The Open Rheumatology Journal




ISSN: 1874-3129 ― Volume 13, 2019

Signal Transduction Pathways in Chronic Inflammatory Rheumatic Diseases



Andrew P Cope*, §
Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, New Hunt’s House, Guy’s Campus, Great Maze Pond, School of Medicine, King’s College London, London, SE1 1UL, UK


Article Information


Identifiers and Pagination:

Year: 2012
Volume: 6
Issue: Suppl 2
First Page: 207
Last Page: 208
Publisher Id: TORJ-6-207
DOI: 10.2174/1874312901206010207

Article History:

Electronic publication date: 7/9/2012
Collection year: 2012

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 800
Abstract HTML Views: 691
PDF Downloads: 218
Total Views/Downloads: 1709

Unique Statistics:

Full-Text HTML Views: 454
Abstract HTML Views: 411
PDF Downloads: 125
Total Views/Downloads: 990
Geographical View

© Andrew P. Cope; Licensee Bentham Open.

open-access license: This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.


* Address correspondence to this author at the Academic Department of Rheumatology, Centre for Molecular and Cellular Biology of Inflammation, New Hunt’s House, Guy’s Campus, Great Maze Pond, School of Medicine, King’s College London, London, SE1 1UL, UK; Tel: +44 20 7848 6901; Fax: +44 20 7848 8632; E-mail: andrew.cope@kcl.ac.uk§ Guest Editor





INTRODUCTION

The rheumatic diseases have become a test bed for new therapies in chronic inflammatory immune-mediated diseases – and rightly so. The inflammatory response is relatively easy to quantify, and validated outcome measures are available that permit investigation of efficacy over short periods of time. The late 1990s and early 2000s heralded the era of biological therapy, pioneered in diseases such as rheumatoid arthritis; clinical trials in inflammatory bowel disease and psoriasis followed soon after. These breakthroughs in medicine confirmed unambiguously that it was possible to suppress inflammation in vivo with highly specific, targeted therapy – in this case monoclonal antibodies or derivatives thereof. In the context of cytokine blockade it put to bed the notion that there was redundancy of cytokine cascades, implying that there were hierarchies, and that interfering with expression of inflammatory mediators at a proximal/early level was a rational approach to reduce the burden of these chronic disabling diseases.

As a result of these advances, there has been intense interest in addressing whether similar levels of suppression of inflammation could be achieved by interfering with the intracellular signal transduction pathways that underpin chronic inflammatory responses, in ways that are safe and which minimize off-target effects that might negate the therapeutic response or tolerability. There would be distinct advantages, not least in terms of cost, of administering orally active drugs that achieve similar response rates to the parenteral administered biologic agents. There are many pharmacologically tractable pathways to choose from. How does one prioritise these for further investigation?

It was with great anticipation that I invited some of the world’s leading exponents in signal transduction to contribute to this series. I was not disappointed. The following reviews provide timely updates on progress in understanding both the wiring of such complex signaling networks, the impact of gene deletion and the potential of specific signaling modules and their intermediates as valid targets for suppressing immune and inflammatory responses in man. While progress is more advanced with some pathways compared to others, studies where progress with pharmacological inhibition is relatively advanced have illustrated how the biology has directed approaches to manipulate signaling cascades for use in the clinical setting.

Okkenhaug and colleagues set the ball rolling with an elegant overview of how the PI3K signaling pathway evolved, how it becomes activated and how it’s active components effects are regulated. Focusing on p110γ and p110δ, the authors highlight the importance of understanding these intermediates in different cell types. Data from animal models of inflammation set the scene for cataloguing an array of perturbations of this pathway in rheumatoid arthritis (RA) and systemic lupus erythematosus (SLE). As regulators of cell activation, growth, proliferation, differentiation and survival, this pathway is a very attractive target for therapeutic manipulation.

The Ras family of small GTP binding proteins has been explored extensively in the context of cancer. An understanding of the mutations – both inherited and engineered – has provided major insights into understanding the biology of these signaling intermediates. Reedquist and Tak offer a tantalizing view of the complexities of the family of small GTPases, highlighting the parallels between invading fibroblast-like synoviocytes that underpin of cartilage destruction of synovial pannus in RA and invading tumour cells. Their conclusion that constitutive expression of H-Ras, combined with inflammation induced K- and N-Ras contributes substantially to this phenotype is particularly compelling. The role of Rap1 and its aberrant function in RA T cells is also described.

Janus kinase inhibitors are now in advanced stages of development for use in the treatment of immune-mediated inflammatory diseases. Indeed, one such inhibitor ruxolitinib, whose target is predominantly JAK1 and JAK2, is FDA approved for use in myelofibrosis, while tofacitinib has been tested extensively in immune-mediated diseases including RA, psoriasis and renal transplantation. This begs the question, how did the field get to this point? O’Shea, Laurence and colleagues provide some answers, elegantly summarising the biology of the JAK/STAT pathways that have underpinned these developments. Studies of gene-targeted mice and the identification of patients with mutations in JAK family members have done much to highlight the importance of this kinase family. Perhaps the best recognized are the loss-of-function mutations of JAK3 defining a subgroup of SCID patients, and the gain-of-function mutations of JAK2 responsible for a number of lymphoproliferative and myeloproliferative diseases. That these pathways are of particular importance in T cell biology, serving to skew pathways of differentiation along distinct lineages, means that the capacity to manipulate these pathways, particularly those relevant to the development and maintenance of Th17 effector T cells, is therefore of high relevance to autoimmune disease.

Clark and Dean summarise compelling evidence to support the notion that p38 MAPK pathway plays crucial roles in regulating inflammatory gene expression. Recent advances indicate that the initiation of activation of p38 MAPK pathway involves the recruitment and activation of ubiquitin ligases – an emerging concept relevant to a growing number of signal transduction pathways, besides NF-κB. Notable are the contributions that p38 biology have made to understanding regulation of mRNA stability and degradation, and the induction of negative regulatory pathways, including MAPK phosphatases, some of which are induced by glucocorticoids. Initial attempts to block this pathway in the clinic were fraught with unexpected adverse events, but a more detailed understanding of the mechanisms by which p38 regulates gene expression and a post-transcriptional level has led to the identification of downstream targets that might provide more selective ways to manipulate this pathway and its downstream effects.

Another stress kinase, the c-Jun N-terminal kinase, has featured widely as an attractive target in inflammation in the last two decades, not least because of it is activated by a wide range of environmental cues including tumour necrosis factor α and interleukin-1. The Jnk family are encoded by three genes, but alternative splicing generates at least 10 gene products, adding further complexity to the biology of this kinase. Firestein elaborates on how these gene products are activated through a cascade of phosphorylation events, coordinated by upstream multiple MAP kinase kinase kinases (MKKKs) and dual specificity MAPKK, notably MKK4 and MKK7, and, like p38 MAPK, regulated by a family of MAPK phosphatases. This elegant review also provides compelling evidence for the concept of isoform specific gene functions. Particularly relevant to rheumatic diseases are the target genes of Jnk activation and its associated transcription factors downstream, including matrix metalloproteinases (MMP), notably MMP3 and MMP13. Gene deletion and Jnk inhibition studies provide ample in vivo and in vitro evidence of tissue protection, impacting in addition on pathways of cell migration, differentiation and survival. Selective Jnk inhibition remains an exciting prospect.

This series provides something for readers from a wide range of disciplines, with a wide range of interests, including basic molecular and cellular biologists, as well as those clinician scientists considering future prospects for orally-active small molecule inhibitors of inflammatory pathways. I sincerely hope you enjoy this set of outstanding reviews as much as I have.

Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


SCImago Journal Ranking

SCImago Journal & Country Rank

Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open