The Open Urology & Nephrology Journal




ISSN: 1874-303X ― Volume 12, 2019
CASE REPORT

A Case of Anti-Glomerular Basement Membrane Crescentic Glomerulonephritis in a Female Renal Allograft Recipient with Unknown Native Disease: Retrospective Molecular Confirmation of Alport Disease



Mahesha Vankalakunti1, *, Ashish Parekh2, Anil K. B. Thimmegowda3, Rajanna Sreedhara2
1 Manipal Hospitals, Bangalore, India
2 Fortis Hospitals, Bangalore, India
3 BGS Gleneagles Global Hospitals, Bangalore, India

Abstract

Anti-Glomerular Basement Membrane (anti-GBM) crescentic glomerulonephritis developing in an allograft is a rare phenomenon. A patient with Alport syndrome receiving a renal transplant is at risk of developing anti-GBM glomerulonephritis, due to the absence of normal COL4α3, COL4α4 and COL4α5 trimer of the collagen network. Two unique challenges with planning kidney transplant in such a patient include- ideal donor selection; and risk of developing anti-GBM nephritis. We report a case of post-transplant anti-GBM crescentic glomerulonephritis in a female recipient with unknown native kidney disease who was diagnosed with Alport disease when she presented with hematuria and proteinuria nearly 2 years postrenal transplant. Allograft outcome in our case was unfavourable, patient reaching end-stage kidney disease within 6-month of diagnosis. The patient remains on continuous ambulatory peritoneal dialysis and currently active on the deceased donor transplant waiting list.

Keywords: Alport syndrome, Anti-GBM crescentic glomerulonephritis, Renal transplantation, Proteinuria, Glomerulonephritis, peritoneal dialysis.


Article Information


Identifiers and Pagination:

Year: 2019
Volume: 12
Issue: Suppl-1, M2
First Page: 35
Last Page: 40
Publisher Id: TOUNJ-12-35
DOI: 10.2174/1874303X01912010035

Article History:

Received Date: 10/02/2019
Revision Received Date: 06/05/2019
Acceptance Date: 13/05/2019
Electronic publication date: 31/07/2019
Collection year: 2019

Article Metrics:

CrossRef Citations:
0

Total Statistics:

Full-Text HTML Views: 214
Abstract HTML Views: 140
PDF Downloads: 85
ePub Downloads: 83
Total Views/Downloads: 522

Unique Statistics:

Full-Text HTML Views: 155
Abstract HTML Views: 103
PDF Downloads: 66
ePub Downloads: 62
Total Views/Downloads: 386
Geographical View

© 2019 Mahesha Vankalakunti.

open-access license: This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.


* Address correspondence to this author at the Pathology & Laboratory Medicine #98, Rustom Bagh, HAL Airport Road, Bangalore, INDIA – 560017;
Tel: +91-80-25023564; Fax: +91-80-25254563; Email: vkmahes123@gmail.com





1. INTRODUCTION

Anti-GBM crescentic glomerulonephritis in an allograft is very rare. It may be either due to de-novo anti-GBM antibody formation or secondary to Alport syndrome(AS). Etiologies of de-novo disease could be similar to those occurring in native kidney, which as smoking, exposure to hydrocarbon & organic solvents, bacterial and viral infections [1McAdoo SP, Pusey CD. Anti-Glomerular basement membrane disease. Clin J Am Soc Nephrol 2017; 12(7): 1162-72.[http://dx.doi.org/10.2215/CJN.01380217] [PMID: 28515156] ]. Patients with AS have genetic mutations affecting type IV collagen in the glomerular basement membranes and the renal allograft recipient develops pathogenic anti-GBM antibodies which are deposited along the glomerular capillary walls. The incidence of anti-GBM crescentic glomerulonephritis is reported to be 1.9% in patients with AS [2Byrne MC, Budisavljevic MN, Fan Z, Self SE, Ploth DW. Renal transplant in patients with Alport’s syndrome. Am J Kidney Dis 2002; 39(4): 769-75.[http://dx.doi.org/10.1053/ajkd.2002.31997] [PMID: 11920343] ]. It was first described in 1962 by McCoy et al., who put forth the idea of allogeneic response to the antigens or epitopes present in the donor kidney [3Fonck C, Loute G, Cosyns JP, Pirson Y. Recurrent fulminant anti-glomerular basement membrane nephritis at a 7-year interval. Am J Kidney Dis 1998; 32(2): 323-7.[http://dx.doi.org/10.1053/ajkd.1998.v32.pm9708621] [PMID: 9708 621] ]. Recurrent Anti-GBM crescentic glomerulonephritis in the graft is very unusual [4McCoy RC, Johnson HK, Stone WJ, Wilson CB. Absence of nephritogenic GBM antigen(s) in some patients with hereditary nephritis. Kidney Int 1982; 21(4): 642-52.[http://dx.doi.org/10.1038/ki.1982.72] [PMID: 7047864] ]. Here, we report a case of postrenal transplant anti-GBM crescentic glomerulonephritis in a female allograft recipient with an unknown native disease, later resolved to be AS.

2. CASE REPORT

A 17-year old female received a renal allograft transplant from her haplo-matched father in May 2012 for unknown native kidney disease. She presented with edema, anemia, proteinuria (2+), bland urinary sediments, negative Anti-Nuclear Antibodies (ANA) and bilateral small kidneys on ultrasonography. She did not receive any induction therapy. Her maintenance immunosuppressive medication included tacrolimus, mycophenolate mofetil and steroids. The postoperative period was uneventful.

5-month post-transplant, the patient was treated with valganciclovir for fever, cytopenia, and positive Cytomegalovirus (CMV) DNA-PCR. Her allograft function remained stable with serum creatinine of 1.0 mg/dl for the subsequent 20 months. Periodic routine urine tests were negative for blood, protein and decoy cells.

In January 2014, she developed haematuria along with symptoms of upper respiratory tract infection that was treated with oral erythromycin. Two weeks later hematuria recurred with development of edema and worsening of serum creatinine from 1.1mg/dl to 1.8 mg/dl. Urine examination showed 3+ proteinuria, numerous red blood cells and epithelial cells. On examination, allograft was non-tender, with resistive index 0.6 on ultrasonography, normal serum complements (C3, C4) and Antistreptolysin O antibody titres. ANA was positive (1:40, speckled). Allograft biopsy was performed.

Allograft biopsy showed 7 viable glomeruli with active circumferential crescents in 5 (Fig. 1). There was a mild degree of tubulointerstitial chronicity. Immunofluorescence staining showed strong linear IgG along the glomerular capillary base ment membranes and occasionally along distal tubular basement membranes (Fig. 2). A diagnosis of Anti-glomerular basement membrane nephritis with crescentic transformation was made.

Fig. (1)
Circumferential Active cellular crescent (PAS, 40x).


Fig. (2)
Linear accentuation of glomerular capillary basement membrane and distal tubular basement membrane with IgG (4+) on a scale of 0-4.


The patient was treated with pulse methylprednisolone (500 mg*3 doses). Plasmapheresis was initiated on day-2 whilst serum creatinine had increased to 2.2 mg/dl, and rituximab was added on day-3 of biopsy. 6 cycles of Plasmapheresis were given. The second dose of Rituximab 1 gm IV was given on day-11. Graft function marginally improved(serum creatinine 1.7 mg/dl) without any pulmonary symptoms.

Post-biopsy results (day-14), serum anti-GBM antibody was positive with titres of 91 (normal <12 IU/l); and negative anti neutrophil cytoplasmic antibody. Alport syndrome was suspected to be the native kidney disease in view of post-transplant anti-GBM crescentic glomerulonephritis. However, eye and ear examination were normal and the diagnosis of native disease was still unknown. Hence, the mutational study was ordered.

Clinical exome sequencing and variant analysis detected a high confidence homozygous A to G, C to T, and C to T substitution in the gene COL4 α3 on chromosome 2 at position 228113175, 2281135631 and 228173638, respectively; homozygous T to C and G to A substitution in the COL4 α4 on chromosome 2 at position 227872995 and 2279915832, respectively; heterozygous A to G substitution in the gene COL4 α5 on chromosome X at position 107865895.

In view of the positive anti-GBM antibody, plasmapheresis was continued. In all, 23 sessions were given. However, the graft function did not improve and deteriorated relentlessly over the next six months. A repeat graft biopsy was performed 6 months later to the first biopsy and revealed fibrous crescents in all 8 glomeruli (Fig. 3) with moderate tubule-interstitial chronicity. Immunofluorescence continued to reveal similar findings as first biopsy (Fig. (4). She is currently on continuous ambulatory peritoneal dialysis, waiting to receive a deceased donor kidney.

Parents of the index case were screened for routine urine analysis, eye and ear check-up. No abnormalities were found. Hence, further genetic studies were not carried.

3. DISCUSSION

Alport disease is a genetic condition affecting predominantly kidneys, ears and eyes. It is characterized by impaired production or assembly of type IV collagen network in the basement membrane due to mutations in COL4α3, COL4α4 or COL4α5 genes. Three genetic forms of AS have been identified: a] X-linked AS (85%) which is associated with mutations in COL4α5 gene, b] autosomal recessive AS (10%) where the patient is homozygous for mutations in COL4α3 and COL4α4 genes and c] autosomal dominant AS (5%) in which the patient has only one copy of mutations in either COL4α3 or COL4α4 genes (1). COL4α5 gene is located on the X chromosome and hence the full-blown disease is almost always seen in males. Autosomal mutations affect males and females equally.

Fig. (3)
Circumferential FIbrous Crescent in the repeat biopsy (PASM, 40x).


Fig. (4)
Linear accentuation of glomerular capillary basement membrane with IgG (4+) on a scale of 0-4, in the repeat biopsy (PASM, 40x).


Affected patients manifest as hematuria and proteinuria in their childhood, sensorineural deafness and eye changes (lenticonus, keratoconus and cataract). Nephrotic syndrome is seen in 30-40% of cases. Renal histology reveals focal and segmental sclerosis in established cases, however, glomerular morphology could be very subtle in the early stages. Interstitial foamy histiocytes are frequently seen. Immunofluorescence results are negative with a panel of immunoglobulins (IgG, IgA, IgM), complements (C3, C1q) and light chains (kappa & lambda). Discontinuous staining with COL4α5 along glomerular basement membrane, Bowman’s capsule and distal tubular basement membranes are noted. On electron microscopy, thin glomerular basement membrane is seen in the early phase of the disease, which later on depicts a typical thick and thin membrane with lamellated and basket weave appearance [5Heidet L, Gubler MC. The renal lesions of Alport syndrome. J Am Soc Nephrol 2009; 20(6): 1210-5.[http://dx.doi.org/10.1681/ASN.2008090984] [PMID: 19470679] ]. The clinical course progresses with the slow deterioration of renal function and proteinuria if left untreated, and results in end-stage kidney disease (ESKD). Pathology at ESKD is non-diagnostic with chronic diffuse and global glomerulosclerosis with severe tubular atrophy accompanied by interstitial fibrosis. It is very difficult to distinguish from other etiologies, as multi-layering of basement membranes is commonly seen with ESKD from any cause. In such cases, genetic testing can help to establish the diagnosis [6Adam J, Connor TM, Wood K, et al. Genetic testing can resolve diagnostic confusion in Alport syndrome. Clin Kidney J 2014; 7(2): 197-200.[http://dx.doi.org/10.1093/ckj/sft144] [PMID: 24944784] ]. In our patient, the kidneys were shrunken on initial presentation and hence pre-transplant biopsy was not done. A decision to proceed with kidney transplantation as definitive therapy in a young patient was taken as there was no other way to decipher the original reason for ESKD.

As patients with AS are deficient in collagen IV chains, development of pathogenic autoantibodies to the exposed epitopes in donor kidney during the post-transplant period is a recognized phenomenon [1McAdoo SP, Pusey CD. Anti-Glomerular basement membrane disease. Clin J Am Soc Nephrol 2017; 12(7): 1162-72.[http://dx.doi.org/10.2215/CJN.01380217] [PMID: 28515156] ]. Approximately 10% of the patients with Alport disease, who undergo a renal transplant, develop Anti-GBM antibodies without affecting graft function. Amongst them, only 1-2% of cases proceed to develop crescentic glomerulonephritis [3Fonck C, Loute G, Cosyns JP, Pirson Y. Recurrent fulminant anti-glomerular basement membrane nephritis at a 7-year interval. Am J Kidney Dis 1998; 32(2): 323-7.[http://dx.doi.org/10.1053/ajkd.1998.v32.pm9708621] [PMID: 9708 621] , 7Göbel J, Olbricht CJ, Offner G, et al. Kidney transplantation in Alport’s syndrome: long-term outcome and allograft anti-GBM nephritis. Clin Nephrol 1992; 38(6): 299-304.[PMID: 1468159] ]. Majority of such patients are males with X-linked Alport syndrome. On the contrary, anti-GBM disease in grafts of female recipients with Alport disease ise rarely described in the literature [8Jagose JT, Parekh SJ, Vachharajani TJ, Kulkarni SG, Kirpalani AL. Unusual presentation of Alport syndrome. J Assoc Physicians India 1994; 42(11): 913-4.[PMID: 7868500] ]. Development of graft dysfunction due to Anti-GBM nephritis ranges usually occurs within one year of transplantation. However, it may occur several years later too [9Kashtan CE. Renal transplantation in patients with Alport syndrome: Patient selection, outcomes, and donor evaluation. Int J Nephrol Renovasc Dis 2018; 11: 267-70.[http://dx.doi.org/10.2147/IJNRD.S150539] [PMID: 30410383] ]. Rarely, immediate graft dysfunction is observed. Our patient manifested with hematuria at 21-month post-transplant, which is similar to reported cases in the literature.

Removal of pathogenic autoantibodies by plasma exchange and suppression of on-going production of autoantibodies with steroids and cytotoxic therapy remains the mainstay of management]10]. Initial improvement was noticed in our patient; however, she progressed to ESKD requiring dialysis support. Similarly, long term plasmapheresis and mycophenolate mofetil may attenuate illness, however, do not circumvent graft loss. Rituximab therapy has shown improvement in haematological parameters than renal function [11Shah Y, Mohiuddin A, Sluman C, et al. Rituximab in anti-glomerular basement membrane disease. QJM 2012; 105(2): 195-7.[http://dx.doi.org/10.1093/qjmed/hcr001] [PMID: 21258056] , 12Heitz M, Carron PL, Clavarino G, et al. Use of rituximab as an induction therapy in anti-glomerular basement-membrane disease. BMC Nephrol 2018; 19(1): 241.[http://dx.doi.org/10.1186/s12882-018-1038-7] [PMID: 30236081] ]. Modification of histologic findings with Anti-T cell therapy was observed by Browne et al.; however, it failed to prevent graft loss [13Browne G, Brown PA, Tomson CR, et al. Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 2004; 65(2): 675-81.[http://dx.doi.org/10.1111/j.1523-1755.2004.00428.x] [PMID: 14717 941] ].

Graft dysfunction due to Anti-GBM crescentic GN poses a high risk for recurrence in the subsequent transplants. Re-transplantation in Alport post-transplant Anti-GBM nephritis has been attempted in 3 cases by Browne et al. [13Browne G, Brown PA, Tomson CR, et al. Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 2004; 65(2): 675-81.[http://dx.doi.org/10.1111/j.1523-1755.2004.00428.x] [PMID: 14717 941] ]. Authors have noticed a de-crescendo pattern in the form of shortened post-transplant duration for graft dysfunction /biopsy diagnosis, with successive transplantation. Alloantibodies to α5(IV)NC1 domain is the predominant antigen in this series undergoing re-transplantation. Among the various methodologies to detect serum autoantibodies to anti-GBM (western blot, ELISA and indirect immunofluorescence) – two out of three cases failed to detect using ELISA technique. The authors hypothesized Western blot as a more sensitive and specific method than standard ELISA [13Browne G, Brown PA, Tomson CR, et al. Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 2004; 65(2): 675-81.[http://dx.doi.org/10.1111/j.1523-1755.2004.00428.x] [PMID: 14717 941] ].

Absence of eyes and ear abnormalities in our patient is intriguing and we do not have any explanation. However, we conclude the patient is more likely to have had autosomal recessive Alport syndrome, for the following reasons: a) homozygous mutation in COL4α3 and COL4α4 on chromosome 2; b) lack of hematuria in father which rules out X-linked AS and c) the early age of onset.

CONCLUSION

Alport disease is a genetic disease involving mutations in type IV collagen strands in the glomerular basement membrane. In our patient, the diagnosis of Alport disease was made retrospectively after the development of anti-GBM antibody crescentic glomerulonephritis in the renal allograft nearly 2 years post-transplant. The diagnosis was established after mutation studies in the recipient revealed the relevant mutations.

A high index of suspicion is the key to diagnosis, and anti-GBM crescentic glomerulonephritis should be considered as a cause of unexplained allograft dysfunction with hematuria in patients with ESKD of unknown etiology. Mutation study of the recipient is worth performing in such instances to confirm diagnosis as it would help to establish the cause for the allograft failure as well as help in choosing donors for a possible second transplant.

LIST OF ABBREVIATIONS

ANA = Antinuclear Antibody
ANCA = Anti-neutrophil Cytoplasmic Antibody
Anti-GBM = Anti-Glomerular Basement Membrane
AS = Alport Syndrome
ASO = Anti-Streptolysin O Titer
C3 = Complement C3c
C4 = Complement C4
CMV = Cytomegalovirus
DNA = Deoxyribonucleic Acid
ELISA = Enzyme-linked Immunosorbent Assay
GN = Glomerulonephritis
PCR = Polymerase Chain Reaction
AS = Alport Syndrome

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

Not applicable.

CONSENT FOR PUBLICATION

Informed consent was obtained from the patient.

STANDARD FOR REPORTING

CARE guidelines and methodology were followed.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

We sincerely thank Mrs. Tulasi Kumari, Mrs. Hema Nagaraj and Mrs. Bindushree for their outstanding technical support in Histopathology section.

REFERENCES

[1] McAdoo SP, Pusey CD. Anti-Glomerular basement membrane disease. Clin J Am Soc Nephrol 2017; 12(7): 1162-72.[http://dx.doi.org/10.2215/CJN.01380217] [PMID: 28515156]
[2] Byrne MC, Budisavljevic MN, Fan Z, Self SE, Ploth DW. Renal transplant in patients with Alport’s syndrome. Am J Kidney Dis 2002; 39(4): 769-75.[http://dx.doi.org/10.1053/ajkd.2002.31997] [PMID: 11920343]
[3] Fonck C, Loute G, Cosyns JP, Pirson Y. Recurrent fulminant anti-glomerular basement membrane nephritis at a 7-year interval. Am J Kidney Dis 1998; 32(2): 323-7.[http://dx.doi.org/10.1053/ajkd.1998.v32.pm9708621] [PMID: 9708 621]
[4] McCoy RC, Johnson HK, Stone WJ, Wilson CB. Absence of nephritogenic GBM antigen(s) in some patients with hereditary nephritis. Kidney Int 1982; 21(4): 642-52.[http://dx.doi.org/10.1038/ki.1982.72] [PMID: 7047864]
[5] Heidet L, Gubler MC. The renal lesions of Alport syndrome. J Am Soc Nephrol 2009; 20(6): 1210-5.[http://dx.doi.org/10.1681/ASN.2008090984] [PMID: 19470679]
[6] Adam J, Connor TM, Wood K, et al. Genetic testing can resolve diagnostic confusion in Alport syndrome. Clin Kidney J 2014; 7(2): 197-200.[http://dx.doi.org/10.1093/ckj/sft144] [PMID: 24944784]
[7] Göbel J, Olbricht CJ, Offner G, et al. Kidney transplantation in Alport’s syndrome: long-term outcome and allograft anti-GBM nephritis. Clin Nephrol 1992; 38(6): 299-304.[PMID: 1468159]
[8] Jagose JT, Parekh SJ, Vachharajani TJ, Kulkarni SG, Kirpalani AL. Unusual presentation of Alport syndrome. J Assoc Physicians India 1994; 42(11): 913-4.[PMID: 7868500]
[9] Kashtan CE. Renal transplantation in patients with Alport syndrome: Patient selection, outcomes, and donor evaluation. Int J Nephrol Renovasc Dis 2018; 11: 267-70.[http://dx.doi.org/10.2147/IJNRD.S150539] [PMID: 30410383]
[10] Lemahieu W, Ombelet S, Lerut E, Jamar S, Sprangers B. Reversal of dialysis-dependent anti-glomerular basement membrane disease using plasma exchange, glucocorticosteroids, and rituximab. Kidney Int Rep 2018; 3(5): 1229-32.[http://dx.doi.org/10.1016/j.ekir.2018.04.015] [PMID: 30197991]
[11] Shah Y, Mohiuddin A, Sluman C, et al. Rituximab in anti-glomerular basement membrane disease. QJM 2012; 105(2): 195-7.[http://dx.doi.org/10.1093/qjmed/hcr001] [PMID: 21258056]
[12] Heitz M, Carron PL, Clavarino G, et al. Use of rituximab as an induction therapy in anti-glomerular basement-membrane disease. BMC Nephrol 2018; 19(1): 241.[http://dx.doi.org/10.1186/s12882-018-1038-7] [PMID: 30236081]
[13] Browne G, Brown PA, Tomson CR, et al. Retransplantation in Alport post-transplant anti-GBM disease. Kidney Int 2004; 65(2): 675-81.[http://dx.doi.org/10.1111/j.1523-1755.2004.00428.x] [PMID: 14717 941]
Society Affiliation


Endorsements



"Open access will revolutionize 21st century knowledge work and accelerate the diffusion of ideas and evidence that support just in time learning and the evolution of thinking in a number of disciplines."


Daniel Pesut
(Indiana University School of Nursing, USA)

"It is important that students and researchers from all over the world can have easy access to relevant, high-standard and timely scientific information. This is exactly what Open Access Journals provide and this is the reason why I support this endeavor."


Jacques Descotes
(Centre Antipoison-Centre de Pharmacovigilance, France)

"Publishing research articles is the key for future scientific progress. Open Access publishing is therefore of utmost importance for wider dissemination of information, and will help serving the best interest of the scientific community."


Patrice Talaga
(UCB S.A., Belgium)

"Open access journals are a novel concept in the medical literature. They offer accessible information to a wide variety of individuals, including physicians, medical students, clinical investigators, and the general public. They are an outstanding source of medical and scientific information."


Jeffrey M. Weinberg
(St. Luke's-Roosevelt Hospital Center, USA)

"Open access journals are extremely useful for graduate students, investigators and all other interested persons to read important scientific articles and subscribe scientific journals. Indeed, the research articles span a wide range of area and of high quality. This is specially a must for researchers belonging to institutions with limited library facility and funding to subscribe scientific journals."


Debomoy K. Lahiri
(Indiana University School of Medicine, USA)

"Open access journals represent a major break-through in publishing. They provide easy access to the latest research on a wide variety of issues. Relevant and timely articles are made available in a fraction of the time taken by more conventional publishers. Articles are of uniformly high quality and written by the world's leading authorities."


Robert Looney
(Naval Postgraduate School, USA)

"Open access journals have transformed the way scientific data is published and disseminated: particularly, whilst ensuring a high quality standard and transparency in the editorial process, they have increased the access to the scientific literature by those researchers that have limited library support or that are working on small budgets."


Richard Reithinger
(Westat, USA)

"Not only do open access journals greatly improve the access to high quality information for scientists in the developing world, it also provides extra exposure for our papers."


J. Ferwerda
(University of Oxford, UK)

"Open Access 'Chemistry' Journals allow the dissemination of knowledge at your finger tips without paying for the scientific content."


Sean L. Kitson
(Almac Sciences, Northern Ireland)

"In principle, all scientific journals should have open access, as should be science itself. Open access journals are very helpful for students, researchers and the general public including people from institutions which do not have library or cannot afford to subscribe scientific journals. The articles are high standard and cover a wide area."


Hubert Wolterbeek
(Delft University of Technology, The Netherlands)

"The widest possible diffusion of information is critical for the advancement of science. In this perspective, open access journals are instrumental in fostering researches and achievements."


Alessandro Laviano
(Sapienza - University of Rome, Italy)

"Open access journals are very useful for all scientists as they can have quick information in the different fields of science."


Philippe Hernigou
(Paris University, France)

"There are many scientists who can not afford the rather expensive subscriptions to scientific journals. Open access journals offer a good alternative for free access to good quality scientific information."


Fidel Toldrá
(Instituto de Agroquimica y Tecnologia de Alimentos, Spain)

"Open access journals have become a fundamental tool for students, researchers, patients and the general public. Many people from institutions which do not have library or cannot afford to subscribe scientific journals benefit of them on a daily basis. The articles are among the best and cover most scientific areas."


M. Bendandi
(University Clinic of Navarre, Spain)

"These journals provide researchers with a platform for rapid, open access scientific communication. The articles are of high quality and broad scope."


Peter Chiba
(University of Vienna, Austria)

"Open access journals are probably one of the most important contributions to promote and diffuse science worldwide."


Jaime Sampaio
(University of Trás-os-Montes e Alto Douro, Portugal)

"Open access journals make up a new and rather revolutionary way to scientific publication. This option opens several quite interesting possibilities to disseminate openly and freely new knowledge and even to facilitate interpersonal communication among scientists."


Eduardo A. Castro
(INIFTA, Argentina)

"Open access journals are freely available online throughout the world, for you to read, download, copy, distribute, and use. The articles published in the open access journals are high quality and cover a wide range of fields."


Kenji Hashimoto
(Chiba University, Japan)

"Open Access journals offer an innovative and efficient way of publication for academics and professionals in a wide range of disciplines. The papers published are of high quality after rigorous peer review and they are Indexed in: major international databases. I read Open Access journals to keep abreast of the recent development in my field of study."


Daniel Shek
(Chinese University of Hong Kong, Hong Kong)

"It is a modern trend for publishers to establish open access journals. Researchers, faculty members, and students will be greatly benefited by the new journals of Bentham Science Publishers Ltd. in this category."


Jih Ru Hwu
(National Central University, Taiwan)


Browse Contents



Webmaster Contact: info@benthamopen.net
Copyright © 2019 Bentham Open