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Abstract: Wolman disease (WD) and cholesteryl ester storage disease (CESD) are lysosomal storage diseases (LSDs) caused by a
deficiency in lysosomal acid lipase (LAL) due to mutations in the LIPA gene. This enzyme is critical to the proper degradation of
cholesterol in the lysosome. LAL function is completely lost in WD while some residual activity remains in CESD. Both are rare
diseases  with  an  incidence  rate  of  less  than  1/100,000  births  for  WD  and  approximate  2.5/100,000  births  for  CESD.  Clinical
manifestation of WD includes hepatosplenomegaly, calcified adrenal glands, severe malabsorption and a failure to thrive. As in
CESD, histological analysis of WD tissues reveals the accumulation of triglycerides (TGs) and esterified cholesterol (EC) in cellular
lysosomes. However, the clinical presentation of CESD is less severe and more variable than WD. This review is to provide an
overview of the disease pathophysiology and the current state of therapeutic development for both of WD and CESD. The review
will also discuss the application of patient derived iPSCs for further drug discovery.

Keywords: Wolman disease,  Cholesteryl  ester  storage disease,  Lysosomal storage disease,  High-throughput screening,  Induced
pluripotent stem cells, Cell-based disease model.

INTRODUCTION

Lysosomal  storage  diseases  (LSDs)  are  a  group  of  approximately  50  disorders  that  result  from  the  defects  in
lysosomal  enzymes  or  proteins  [1,  2].  Lysosomes  play  a  critical  role  in  maintaining  overall  cell  homeostasis  by
digesting  and  recycling  lipids  and  macromolecules  through  the  endosomal-autophagic-lysosomal  system.  Through
macroautophagy, microautophagy, endosome-lysosomal fusion, and chaperone-mediated autophagy, the lysosome is
responsible for handling the degradation of dozens of substrates [1]. Functional deficiency of a lysosomal enzyme or
protein  at  any  point  in  a  lysosomal  degradation  pathway can  result  in  accumulation  of  the  lipid  or  macromolecule
upstream of the deficiency, such as unesterified cholesterol in Niemann-Pick disease type C and glycogen in Pompe
disease,  both  of  which  are  LSDs  [3,  4].  Thus,  LSDs  as  a  group  of  diseases  can  lead  to  a  wide  array  of  clinical
presentations  and  underlying  cellular  phenotypes  depending  on  the  nature  of  the  macromolecule  accumulated.
Collectively, the approximately 50 LSDs (as a group) have a prevalence of 1 in every 5,000-10,000 live births [5].
Enzyme replacement  therapy (ERT),  using recombinant  wild-type enzyme to  replace  the  mutant  enzyme,  has  been
approved  for  type  1  Gaucher  disease  [6]  as  well  as  Fabry  disease,  MPS1,  MPS  II  (Hunter  syndrome),  MPS  IVA
(Morquio A syndrome), MPS VI, Pompe disease, and recently LAL deficiency [2]. Substrate reduction therapy (SRT) is
another  therapeutic  approach  that  reduces  the  production  of  the  accumulated  macromolecule  in  a  given  disease.
Miglustat, an SRT, was approved in 2006 for treating type 1 Gaucher disease and was later approved for Niemann-Pick
type C in Europe [7].

Wolman Disease and Cholesteryl Ester Storage Disease

In  1956, Moshe  Wolman and  colleagues first reported  a case of xanthomatosis  with massive  calcification  of  the
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adrenal glands in a two- year-old infant [8]. This first patient was admitted to the hospital due to vomiting, a distended
abdomen,  and  a  pale  yellowish  complexion.  Upon  autopsy  of  the  patient,  Wolman  also  noted  the  accumulation  of
foamy lipid  droplets  in  various  tissues,  including  the  liver,  spleen,  intestine,  and  lymph nodes.  The  observation  of
adrenal calcification distinguished this disease from diseases with very similar symptoms, such as Niemann-Pick Type
C. In addition to adrenal calcification, hepatosplenomegaly, failure to thrive, and malabsorption are all hallmarks of
WD. It is now known that patients with WD have a complete absence of functional Lysosomal Acid Lipase (LAL),
caused by mutations in the LIPA gene, which leads to the accumulation of TGs and ECs in the lysosomes in cells of
many tissues [9, 10]. LAL is an enzyme necessary for the proper intracellular degradation of TGs and CEs, which are
delivered to the lysosome via receptor-mediated endocytosis. This complete loss of LAL function is what distinguishes
WD from CESD, a similar disease in which patients retain some residual functional LAL [11, 12]. Patients with CESD
have widely variable functional levels of LAL (1-12%), resulting in a wide range of clinical phenotypes. CESD may
present itself into adulthood, with some patients with less severe forms of the disease likely remaining undiagnosed in
their entire life. In contrast to CESD, WD is an infantile onset disease and clinical presentation begins within the first
few weeks of life. Markedly more severe than CESD, the progressive course of WD leads to death within the first year.

Epidemiology

WD is rare and is estimated to occur at a rate of less than 1/100,000 newborns [13]. WD occurs more frequently in
Iranian-Jewish populations (1 in 4,200 newborns) and in areas of the Galilee [14]. Wolman himself pointed out that
even  in  areas  with  higher  than  average  rates  of  WD,  clinical  awareness  for  WD  may  not  be  high,  leading  to
underreporting [12].  However,  because the clinical phenotype of Wolman Disease is quite severe,  it  can be readily
diagnosed. In contrast, CESD, which can present a range of clinical phenotypes, is more difficult to diagnose and may
be significantly under-diagnosed. Although there are few reported cases of CESD, it is estimated that in some European
populations as many as 2.5/100,000 people may have biallelic LIPA mutations that result in CESD [15, 16].

Clinical Presentations and Diagnosis

LAL deficiency  should  be  suspected  in  patients  with  elevated  serum transaminases  (AST,  ALT,  or  both),  liver
fibrosis,  cirrhosis,  and  hepatomegaly.  Elevated  LDL-cholesterol,  triglycerides,  and  serum total  cholesterol  are  also
present in patients [16, 17]. As mentioned previously, WD may be differentiated from CESD based on their differences
in disease progress as well as the functional level of LAL in peripheral tissues. Prenatal diagnosis of WD is possible in
cases where there is suspected risk due to a family history of WD [18, 19]. Though WD symptoms normally take a few
weeks to manifest, some abdominal distention in the affected infant may be evident immediately after birth [20]. Infants
are usually admitted into the clinic due to vomiting and diarrhea, a distended abdomen, and an overall failure to thrive
[21].  Patients  with  WD  display  reduced  HDL  levels,  and  increased  levels  of  total  cholesterol,  triglycerides,  and
alanine/aspartate transaminase [20, 22 - 24]. Moderate jaundice and a fever may be present. A key feature of WD is the
enlargement and calcification of the adrenal glands, which can be confirmed via abdominal radiographs or histological
examination [25]. Although adrenal calcification is a ubiquitous pathological feature of WD, some documented cases of
WD patients do not have this affliction [26]. CT scans of the abdomen can reveal distended bowel loops [22] and biopsy
of the small intestine can show infiltration of the lamina propria by foamy macrophages filled with cholesteryl esters
and triglycerides. The liver, spleen, lymph nodes, and tonsils may also be enlarged due to accumulation of triglycerides
and cholesteryl esters in lysosomes of infiltrating macrophages and other cells [27, 28]. These macrophages also display
cholesterol-like  crystals  [29].  WD-affected  livers  appear  yellow  and  greasy  and  a  more  detailed  histological
examination can reveal fibrosis and large lipid-filled Kupffer cells [30]. The spleen can be over 20 times the normal
size, and filled with numerous lipid-filled vacuoles [31]. Many of these symptoms can also be associated with other
lysosomal storage diseases such as Niemann-Pick Type C and Gaucher disease, but a confident diagnosis may be made
by assaying patient tissue samples for LAL activity and by examining the patient’s genotype. Biochemical assays for
measurements  of  LAL  activity  can  also  be  used  to  differentiate  WD  from  CESD  (Table  1).  In  WD,  secondary
abnormalities due to malabsorption may occur, such as anemia and abnormal liver function [32]. A paucity of fat in
subcutaneous  tissue  may  be  noted,  and  generalized  osteoporosis,  though  rare,  is  possible  [25].  The  malabsorption,
however,  is  usually  so  severe  that  normal  enteral  nutrition  may  not  be  enough  to  provide  adequate  nutrients.
Hyperalimentation via intravenous drip has been found to be only mildly effective [33]. Patients with WD do not live
beyond the first year of life [34].
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Table 1. Comparison of disease symptoms and characteristics for Wolman Disease vs. Cholesteryl Ester Storage Disease.

Disease Symptoms/Characteristics Wolman Disease Cholesteryl Ester Storage Disease
Lipid Profile Elevated LDL-cholesterol, triglycerides. Reduced

levels of HDL
Elevated LDL-cholesterol, triglycerides, serum total
cholesterol [16] Reduced levels of HDL

Liver Function Elevated ALT + AST Elevated ALT + AST
Hepatic Pathology Yellow and greasy. Infiltration by lipid-filled

Kupffer cells [30]. Fibrosis.
Microvesicular steatosis of the hepatocytes. Cirrhosis.
Infiltration by lipid-filled Kupffer cells and macrophages
[36]

Splenic Pathology Enlarged spleen [27] Enlarged spleen [11]
Adrenal Pathology Calcification of the adrenal glands [25] Very rare calcification of the adrenal glands [16]
Intestinal Pathology Massive CE and TG accumulation in the small

intestine. Infiltration of the lamina propria by foamy
macrophages [34]

CE accumulation, but to a much lesser degree than WD
[16]

Biochemical Features No functioning levels of LAL [34] 1-12% of functioning LAL relative to healthy patients
[11]

Age of Onset First few months of birth [34] Childhood to Adulthood [16]
Life Expectancy <1 year [34] Patients live into adulthood [16]
Causes of Death Malnutrition, malabsorption, liver failure [34] Liver failure [16]

The clinical presentations of CESD are highly variable due to the range of residual LAL activity levels that cause
the  disease.  Clinical  presentation  may  occur  as  early  as  infancy  or  as  late  as  the  fifth  and  sixth  decades  of  life;
sometimes CESD is diagnosed completely by accident [35].  Patients with severe CESD may present  with Wolman
Disease-like  symptoms,  such  as  diarrhea  and  failure  to  thrive  [16].  Patients  typically  have  hepatomegaly  and  liver
dysfunction with liver  biopsies  revealing microvesicular  steatosis  in  the hepatocytes [36].  This  liver  dysfunction is
associated  with  the  elevation  of  serum  transaminases,  such  as  alanine  aminotransferase  (ALT)  and  aspartate
aminotransferase (AST). Patients with CESD have increased levels of triglycerides and serum total/LDL cholesterol,
the latter of which can cause accelerated atherosclerosis [16, 37]. Patients with CESD have reduced serum HDL levels.
Increased infiltration of the sinusoids by Kupffer cells and macrophages also occurs, both of which show cytoplasmic
storage of foamy, fatty material [38]. Lipid deposition in the liver can lead to cirrhosis [30]. Compared with WD, the
cholesteryl ester content of the liver tissue is much higher in CESD. In general, the accumulation of cholesteryl esters in
tissues is higher than that of triglycerides due a lower cholesteryl ester affinity for the remaining functional LAL [16,
39].  Needle  shaped  autofluorescent  crystals  can  be  seen  in  CESD  hepatocytes.  Though  rare,  some  patients  have
splenomegaly and adrenal calcification [40, 41]. CESD-related mortality is often due to liver failure and/or secondary
accelerated atherosclerotic disease [16].

When diagnosing CESD, it is critical to differentiate between patients with true CESD and those with non-alcoholic
fatty liver disease (NAFLD). Patients with NAFLD may also present with elevated aminotransferase levels as well as
hepatic steatosis. To confirm a CESD diagnosis, Hulkova et al. recommend a more sophisticated histological evaluation
of a liver biopsy. The use of fixed, paraffin-embedded and unfixed frozen liver samples can enable the recognition of
accumulated lipids that are localized to the lysosome. One may also use additional immunohistochemical analyses with
lysosomal markers to confirm lysosomal accumulation (LAMP1, LAMP2, etc.) [36]. Unlike CESD, NAFLD liver cells
display macrosteatosis as well as masses of lipid occupying the whole cell cytoplasm.

A diagnosis of WD and CESD requires a biochemical analysis of functional LAL levels in patient cells. Levels of
LAL activity can be detected in easily obtainable patient tissue samples (i.e. skin fibroblasts or blood leukocytes) via a
fluorometric enzyme activity assay using 4-methylumbelliferone (4-MU) palmitate as a substrate [42, 43]. When 4-MU
palmitate is cleaved, a fluorescent product is produced that can be measured via a fluorescence reader. Because 4-MU
palmitate cleavage is not specific to LAL, a specific inhibitor is used to differentiate between general lipase activity and
LAL activity. This assay can also be performed in amniotic fluid cells for prenatal screening [44, 45]. While assaying
for  LAL activity may give a  clear  diagnosis  of  LAL deficiency,  a  definitive diagnosis  may be made by the exonic
sequencing of the LIPA gene. Additionally, exonic sequencing may be required when measuring LAL activity alone
gives an ambiguous diagnosis on the LAL deficiency spectrum [46]. Anderson et al. showed that in contrast to CESD,
WD patients have no functioning levels of LAL and their mutations predict a loss of intact LAL protein [46]. Each of
the  five  WD  mutations  identified  in  their  study  were  nonsense,  resulting  in  the  cessation  of  translation  of  LAL.
Subsequently,  no intact  LAL protein was detected in immunoblots  from these patients.  The sequencing of  LIPA  in
CESD patients revealed the presence of an exon 8 splice junction mutation (c.894G>A; E8SJM), the most common
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mutation associated with CESD [47]. The reported mutations of LIPA for both WD and CESD are summarized in Table
2.

Table 2. Known WD and CESD mutations.

Disease Mutation Exon Base
Change

Amino Acid
Change

Remaining
Enzyme

Activity (% of
WT)

Phenotypic Presentations

Ref.

WD E3∆8bp 3 8 bp
deletion Nonsense

“deficient” Hepatosplenomegaly, adrenal calcifications, abdominal
distension, vomiting, steorrhea, failure to thrive. Death at 3
months (heart failure)

[128]

WD Y22X 3 C to G Tyr to X
<1% Abdominal distension with hepatosplenomegaly, frequent

diarrhea and vomiting. Calcified and enlarged adrenals,
hepatosplenomegaly. Death at 114 days

[129]

WD R44X 3 C to T Arg to X Not reported Not reported [34]
WD E4skip 4 Unknown Nonsense <4% Bilateral adrenal calcifications. Death at 4 months [46]
WD G60V 4 G to T Gly to Val <1% Calcified adrenals, hepatosplenomegaly [53]

WD W116X 4 G to A Trp to X
<1% Liver necrosis/fibrosis, vacuolated lymphocytes. Bone marrow

showed lipid laden histiocytes. Enlarged and calcified adrenal
glands. Death at 4 months due to liver and renal failure

[46]

WD E4∆2bp 4 TC deletion Nonsense
Undetectable Hepatosplenomegaly, adrenal calcifications, abdominal

distension, vomiting, steorrhea, failure to thrive. Death at 2.5
months (respiratory and cardiac arrest)

[128]

WD S106X 5 C deletion Ser to X

<1% Pregnancy terminated after chorionic villus biopsy
demonstrated lipase deficiency. Previous sibling died at 3
months and had hepatosplenomegaly, diarrhea, anemia, and
calcified adrenals

[53]

WD fs177 6 T to TT Nonsense Near absent Failure to thrive, diarrhea, hepatomegaly [46]

WD L179P 6 T to C Leu to Pro
<5% Pregnancy terminated and diagnosis was confirmed in cultured

fibroblasts. Previous siblings with WD had
hepatosplenomegaly, failure to thrive, and adrenal calcification

[130]

WD fs219 7 T deletion Nonsense
<1% Liver necrosis/fibrosis, vacuolated lymphocytes. Bone marrow

showed lipid laden histiocytes. Enlarged and calcified adrenal
glands. Death at 4 months due to liver and renal failure

[46]

WD Q277X 8 C to T Gln to X Undetectable Hepatosplenomegaly, adrenal calcification, failure to thrive [131]

WD E8SJM+1 8 G to A 24 AA
deletion

<1% Hepatomegaly, diarrhea, failure to thrive [54]

WD E8SJM-3 8 C to T 24 AA
deletion

Undetectable Hepatosplenomegaly, adrenal calcification, failure to thrive [131]

WD Y303X 10 T to A Tyr to X Undetectable Hepatomegaly, failure to thrive, diarrhea, adrenal gland
calcifications [55]

CESD c.57_60delTGAG 2 TGAG
deletion Nonsense Low (No units

provided)
Hepatomegaly, microvesicular steatosis in the hepatic
parenchyma. Portal tracts had foamy macrophages [132]

CESD Q64R 4 A to G Gln to Arg
3-8% Hepatomegaly, hypercholesterolemia, and

hypoalphalipoproteinemia. Mild fibrosis in the liver with
microvacuolated histiocytes

[55]

CESD G66V 4 G to T Gly to Val Not reported Vacuolized hepatocytes, hypercholesterolaemia and
hyptertriglycerdaemia (diagnosed at 22 years of age) [59]

CESD N98S 4 A to G Asn to Ser Not reported Hepatomegaly presentation at 26 years of age. Liver biopsy
revealed foamy macrophages [133]

CESD R100G 4 A to G Arg to Gly Not reported Not reported [34]

CESD H108P 4 A to C His to Pro
Not reported No symptoms until 44 years of age. Increased total cholesterol

and aminotransferases. Hepatomegaly presented 1 year with
some subcutaneous tumors on the chest and abdominal wall

[74]

CESD H108R 4 A to G His to Arg

2.7% Diagnosed postmortem after death at 57 years of age.
Hepatomegaly and moderate splenomegaly presented at 18
months of age. Liver biopsies revealed lipid storage typical of
CESD

[134]

CESD fs112 5 TC deletion Nonsense <15% Hepatic splenic enlargement evident at 11 years of age, not
diagnosed till 22 years of age [46]

CESD P181L 6 C to T Pro to Leu Not reported Hepatomegaly, hypercholesterolaemia, hypertriglyceridemia.
Cirrhosis and storage of birefringent material in hepatocytes [59]
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Disease Mutation Exon Base
Change

Amino Acid
Change

Remaining
Enzyme

Activity (% of
WT)

Phenotypic Presentations

Ref.

CESD E7SJM 6 A to G 48 AA
deletion

Not reported Hepatomegaly, hypercholesterolaemia, hyptertriglycerdiaemia.
Cirrhosis and storage of birefringent material in hepatocytes [59]

CESD G245X 7 G to T Gly to X

<1% Pregnancy terminated after chorionic villus biopsy
demonstrated lipase deficiency. Previous sibling died at 3
months and had hepatosplenomegaly, diarrhea, anemia, and
calcified adrenals

[53]

CESD T267I 7 C to T Thr to Ile
3-8% Hepatomegaly, hypercholesterolemia, and

hypoalphalipoproteinemia. Mild fibrosis in the liver with
microvacuolated histiocytes

[55]

CESD E7SJM-2 7 A to G 48 AA
deletion

Not reported Hepatomegaly, hypercholesterolaemia, hypertriglyceridemia.
Cirrhosis and storage of birefringent material in hepatocytes [59]

CESD N250H 7 A to C Asn to His
5.9% Hepatomegaly presented in middle school, but patient was

diagnosed at 69 years of age. Cirrhosis of the liver. Liver also
had foamy macrophages

[135]

CESD L264P 7 T to C Leu to Cys
<1% Massive hepatomegaly and splenomegaly. Vomiting and

diarrhea a few days prior to hospital visit. Diagnosed at 11
years of age – evaluated at hospital due to gastroenteritis

[136]

CESD S289C 8 C to G Ser to Cys
6% Hepatomegaly, chronic diarrhea, fever, weight loss. Adrenal

calcifications. Sinusoidal fibrosis. Foamy histiocytes in the
bone marrow. Cholesterol crystals in lysosome

[46]

CESD L273S 8 T to C Leu to Ser
Not reported Hepatosplenomegaly presentation at 5 years of age.

Hypercholesterolaemia and hypertriglyceridemia presentation
at 15 years of age

[59]

CESD H274Y 8 C to T His to Tyr 3-7% N/A [137]

CESD E8SJM-1 8 G to A 24 AA
deletion

1.2% Hepatomegaly. Fatty changes without macrovesicular steatosis
of the liver [46]

CESD E10∆AG 10 AG deletion Nonsense Not reported Hepatosplenomegaly, hypercholesterolemia,
hypertriglyceridemia, and elevated live function tests [57]

CESD E10∆C 10 C deletion Nonsense <1% Mildly enlarged liver. Diagnosed at 28 years of age [46]

CESD E10∆G 10 G deletion Nonsense

7% Hepatomegaly, hypercholesterolemia. Liver biopsy revealed
cholesteryl esters in hepatocytes as well as foamy
macrophages. Elevated LDL and triglyceride levels with
reduced HDL

[138]

CESD G321W 10 G to T Gly to Trp
Undetectable Hepatosplenomegaly, adrenal calcifications, abdominal

distension, vomiting, steorrhea, failure to thrive. Death at 2.5
months (respiratory and cardiac arrest)

[128]

CESD G342R 10 G to A Gly to Arg
6% Hepatomegaly, chronic diarrhea, fever, weight loss. Adrenal

calcifications. Sinusoidal fibrosis. Foamy histiocytes in the
bone marrow. Cholesterol crystals in lysosome

[46]

CESD L336P 10 T to C Leu to Pro 14.2% Hepatomegaly, elevated apoB levels [139]

Etiology

LAL is responsible for the degradation of EC as well as mono-, di- and TGs in lysosomes. It is present in nearly all
cells with the exception of erythrocytes [48]. CEs and TGs are bound to low density lipoproteins (LDL), which are
taken into the cell by receptor-mediated endocytosis. These endocytic vesicles then fuse with the lysosome. Once in the
lysosome, CEs and TGs are cleaved by LAL and exit into the cytosol via two lysosomal proteins, Niemann-Pick type
C1 (NPC1) and NPC type C2 (NPC-2) [49]. The resulting unesterified cholesterol can then be used as a substrate for
steroidogenesis or reesterified by acyl CoA: cholesterol acyltransferase (ACAT) for other uses [50]. In WD patients,
CEs and TGs are not cleaved which results in the accumulation of these macromolecules in the lysosome. Intriguingly,
experiments in WD fibroblasts have shown that this accumulation is due to the intake of external LDL into the cell
whereas endogenously produced CEs and TGs may not be the main sources of lipids for the accumulation [51]. In the
adrenal  glands,  a  lack of  free  cholesterol  available  for  steroidogenesis  results  in  adrenal  insufficiency.  The lack of
cholesterol excretion into the cytosol is interpreted as a deficiency in intracellular cholesterol, so the sterol regulatory
element-binding protein 1c/2 (SREBP-1c/2) system upregulates genes related to the expression of LDL receptors and
synthesis of fatty acids, thus causing additional accumulation [52]. Together, ACAT and LAL maintain equilibrium
between unesterified and esterified cholesterols in cells.

(Table 2) contd.....
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Mutations in the LIPA gene are located in human chromosome 10q23.2-q23.3 and are autosomal recessive [34]. The
LIPA gene contains 10 exons, 9 introns and is 36kb long. As previously mentioned, WD patients possess less than 1%
of normal LAL levels and CESD is characterized by 1-12% of normal LAL activity [16]. These differences in levels of
functional LAL are dependent on the types of mutations at the LIPA locus. To date, over a dozen different mutations in
the LIPA gene have been reported for WD. The mutations are diverse and are usually nonsense mutations with deletions
or insertions in the LIPA gene that ultimately result in the absence of a functional enzyme [34 - 53]. For example, a G to
A substitution at nucleotide 347 in exon 4 converts a tryptophan codon into a termination codon in WD patients. CESD
is generally caused by missense mutations in the LIPA gene, and are heteroallelic or homoallelic with other mutations in
this gene, generating moderately functioning LAL from either or both alleles [34, 54]. A mutation common in CESD is
the G -> A mutation at position -1 of the exon 8 splice donor site (c.894G>A; E8SJM) and accounts for an estimated
60% of all CESD cases. This mutation results in a transcript with no LAL activity; however, the defect allows for 3-5%
of LAL to be normally spliced [55, 56]. Compound heterozygosity can also result in CESD. For example, some CESD
patients possess the G to A mutation at the exon 8 splice donor site position -1 on one allele and a nonsense mutation on
the other allele [57].

While  the  crystal  structure  of  LAL has  yet  to  be  solved,  Roussel  et  al.  proposed  several  theories  on  how LAL
mutations may affect the LAL structure based on their solved crystal structure of human gastric lipase, both of which
share 59% identity and 75% sequence homology [58]. A Gly-66->Val mutation would result the enzyme’s valine side
chain both blocking the active site serine 153 and the triglyceride binding site. Additionally, a Leu-273->Ser mutation
would create a new glycosylation site, which may also prevent substrate binding [59].

Complications of WD that result from the accumulation of CE and TG are related to malabsorption. Under normal
circumstances,  triglycerides  are  absorbed  by  the  intestinal  lumen  and  degraded  in  the  intestinal  villi.  In  WD,  the
accumulation of foamy macrophages and Kupffer cells in the intestinal villi is hypothesized to inhibit proper nutrient
absorption due to the clogging of the mucosa by non-degraded triglycerides [12]. For example, unabsorbed triolein can
be  seen  in  the  stool  samples  of  WD patients  [60].  The  strongest  LAL activity  in  rats  was  found  in  the  regions  of
intestinal  villi  that  most  involve the absorption and transport  of  dietary lipids,  so LAL mutations would impair  the
function of these villi [61]. In an attempt to circumvent malabsorption, a course of parenteral hyperalimentation show to
slow patient deterioration. While this approach is only palliative, it may be useful for extending a patient’s lifespan long
enough to consider more long-term treatment options [62].

Additionally, high levels of oxidized CEs have been found in WD tissues, suggesting either high levels of innate
lipid  peroxidation  or  the  increased  intake  of  oxidized  LDL  [63].  It  has  been  hypothesized  that  lipid  peroxidation
derivatives are involved in the pathogenesis  of  WD [64].  In cultured adrenal  cells,  oxidized LDL caused increased
levels of intracellular calcium that were subsequently deposited in damaged/dead cells [65]. This finding suggests a
plausible mechanism by which adrenal calcification occurs in WD patients. In addition to the adrenal glands, lysosomal
accumulation of CEs and TGs occurs in the cells of many other tissues, including the small intestine, spleen, lymph
nodes,  thymus,  alveoli  in  the  lungs,  and  the  liver  [66].  In  several  of  these  organs,  tissues  swell  with  “foamy
macrophages” that are themselves engorged with TG and CEs [30, 67, 68]. This macrophage accumulation results in
cirrhosis  of  the  liver  as  well  as  the  impaired  ability  of  the  intestinal  villi  to  absorb  nutrients.  The  combination  of
cachexia, malnutrition and hepatic failure due to cirrhosis of the liver ultimately causes death in WD [11, 23].

Accumulation of CEs and TGs has been observed in the central nervous system (CNS) in cells such as astrocytes
and oligodendrocytes [69]. Infants born with WD show cognitive decline after initial onset of the disease, but it is not
known  whether  this  is  due  to  the  accumulation  in  CNS  or  is  a  secondary  consequence  of  the  disease  due  to
malabsorption. The accumulation of TGs and CEs can also be found in the neurons of the myenteric plexus, causing
severe neuronal damage, and may contribute to the gastrointestinal pathology found in WD patients [70]. Additionally,
some investigators have noted impaired myelination of neurons in the brain, a possible consequence of impaired CE and
TG metabolism [71]. While the perturbation of normal lysosomal pathways often results in neurodegeneration for many
LSDs,  it  is  not  clear  if  this  is  characteristic  of  WD [69,  72,  73].  The  high  infantile  mortality  associated  with  WD
prevents the assessment of long-term neurological damage.

CESD is a highly variable disease and its clinical course is poorly defined. The literature contains reports on only
the most severe of these cases; thus, an underreporting of milder forms of the disease may skew our perception of its
typical symptoms [34]. This underreporting also affects how we perceive CESD’s lethality, which is often due to liver
failure [74]. The most common presorted symptoms of the disease are hepatomegaly and hyperlipidemia. As described
for WD, hyperlipidemia likely results from the improper processing of triglycerides and cholesteryl esters due to low
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levels of LAL activity. Hepatomegaly is caused by both the accumulation of lipid vacuoles in liver tissue and by the
infiltration of tissues by lipid filled macrophages and Kupffer cells. In a review of 135 cases of CESD reported in the
literature, Bernstein et al. noted that all reported cases had significant liver disease that progressed into micronodular
cirrhosis  and  liver  failure  [16].  Although  rare,  lipid  accumulation  may  also  cause  chronic  diarrhea  and  chronic
malabsorption [38]. In a few cases of CESD, neurological manifestations occurred in a 4-year-old boy and his 22-month
old sibling. One had periods of headache, vertigo, and loss of consciousness. Both had external opthalmoplegia and
bilateral ptosis [75]. The pathological cause for such manifestations remains unclear.

Therapeutics and New Drug Development

Hematopoietic Stem Cell transplantation, Bone Marrow Transplantation, and Liver Transplantation

A moderately successful treatment for WD is hematopoietic stem cell transplantation (HSCT) [76, 77]. In a cohort
of 4 patients, the donor hematopoietic stem cells were infused into the affected infants. Of the four infants that received
this therapy, two lived to the ages of 4 and 11 [76]. A reduction in the number of hypertrophic Kupffer cells and the
amelioration  of  hepatosplenomegaly  were  observed  [78].  Another  report  showed  that  some  normal  LAL  enzyme
activity was detected in peripheral cells from an infant WD patient who received HSCT, although the patient was lost
due to sepsis and multi-organ failure [79]. A post-mortem analysis of this patient’s liver showed a lack of donor-derived
macrophages; thus, the patient perished from complications due to WD and surgery before donor-derived macrophage
engraftment in the liver occurred. Because a full correction of enzyme deficiency in recipient tissues can take as long as
a year, pathological tissue damage already inflicted by the disease can prove to be fatal. Because tissue damage in WD
patients arise quickly, it will be essential to find therapies that can be rapidly deployed to the affected tissues to avoid
the high risk of complication associated with HSCT. Krivit and colleagues reported a successful case of bone marrow
transplantation (BMT), in which bone marrow-derived hematopoietic cells are transferred to the patient, resulting in
normalization of cholesterol levels [77]. Liver dysfunction leading to fibrosis was also prevented. Despite this success,
four other patients in the same cohort died due to either WD or complications arising from the procedure. Data from
other diseases suggests that BMT may stop the progression of hepatic fibrosis and reduce it in some cases [80]. BMT
may provide the best approach for reducing hepatic fibrosis because it has been reported that WD patients who received
a liver transplantation eventually resumed cirrhosis of the liver [81]. In addition to HSCT and BMT, another group of
physicians reported the successful use of umbilical cord blood (UCB)-derived stem cells in a 3-month-old patient who
had lived to age 3 ½ at the time of publication [71]. The patient’s severe hepatosplenomegaly completely vanished, but
the adrenal glands remained calcified. The patient did not show any signs of adrenal insufficiency and was growing
normally. Nevertheless, HSCT or BMT remains a dangerous procedure with many possible complications.

Unlike WD, liver transplants in patients with CESD have proven successful. Given that the disease pathology that
results in premature demise is cirrhosis of the liver, transplantation is a logical medical procedure to extend the life of
the patient. Reports in the literature confirm patient survival ranging from 2 years post-operation to 7 years [82, 83].
After  transplantation  of  a  healthy  liver  into  a  10-year-old  patient,  Arterburn  et  al.  (1991)  noted  that  the  patient
continued to have full activity, normal growth and development, and normal liver function tests. The patient’s own
(excised) liver was examined and was found to be grossly cirrhotic. Liver transplantation, however, remains a risky
procedure and is not a permanent solution. Kale et al. (1995) reported on a 21-year-old female who developed end-stage
renal  failure  after  a  successful  liver  transplant  surgery  7  years  prior.  The  use  of  nephrotoxic  agents  for
immunosuppression  post-op  may  have  contributed  to  the  deterioration  of  the  patient’s  kidneys  [84].

Enzyme Replacement Therapy

Several other lysosomal storage diseases,  such as Gaucher disease,  have been treated with enzyme replacement
therapy (ERT) [85]. In this strategy, recombinant proteins of a lysosomal enzyme absent in the LSD are produced and
then delivered to patients intravenously. These recombinant enzymes are endocytosed into cells via the mannose-6-
phosphate receptor [86]. Among the six LSDs that have been treated with ERT (Fabry, MPS I, II, and VI, and glycogen
storage type II/Pompe), Gaucher disease has been by far the most successful [87]. This success is most likely due to the
efficient delivery of the recombinant enzyme to target tissues, which happen to be tissues highly enriched with blood
vessels and thus able to effectively receive sufficient amounts of these enzymes. Since enzymes do not cross the blood
brain barrier, ERT is not effective in treating LSDs with neurological symptoms. ERT in CESD was first examined in
vitro using cultured CESD fibroblasts, which took up exogenously produced LAL [88]. The enzyme, bound to albumin
as a stabilization agent, decreased levels of cholesteryl esters by half. WD fibroblasts can take up human LAL in vitro,
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with  subsequent  degradation  of  intracellularly  accumulated  CE  [89].  In  a  LAL-/-  mouse  model  of  WD,  human
recombinant LAL was well-tolerated and ameliorated several symptoms of the disease [28]. In order to test if ERT was
a viable therapy for WD and CESD in the LAL mouse model, mice were treated via tail vein injections and showed a
reduction in hepatic yellow coloration and overall weight, in addition to a reduction in the number and size of Kupffer
cells and tissue- infiltrating macrophages. In addition, TG and CE levels were decreased by 50% in the liver, 69% in the
spleen,  and  50% in  the  small  intestine.  Given  that  exogenously  produced  enzyme delivered  intravenously  tends  to
accumulate in the spleen, liver, and bone marrow, it is reasonable to believe that ERT would show some success in WD
patients [90]. A phase 3 clinical trial using sebelipase alfa (Kanuma™) as ERT in WD and CESD was initiated in 2012
by Synageva BioPharma and has resulted in a recent approval by the FDA [91]. In a double-blind, placebo controlled
study involving 66 patients with CESD, sebilipase alfa treatment resulted in higher rates of normalization of the alanine
aminotransferase  level  compared  to  placebo.  Additionally,  treatment  resulted  in  significant  changes  in  six  other
secondary endpoints including a change from baseline in LDL cholesterol level, non-HDL cholesterol level, aspartate
aminotransferase, triglyceride levels, HDL cholesterol levels, and hepatic fat content [92]. In an open-label study of
nine patients, seblipase alfa was well tolerated and resulted in improvements to key serum disease activity markers,
including  alanine  and  aspartate  transaminases.  Patients  had  improved  weight  gain,  reduced  abdominal  distention,
hepatosplenomegaly  and a  resolution  of  vomiting  and diarrhea.  Additionally,  six  of  the  nine  patients  were  alive  at
twelve months of age compared to none of the twenty-one historical controls [93]. This is the first treatment for patients
with LAL deficiency.

Small Molecule Drugs

While no small molecule treatments are approved for WD, statins have been used to treat CESD. Statins reduce
cholesterol synthesis by inhibition of 3-hydroxy-3-methylglutaryl-coenzymeA reductase (HMG-CoA), which catalyzes
an important step in hepatic cholesterol synthesis [94]. Lovastatin and simvastatin have both been utilized in the clinic
with varying rates of success. In some cases, statin therapy reduced hepatosplenomegaly and TG/CE levels in serum
and in  the  liver  [74,  95 -  97]  while  in  other  cases  the  reduction in  TG/CE levels  was  not  significant  [98,  99].  The
efficacy of statins is augmented when used in combination with other cholesterol lowering drugs, such as ezetimibe
[100] and cholestyramine [101]. The varied success rates in using statins to-treat CESD patients are likely due to the
heterogeneity of clinical severity found with CESD. Animal studies have shown that statins not only reduce cholesterol
synthesis, but also increase the hepatic uptake of LDL through the upregulation of LDL receptor activity. Given that
CESD and WD cause a disease phenotype as a result of the over-accumulation of TG and CEs in the lysosome from
LDL, it may seem counterintuitive that this therapy would work in patients. However, it has been hypothesized that if
the overall reduction in native cholesterol biosynthesis in the liver is greater than upregulation of LDL receptor activity
due to statin treatment, the net benefit of statin treatment would be reduced storage of TGs and CEs [102, 103]. Statins
and other cholesterol lowering drugs have not been used to treat WD. Due to the severity of the disease phenotype of
WD compared to CESD and the long-term treatment regimens (>1 year),  it  is  likely that  statins would not be very
efficacious for WD.

While  Kanuma represents  a  critical  step  forward  in  the  therapeutic  development  for  LAL deficiencies,  a  small
molecule therapy would be an excellent asset for a holistic treatment strategy. High throughput drug screening (HTS) of
chemical libraries is a potential method for rapid identification of active compounds (“hits”) that ameliorate disease
phenotypes in patient-derived cells [104]. Phenotypic screening is particularly amenable to LSDs, as disease cells such
as skin fibroblasts and blood cells that usually exhibit characteristic disease phenotypes can be obtained from patients.
Recent advances in high-content cellular imaging technology allows rapid compound screens using phenotypic assays.
Novel lead compounds that reduce accumulated macromolecules in the lysosome or inhibit pathways that synthesize the
accumulating  substrates  may  be  identified  using  this  method  [105].  The  LysoTracker  dye  staining  assay  has  been
reported to be a good assay for measuring enlarged lysosomes in WD cells [106]. Accumulation of nonpolar lipids was
also detected in the Nile-Red dye staining assay using WD cells (Fig. 1) [107]. Both these assays can be used for high
throughput  screening  of  compound  collections  to  identify  lead  compounds  for  drug  development  to  treat  WD  and
CESD.

WD and CESD Disease Models

In order to develop novel therapeutics directed to act on WD and CESD, disease models that recapitulate the disease
pathology and phenotype are required. In the late 1990’s, a WD LIPA knockout mouse model was generated [108].
Recently,  induced  pluripotent  stem  cell  (iPSC)  technology  has  been  used  to  generate  patient-derived  and  disease-
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relevant cellular models for other lysosomal storage diseases [109 - 111]. While it has not been reported for WD or
CESD,  an  appropriate  cell-based  disease  model  derived  from  patient  iPSCs  would  provide  a  useful  tool  for  small
molecule drug screening.

Fig.  (1).  Increased  nonpolar  lipid  accumulation  in  WD  fibroblasts  detected  by  Nile-Red  dye  staining.  Nile-Red  dye  stains  for
nonpolar lipids including triglycerides and esterified cholesterols that accumulate in WD fibroblasts (B) compared with wild type
fibroblasts (A).

Animal Models

Traditionally, animal models have been used for both the study of disease pathophysiology and evaluation of drug
efficacy. The results from such models provide important insight into the pathology of diseases in vivo. In 1998, the
first animal model of WD and CESD, a LIPA homozygous knockout mouse, was generated [108]. The only apparent
presentation of these mice was a lower than normal weight. These mice had orange-colored livers and slightly enlarged
spleens. However, lipid analyses from the liver, spleen, and small intestine show massive amounts of accumulated TG
and  CE,  with  liver  CEs  at  ~35  fold  higher  compared  to  wild-type  mice.  A  histological  analysis  found  enlarged
hepatocytes, Kupffer cells, adrenal glands, and intestinal villi. Adrenal calcification did not occur in this mouse model.
Although mice lived into early adulthood, death occurred due to hepatosplenomegaly and malabsorption. Because of its
survival into adulthood, as well as intestinal pathology similar to CESD, this model can be used to investigate both
diseases on the LAL deficiency spectrum. The liver pathology in this model is very similar to WD, and while adrenal
calcification  does  not  occur,  the  adrenal  gland  is  still  histologically  similar  to  WD in  humans  [99]  Interestingly,  a
naturally occurring rat  model of WD, which is also LIPA  null,  displayed a similar phenotype to the murine model,
without presenting any adrenal calcification [112]. While these two model animals may recapitulate many aspects of the
WD phenotype, significant enough differences have been found between these rodent models and human patients to
warrant the generation of more human disease relevant models of WD. Given that mutations in CESD allow for some
production of functional LAL (3-8%), animal models of CESD should be created that possess mutations representative
of this disease.

Potential for “Disease-in-a-Dish” Models of LAL Deficiency

Since  the  first  iPSC was  generated  from adult  cells  by  Yamanaka  and  colleagues  [113],  the  methods  for  iPSC
generation and mature cell differentiation have been rapidly developed. While iPSCs and their derivative cells have
potential for direct clinical applications for the treatment of various diseases, patient derived iPSCs can be differentiated
into mature cell types such as neurons, cardiomyocytes and hepatocytes for modeling disease phenotypes [110, 114].
Drug screening campaigns conducted on these cells would be an alternative approach for drug development [115, 116].

Several iPSC lines have been reported for lysosomal storage diseases using iPSCs. Murine iPSCs were generated
from mouse models of Fabry disease, globoid cell leukodystrophy (GLD), and mucopolysaccharidosis VII (MPSVII)
[117]. The iPSCs from the Fabry disease mice showed high immunostaining for globotriaosylceramide, a hallmark of
the disease. The iPSCs differentiated cardiomyocytes, a major cell type affected by Fabry disease, also showed the same
pattern  of  globotriaosylceramide  accumulation.  iPSCs  generated  from  GLD-  and  MPSVII-affected  mice  also
demonstrated  appropriate  defects,  proving  that  murine-derived  iPSCs  strongly  model  their  respective  LSDs.

iPSCs have also been generated for mucopolysaccharidosis type IIIB (MPSVIIIB) from patient fibroblasts, a fatal
lysosomal storage disease that induces pathology primarily in CNS. The abnormality in Golgi apparatus was observed
in both patient iPSCs and differentiated neural stem cells [109]. For Pompe disease, Huang et al. (2011) reported that
cardiomyocytes derived from Pompe iPSCs recapitulated the disease phenotypes, including low acid alpha-glucosidase
activity,  glycogen  accumulation  and  multiple  ultrastructural  aberrances  [118].  These  cells  were  responsive  to  drug
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treatment or affect cellular processes relevant to Pompe disease, demonstrating that patient iPSC-derived cells can serve
as a drug discovery platform for Pompe disease. The iPSC derived cell-based diseased models were also reported for
Niemann-Pick  Disease  Type  C  (NPC),  another  lysosomal  storage  disease  [111,  119,  120].  Maetzal  et  al.  (2014)
generated iPSCs and demonstrated that these cells have impaired cholesterol metabolism and a defect in autophagy
[119]. Another report showed that treatment of iPSC derived neuronal cells with delta-tocopherol, hydroxypropyl-beta-
cyclodextrin,  and  methyl-beta-cyclodextrin  showed  a  significant  reduction  in  lysosomal  storage  of  unesterified
cholesterol  [111,  120].

Patient iPSC derived disease models are advantageous as they can generate disease relevant cells and can accurately
capture a patient’s genetic background. This approach allows drug screening in patient cells with varying mutations and
disease phenotypes. For WD and CESD, compound screening using patient-iPSC derived disease models may lead to
identification of three types of lead compounds. The first type of active compounds may reduce the amount of CEs and
TGs entering lysosomes, as statins have shown to alleviate symptoms in CESD patients via the inhibition of cholesterol
synthesis. Miglustat, approved for use in patients with Gaucher type I and NPC, is an example of enzyme reduction
therapy  [121],  as  well  as  Eliglustat  for  Gaucher  type  1  [122].  A  second  type  of  active  compound  may  stabilize
misfolded  proteins  that  result  from  missense  mutations  of  the  LIPA  gene.  Misfolded  proteins  are  retained  by  the
endoplasmic reticulum associated degradation system and then degraded in proteasome [123]. Small molecules may
bind to the mutant  enzyme proteins,  resulting in increased enzyme stability and allowing them to avoid the ERAD
system for degradation and to be properly trafficking to the lysosome [124]. The third type of active compound may
have the ability to reduce the accumulated CEs and TGs by other mechanisms. For example, cyclodextrins have been
found to remove accumulated unesterified cholesterol from NPC cells as well as in the NPC mouse model by induction
of autophagy [125]. Targeting the autophagy pathway could be useful for therapeutic development in treating LSDs
[126].

Compared with ERT, small-molecule based therapies hold several advantages. First, small molecule drugs can be
taken orally by patients, whereas ERT requires intravenous administration during lengthy clinic visits. Second, small
molecule  drugs  can  be  optimized  to  penetrate  into  various  tissues  including  CNS,  while  ERT  is  only  useful  for
treatments of peripheral symptoms. Lastly, with an average of $90,000 to $720,000 per year for ERT per patient, the
astronomically high cost of ERT is a tremendous burden for patients [127]. In addition, a combination of both small
molecule therapy and ERT could be synergistic, thus reducing the need of frequent dosing for ERT and improving the
therapeutic effects.

CONCLUSION

WD and CESD are rare genetic diseases caused by mutations in the LIPA gene. The variable symptoms associated
with CESD cause underdiagnoses of this disease. HSCT and BMT are associated with an unacceptably high mortality
rate and their therapeutic outcome is also uncertain. ERT has recently been approved by the FDA for the treatment of
patients  with LAL-deficiency.  Similar  to other LSDs,  small  molecule drugs are still  needed for future improved of
treatment of WD and CESD. Recent advances in iPSC technology have provided a new cell based disease model system
for WD and CESD with patient derived cells.  High throughput screening of compound collections with phenotypic
disease models of WD and CESD developed by iPSC technology will enable the development of new small molecule
drugs for treatments of both diseases (Fig. 2).

Fig. (2). Flowchart of iPS cells based drug development.
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