subset and the clinical significance of their increased quantity in patients with SLE have little known.

PHENOTYPE ANALYSIS OF CD4+CD25FOXP3+ T CELL

By flow-cytometric analysis, several groups reported that CD4+CD25Foxp3+ T cells in the peripheral blood from lupus patients expressed few level of CD127, another important phenotypic characteristic for Treg [13Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE. Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus Ann Rheum Dis 2008; 67(7): 1037-40., 15Suen JL, Li HT, Jong YJ, Chiang BL, Yen JH. Altered homeostasis of CD4 (+)FoxP3(+) regulatory T-cell subpopulations in systemic lupus erythematosus Immunology 2008; 127(2): 196-205., 16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.]. Furthermore, Bonelli and colleagues performed detailed comparative phenotypic analyses of CD4+CD25Foxp3+ T cells and CD4+CD25+ Foxp3+ Treg cells among SLE patients and healthy controls. A similar expression pattern was observed for both CD4+CD25Foxp3+ T cells and CD4+CD25+ Foxp3+ Treg cells from SLE patients concerning the expression of several surface and intracellular marker molecules that have been described to be associated with a Treg phenotype, such as CD62L, CD95, GITR, CTLA-4 and CD127. Subsequently, they sorted CD4+CD25CD127 cells from SLE patients, substituted for CD4+CD25Foxp3+ T cells, to evaluate their regulatory function in vitro. Unfortunately, these cells were shown to perform partial regulatory activity in that they were only able to suppress effector T cell proliferation but not IFN-γ production [16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.].

Notably, two groups described another phenotype characteristic that CD4+CD25Foxp3+ T cell subset in SLE patients is CD45RO+ in the overwhelming majority [15Suen JL, Li HT, Jong YJ, Chiang BL, Yen JH. Altered homeostasis of CD4 (+)FoxP3(+) regulatory T-cell subpopulations in systemic lupus erythematosus Immunology 2008; 127(2): 196-205., 16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.]. On the other hand, this cell subset in healthy donors consists of more CD45RA+ cells. This may suggest that most of the CD4+CD25Foxp3+ T cells in the peripheral blood from SLE patients have undergone autoantigen stimulation and been in the memory CD4+ T cell compartment. In human, it has been suggested that memory CD4+ T cells may be the peripheral origin of adaptive CD4+CD25+Foxp3+cells, also called iTregs [19Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells Proc Natl Acad Sci USA 2005; 102(11): 4103-8., 20Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo J Clin Invest 2006; 116(9): 2423-33.]. Both iTreg cells and nTreg cell constitute the CD4+CD25+Foxp3+Treg pool circulating in the blood. A study by Vukmanovic-Stejic and colleagues revealed that there was extremely close T cell receptor (TCR) clonal homology between human CD4+CD25CD45RO+ T cells and CD4+CD25+Foxp3+ Treg cells. These authors proposed that iTreg, emerging at the periphery from the memory T cell compartment, was mainly responsible for the dynamic expansion of the CD4+CD25+Foxp3+ Treg pool during an antigen-specific response [20Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo J Clin Invest 2006; 116(9): 2423-33.]. Interestingly, there has been accumulating evidence which indicate that the percentages of CD4+CD25+Foxp3+ Treg cells in the peripheral blood of SLE patients increase during their disease in the active stage [12Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients Eur J Clin Invest 2007; 37(12): 987-6., 14Bonelli M, von Dalwigk K, Savitskaya A, Smolen JS, Scheinecker C. Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis Ann Rheum Dis 2008; 67(5): 664-71., 21Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells Arthritis Rheum 2008; 58(3): 801-12., 22Venigalla RK, Tretter T, Krienke S, et al. Reduced CD4+,CD25- T cell sensitivity to the suppressive function of CD4+,CD25high,CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus Arthritis Rheum 2008; 58(7): 2120-30.].

HYPOTHESIS

In light of these findings, we propose the hypothesis as follows: The increased CD4+CD25Foxp3+ T cell subset in the peripheral blood of SLE patients may constitute a peripheral reservoir of CD4+CD25+ Foxp3+ Treg cell population. Under the condition of autoimmune responses reactivated, CD4+CD25Foxp3+ T cells could be recruited to expand the Treg pool upon CD25 regaining, for the effort to try to reverse a homeostatic imbalance shift to more aggressive expansion of autoreactive T cells and B cells in SLE.

DISCUSSION

We propose this hypothesis rather than one which recognizes CD4+CD25Foxp3+ T cells as conventional Treg cells, based on some new findings in research of Treg in human SLE and several characteristics belonged to this autoimmune disease itself.

There is a wide spectrum in human lupus ranging from solely involvement in skin to systemic disease. Beyond initial studies about Treg in human lupus, emerging data have revealed that the proportion of CD4+CD25+Foxp3+ Treg cells as well as CD4+CD25Foxp3+ T cells in the peripheral blood of lupus patients both increase and positively correlate with disease activity [12Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients Eur J Clin Invest 2007; 37(12): 987-6.-16Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95., 21Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells Arthritis Rheum 2008; 58(3): 801-12., 22Venigalla RK, Tretter T, Krienke S, et al. Reduced CD4+,CD25- T cell sensitivity to the suppressive function of CD4+,CD25high,CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus Arthritis Rheum 2008; 58(7): 2120-30.]. As for Treg function, there is also emerging evidence supporting that a relative deficiency of Treg function, rather than an intrinsic deficiency, is involved in the development of human lupus. This abnormality may be due to the resistant effect on Treg suppression direct from effector T cells, or the blockade effect on Treg suppression indirect from antigen-presenting cells [18Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future Arthritis Res Ther 2008; 10(6): 227-35., 21Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells Arthritis Rheum 2008; 58(3): 801-12., 22Venigalla RK, Tretter T, Krienke S, et al. Reduced CD4+,CD25- T cell sensitivity to the suppressive function of CD4+,CD25high,CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus Arthritis Rheum 2008; 58(7): 2120-30.]. In fact, the phenomenon of relative insufficiency of Treg function has been reported in numerous animal models [23Walker LS. Regulatory T cells overturned: the effectors fight back Immunology 2009; 126(4): 466-74.]. The same trend is now emerging from human studies, in particular those relating to SLE patients. This scenario just provide a rational explanation for the increased peripheral blood CD4+CD25+Foxp3+ Treg quantity in active lupus, which may be the positive feedback response to the resistant / blockade effect on Treg suppression. Subsequently, the following question is: Where do the increased circulating CD4+CD25+Foxp3+ Treg cells origin?

It is known that the CD4+CD25+Foxp3+ Tregs circulating in the blood consist of nTreg cells and iTreg cells. In SLE patients, nTreg apoptosis is found to be exacerbated due to more sensitive to Fas-mediated apoptosis [24Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus J Immunol 2005; 175(12): 8392-400.]. The proliferation of limited nTreg seems unlikely sufficient for a bulge in the CD4+CD25+Foxp3+ Treg cell pool in the active autoimmune response. What’s more, SLE is characterized by a high level of IL-6 [25Chun HY, Chung JW, Kim HA, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus J Clin Immunol 2007; 27(5): 461-6.]. This cytokine can interfere with the function of nTreg [26Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells Science 2003; 299(5609): 1033-6.], and can even convert nTreg cells to IL-17-producing cells [27Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta J Immunol 2007; 178(11): 6725-9.]. Both IL-2, combined with TGF-ß, have been suggested to enable the conversion of iTreg from CD4+CD25Foxp3 precursors in the periphery. However, lymphocyte production of these two cytokines is shown to be decreased in SLE patients [28Juang YT, Wang Y, Solomou EE, et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV J Clin Invest 2005; 115(4): 996-1005., 29Ohtsuka K, Gray JD, Quismorio FP Jr, Lee W, Horwitz DA. Cytokine-mediated down-regulation of B cell activity in SLE: effects of interleukin-2 and transforming growth factor-beta Lupus 1999; 8(2): 95-102.]. Therefore, the CD4+CD25Foxp3+ T cell population may serve as the main replenishment for CD4+CD25+Foxp3+ iTreg population that could rapidly be recruited to the Treg pool upon CD25 regaining, in order to combat the more aggressive expansion of autoreactive T cells and B cells during disease flare. Fortunately, Zelenay and his colleagues addressed this question in their mice model and established that Foxp3-expressing cells encompassed in the CD45RBlow CD25 subset were the cells contributing to the pool of CD25+Treg during immune activities [30Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion Proc Natl Acad Sci USA 2005; 102(11): 4091-6.]. This finding may further support our speculation.

FUTURE PERSPECTIVES

It is still an open question as to the nature of CD4+CD25Foxp3+ T cell subset and the reason of their increase in patients with SLE. More information must be determined before a definitive conclusion can be made. In particular, whether CD4+CD25Foxp3+ T cells and CD4+CD25+ Foxp3+ Treg cells in SLE patients share similar TCR Vß usage needs to be addressed. The role of CD4+CD25Foxp3+ T cells and CD4+CD25+ Foxp3+ Treg cells with respect to TCR clonal homology remains to be clarified. Furthermore, it must be formally established whether the acquisition of surface CD25 by CD4+CD25Foxp3+ T cells from SLE patients is necessary for their full regulatory capacity, suppressing not only proliferation but also IFN-γ production of effector T cells. If this is indeed the case, this would provide another strategy for the generation of therapeutic regulatory T cells for the treatment of SLE.

STATEMENT OF INTERESTS

Authors’ Declaration of Personal Interests

Dr. Yan has received the grant support from the National Natural Science Foundation of China (Grant No. 30801028). The other author has no conflict of interest.

REFERENCES

[1] Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance Cell 2008; 133(5): 775-87.
[2] Brunkow ME, Jeffery EW, Hjerrild KA, et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse Nat Genet 2001; 27(1): 68-73.
[3] Bennett CL, Christie J, Ramsdell F, et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3 Nat Genet 2001; 27(1): 20-1.
[4] Hori S, Nomura T, Sakaguchi S, et al. Control of regulatory T cell development by the transcription factor Foxp3 Science 2003; 299(5609): 1057-61.
[5] Zheng SG, Wang J, Wang P, Gray JD, Horwitz DA. IL-2 is essential for TGF-beta to convert naive CD4+CD25- cells to CD25+Foxp3+ regulatory T cells and for expansion of these cells J Immunol 2007; 178(4): 2018-7.
[6] Davidson TS, DiPaolo RJ, Andersson J, Shevach EM. Cutting Edge: IL-2 is essential for TGF-beta-mediated induction of Foxp3+ T regulatory cells J Immunol 2007; 178(7): 4022-6.
[7] Walker MR, Kasprowicz DJ, Gersuk VH, et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25- T cells J Clin Invest 2003; 112(9): 1437-43.
[8] Pillai V, Ortega SB, Wang CK, Karandikar NJ. Transient regulatory T-cells: a state attained by all activated human T-cells Clin Immunol 2007; 123(1): 18-29.
[9] Wang J, Ioan-Facsinay A, van der Voort EI, Huizinga TW, Toes RE. Transient expression of FOXP3 in human activated nonregulatory CD4+ T cells Eur J Immunol 2007; 37(1): 129-38.
[10] Fontenot JD, Rasmussen JP, Williams LM, Dooley JL, Farr AG, Rudensky AY. Regulatory T cell lineage specification by the forkhead transcription factor foxp3 Immunity 2005; 22(3): 329-41.
[11] Roncador G, Brown PJ, Maestre L, et al. Analysis of FOXP3 protein expression in human CD4+CD25+ regulatory T cells at the single-cell level Eur J Immunol 2005; 35(6): 1681-91.
[12] Lin SC, Chen KH, Lin CH, Kuo CC, Ling QD, Chan CH. The quantitative analysis of peripheral blood FOXP3-expressing T cells in systemic lupus erythematosus and rheumatoid arthritis patients Eur J Clin Invest 2007; 37(12): 987-6.
[13] Zhang B, Zhang X, Tang FL, Zhu LP, Liu Y, Lipsky PE. Clinical significance of increased CD4+CD25-Foxp3+ T cells in patients with new-onset systemic lupus erythematosus Ann Rheum Dis 2008; 67(7): 1037-40.
[14] Bonelli M, von Dalwigk K, Savitskaya A, Smolen JS, Scheinecker C. Foxp3 expression in CD4+ T cells of patients with systemic lupus erythematosus: a comparative phenotypic analysis Ann Rheum Dis 2008; 67(5): 664-71.
[15] Suen JL, Li HT, Jong YJ, Chiang BL, Yen JH. Altered homeostasis of CD4 (+)FoxP3(+) regulatory T-cell subpopulations in systemic lupus erythematosus Immunology 2008; 127(2): 196-205.
[16] Bonelli M, Savitskaya A, Steiner CW, Rath E, Smolen JS, Scheinecker C. Phenotypic and functional analysis of CD4+ CD25- Foxp3+ T cells in patients with systemic lupus erythematosus J Immunol 2009; 182(3): 1689-95.
[17] Mittal G, Mason L, Isenberg D. Immunopathogenesis of systemic lupus ertyhematosus Future Rheumatol 2007; 2(1): 93-103.
[18] Horwitz DA. Regulatory T cells in systemic lupus erythematosus: past, present and future Arthritis Res Ther 2008; 10(6): 227-35.
[19] Walker MR, Carson BD, Nepom GT, Ziegler SF, Buckner JH. De novo generation of antigen-specific CD4+CD25+ regulatory T cells from human CD4+CD25- cells Proc Natl Acad Sci USA 2005; 102(11): 4103-8.
[20] Vukmanovic-Stejic M, Zhang Y, Cook JE, et al. Human CD4+ CD25hi Foxp3+ regulatory T cells are derived by rapid turnover of memory populations in vivo J Clin Invest 2006; 116(9): 2423-33.
[21] Yan B, Ye S, Chen G, Kuang M, Shen N, Chen S. Dysfunctional CD4+,CD25+ regulatory T cells in untreated active systemic lupus erythematosus secondary to interferon-alpha-producing antigen-presenting cells Arthritis Rheum 2008; 58(3): 801-12.
[22] Venigalla RK, Tretter T, Krienke S, et al. Reduced CD4+,CD25- T cell sensitivity to the suppressive function of CD4+,CD25high,CD127 -/low regulatory T cells in patients with active systemic lupus erythematosus Arthritis Rheum 2008; 58(7): 2120-30.
[23] Walker LS. Regulatory T cells overturned: the effectors fight back Immunology 2009; 126(4): 466-74.
[24] Miyara M, Amoura Z, Parizot C, et al. Global natural regulatory T cell depletion in active systemic lupus erythematosus J Immunol 2005; 175(12): 8392-400.
[25] Chun HY, Chung JW, Kim HA, et al. Cytokine IL-6 and IL-10 as biomarkers in systemic lupus erythematosus J Clin Immunol 2007; 27(5): 461-6.
[26] Pasare C, Medzhitov R. Toll pathway-dependent blockade of CD4+CD25+ T cell-mediated suppression by dendritic cells Science 2003; 299(5609): 1033-6.
[27] Xu L, Kitani A, Fuss I, Strober W. Cutting edge: regulatory T cells induce CD4+CD25-Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta J Immunol 2007; 178(11): 6725-9.
[28] Juang YT, Wang Y, Solomou EE, et al. Systemic lupus erythematosus serum IgG increases CREM binding to the IL-2 promoter and suppresses IL-2 production through CaMKIV J Clin Invest 2005; 115(4): 996-1005.
[29] Ohtsuka K, Gray JD, Quismorio FP Jr, Lee W, Horwitz DA. Cytokine-mediated down-regulation of B cell activity in SLE: effects of interleukin-2 and transforming growth factor-beta Lupus 1999; 8(2): 95-102.
[30] Zelenay S, Lopes-Carvalho T, Caramalho I, Moraes-Fontes MF, Rebelo M, Demengeot J. Foxp3+ CD25- CD4 T cells constitute a reservoir of committed regulatory cells that regain CD25 expression upon homeostatic expansion Proc Natl Acad Sci USA 2005; 102(11): 4091-6.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


SCImago Journal Ranking

SCImago Journal & Country Rank

Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open