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Abstract: The Cyclic-AMP Response Element Binding (CREB) proteins comprise a family of transcription factors that 

stimulate or repress the expression of a wide variety of genes by binding to nucleotide sequences known as cAMP 

Response Elements. CREB-mediated transcription has been implicated in a wide variety of important physiological 

processes, including long-term memory, and enhancement of CREB signaling has been suggested as an attractive 

therapeutic strategy for human memory disorders. To identify small molecule compounds that enhance CREB pathway 

signaling, we have optimized and validated a cell-based -lactamase reporter gene CREB pathway assay in 1536-well 

plate format. The LOPAC library of 1280 compounds was screened in triplicate in this assay on a quantitative high 

throughput screening (qHTS) platform. A variety of compounds which affect known members of the CREB pathway were 

identified as active, including twelve known phosphodiesterase (PDE) inhibitors, and forskolin, a known activator of 

adenylate cyclase, thus validating the assay’s performance. This qHTS platform assay will facilitate identification of novel 

small molecule CREB signaling enhancers, which will be useful for chemical genetic dissection of the CREB pathway 

and as starting points for potentially memory-enhancing therapeutics. 

INTRODUCTION  

 The cyclic-AMP Response Element Binding Protein 
(CREB) is a key effector in coupling neuronal activation 
with changes in gene expression required for long-term 
memory (LTM) formation [1-4]. The transcription factors in 
the CREB family bind to nucleotide sequences (5 -
TGACGTCA) termed cAMP Response Elements (CRE) in 
the promoters of CREB-regulated genes to activate their 
transcription. In response to activity of a number of cellular 
receptors, cAMP is generated and stimulates cAMP-
dependent protein kinase (PKA) to translocate to the 
nucleus, where it phosphorylates CREB at Ser133 [5], 
causing CREB to bind as a dimer to CRE DNA target 
sequences [6]. Bound phospho-CREB then recruits the 
transcriptional co-activators CREB-Binding Protein (CBP) 
and p300 and assembly of additional proteins into a larger 
transcriptional complex [7]. This complex promotes 
chromatin remodeling by means of the histone acetyl 
transferase activity of CBP. Negative regulation of CREB 
occurs via protein phosphatases 1 (PP1) and 2A (PP2A) 
catalyze Ser133 dephosphorylation [8, 9], and calcium-
calmodulin protein kinase II, which catalyzes phosphoryl-
ation of CREB at Ser142, thereby promoting dissociation of 
the CREB dimer and reducing CREB-mediated gene 
transcription [10, 11]. In addition, CRE signaling is 
negatively regulated by phosphodiesterases (PDEs), which 
degrade the cAMP that would otherwise stimulate PKA.  
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 CREB signaling plays a critical role in LTM formation. 
Over expression of a CREB transcriptional repressor 
(dCREB2b) blocked the formation of LTM in transgenic 
flies [12], and overexpression of a CREB-activator isoform 
enhanced memory in the transgenic flies [13]. Mouse 
behavioral studies have also demonstrated that CREB is 
necessary for long-term memory formation [14, 15]. On the 
basis of these studies, it has been suggested that potenitation 
of CREB signaling pathway might represent an attractive 
target for memory enhancement [16].  

 There is a growing interest in the use of cellular pathway 
assays to identify small molecule modulators of important 
physiological functions, including memory formation [17]. 
In the present study we have adapted and optimized a cell-
based assay in a 1536-well format for potentiators of the 
CREB signaling pathway that utilizes a -lactamase reporter 
under the control of the cAMP response element (CRE). 
Using this optimized assay, we have screened the LOPAC 
(Library of Pharmacologically Active Compounds) collec-
tion of 1280 compounds in quantitative high-throughput 
screening (qHTS) format, which provides concentration-
dependent pharmacological information on all compounds 
directly from the primary screen [18]. The assay was highly 
reliable and reproducible in 1536-well format. The adenylate 
cyclase activator, forskolin, and twelve known phospho-
diesterase (PDE) inhibitors were found to be active, 
validating this assay as robust and suitable for identifying 
novel compounds which enhance the CREB signal 
transduction pathway from larger screening collections. 

MATERIALS AND METHODS 

Cell Line and Culture Conditions 

 CellSensor
TM

 CRE-bla CHO-K1 cell line, obtained from 
Invitrogen (Madison, WI), stably expresses a -lactamase 
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reporter gene under the regulation of a cAMP response 
element (CRE). Cells were cultured in DMEM medium 
supplemented with 10% dialyzed fetal bovine serum, 2 mM 
L-glutamine, 0.1 mM non-essential amino acids, 1mM 
sodium pyruvate, 25 mM HEPES, 50 U/ml penicillin and 50 
μg/ml streptomycin, and 5 μg/ml of blasticidin at 37°C under 
a humidified atmosphere and 5% CO2. 

CRE -Lactamase Reporter Gene Assay  

 CellSensor
TM

 CRE-bla CHO-K1 cells were suspended in 

assay medium (DMEM with 1% dialyzed fetal bovine 
serum, 0.1 mM nonessential amino acids, 1 mM sodium 

pyruvate, 25 mM HEPES pH 7.3, 100 U/ml penicillin, and 

100 g/ml streptomycin), and were dispensed at 2000 cells/ 
5 L/well in 1536-well tissue culture treated black/clear 

bottom plates (Greiner Bio-One North America, NC) using a 

Flying Reagent Dispenser (Aurora Discovery, Carlsbad, 
CA). After the cells were incubated at 37ºC overnight, 23 nL 

of compound or DMSO was transferred into the assay plates 

by a pin tool (Kalypsys, San Diege, CA) resulting in a 261-
fold dilution. One l of 30 nM NKH 477 (final concen-

tration) was dispensed in all the columns except column 3 

which one l medium was added. The positive control plate 
format was as follows: Column-1 IBMX concentration-

response titration from 2 nM to 67 M, column-2, IBMX 38 

M +30 nM NKH 477, column 3, DMSO only, and columns 
4 to 48, 30 nM NKH 477. The plates were incubated 3 hours 

at 37°C. One l of LiveBLAzer
™

 (Invitrogen) detection mix 

was added, the plates incubated at room temperature for 2 
hrs, and fluorescence intensity at 460 and 530 nm emission 

was measured at 405 nm excitation by an Envision (Perkin 

Elmer, Boston, MA) detector. Data was expressed as the 
ratio of 460nm/530nm emissions. 

qHTS and Data Analysis 

 Approximately 1280 compounds from Library of 
Pharmacologically Active Compounds (LOPAC), which was 
purchased from Sigma (St. Louis, MO), were screened in 
this qHTS. Compound plates were prepared as interplate 
titrations of fifteen dilutions with the four left-most columns 
left empty in each plate. Pin tool transfer of compounds to 
assay plates resulted in a 261-fold dilution. The final 
compound concentration in the 6 l assay volume ranged 
from 0.5 nM to 38 M. The primary data analysis was 
performed as previously described [18]. Briefly, raw plate 
reads for each titration point were first normalized relative to 
the IBMX control (38 M, 100%) in the presence of 30 nM 
NKH 477 and DMSO only wells (basal, 0%), and then 
corrected by applying a pattern correction algorithm using 
compound-free control plates (DMSO plates). Concen-
tration-response titration points for each compound were 
fitted to the Hill equation yielding concentrations of half-
maximal activity (EC50) and maximal response (efficacy) 
values. The concentration response curves of the compounds 
were classified into four major classes (1-4) based on the 
completeness of curve, goodness of fit, and efficacy [18]. 
The compounds with class 1.1, 1.2, and 2.1 curves are 
statistically the most reliable, while the compounds with 
class 2.2 and 3 curves are less reliable. Class 4 compounds 
which show no concentration response were defined as 
inactive compounds.  

RESULTS AND DISCUSSION  

Assay Validation and Miniaturization of CRE -

Lactamase Reporter Gene Assay 

 As a start to identifying small molecule potentiators of 
the CREB signaling pathway, we conducted experiments to 
validate the CRE -lactamase reporter gene assay using 
CRE-bla CHO-K1 cells expressing -lactamase under the 
control of CRE.  

 In 384-well plate format, forskolin, an adenylate cyclase 
activator, and NKH 477, a water soluble forskolin analogue 
[19], concentration dependently induced CRE coupled -
lactamase activity after 5 hr incubation with the cells. The 
EC50s of forskolin and NKH 477 were 0.14 μM and 0.05 
μM, respectively (Fig. 1). The signal-to-background ratios 
were 4.5 and 4.3 for forskolin and NKH 477, respectively. 
NKH 477 was chosen as a control potentiator in the assay 
due to its water solubility. 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). Forskolin and NKH 477 stimulated -lactamase activity in 

CRE-bla CHO cells in 384-well format.  

 

 The assay was miniaturized into 1536-well plate format 
with a final 6 μl assay volume. To optimize the incubation 
time, the cells were incubated with various concentrations of 
NKH 477 for 2 to 5 hrs. The EC50s of NKH 477 are 0.11, 
0.21, 0.22 and 0.26 μM for 2, 3, 4, and 5 hr incubation, 
respectively (Fig. 2A). The signal-to-background ratio from 
3 hr incubation was 4.7 fold, which was the highest 
compared to other time points so was chosen for use in the 
assay. The effect of DMSO on NKH 477 stimulated -
lactamase activity was also evaluated, and showed that 
DMSO at concentrations up to 1% did not alter NKH 477 
stimulated -lactamase activity (Fig. 2B). Since the final 
DMSO concentration in the screening conditions chosen was 
0.38 %, the assay is clearly tolerant of DMSO in the 
compound solution. 

Assay Optimization in Potentiator Screening Mode 

 It has been reported that the over expression of CREB 
alone had no effect on memory enhancement, but the 
synergetic effect on CREB signaling enhanced LTM [3]. 
Thus, the potentiator of CREB function might be a better 
approach to enhance LTM. We have optimized a cell-based 
assay for compound screening in the presence of small 
amount of NKH477, an activator of CREB signaling. To find 
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an appropriate concentration of NKH 477 that could be used 
to capture the response of potentiators without a significant 
reduction in the signal-to-background ratio, the concen-
tration response of 3-Isobutyl-1-methylxanthine (IBMX) 
[20], a known PDE inhibitor, was determined in the presence 
of several different sub-EC50 concentrations of NKH 477. 
Fig. (3) showed that IBMX concentration-dependently incre-
ased -lactamase activity in the presence of NKH 477. The 
highest signal-to-background ratio of approximately 2 fold 
was observed in the presence of 30 nM of NKH 477. The 
EC50 of IBMX in the present of 30 nM NKH 477 was 10.5 
μM. In the screen 30 nM of NKH477 was used to stimulate a 
low level of cAMP production and IBMX was chosen as a 
positive control.  

 To evaluate the assay performance, DMSO plate without 
compounds in the presence of 30 nM NKH 477 was tested in 
1536-well plate format. The signal-to-background ratio (S/B) 
was 2.0 fold, CV (coefficient of variation) was 8.6% and Z 
factor was 0.5 indicating that this -lactamase assay in a 
1536-well format was robust and ready for high throughput 
screening (Fig. 4). 

 

 

 

 

 

 

 

 

 

Fig. (3). The concentration response curves of IBMX in the 

presence of indicated concentrations of NKH 477. CRE-bla CHO 

cells were incubated with various concentrations of IBMX in the 

presence of indicated concentrations of NKH 477 for 3 hours, and 

then the -lactamase activity was measured.  

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (4). Screening test of -lactamase reporter gene assay in CRE-

bla CHO cells in 1536-well format. Column-1 is a concentration 

response curve of IBMX, the known potentiator in duplicate, in the 

presence of 30 nM NKH 477. Column-2 is a concentration response 

curve of IBMX in the absence of NKH 477. Column-3 was the 

negative control with assay buffer only. Column-4 to 48 was 

DMSO with 30 nM NKH 477.  

 

Assay Reproducibility and Data Quality in qHTS 

  To test the data quality on each plate screened in the 
qHTS process, the concentration titration of IBMX, the 
positive control compound, was performed in each plate. The 
concentration response curves of IBMX from 51 plates seem 
to reproduce well in each plate, with an average EC50 value 
of 11 ± 2 μM. The average signal-to-background ratio from 
51 plates was 2.7 ± 0.24 and average CV (%) was 7 ± 4. The 
average Z’ factor and Z factor were 0.64 ± 0.07 and 0.60  
± 0.07, respectively. The high data quality with small inter-
plate variation obtained from this screening could be 
accredited to the use of high quality liquid handlers, plate 
readers and the robust nature of this -lactamase reporter 
gene assay. This ensured the quality of results from the inter-
plate compound dilutions used in the qHTS campaign. 

 To minimize false positives and false negatives that are 
common with single-concentration screening paradigms, and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). NKH 477 stimulated -lactamase activity in CRE-bla 

CHO cells in 1536-well format. (A). Time course of NKH 477 

stimulated -lactamase activity in CRE-bla CHO cells in 1536-well 

format. (B). DMSO effect on the NKH 477 stimulated -lactamase 

activity assay. 
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obtain immediate information on compound potencies and 
efficacies, we screened the compounds in 7 different 
concentrations ranging from 0.5 nM to 38 μM in quantitative 
high-throughput screening (qHTS) format [18]. The qHTS 
analysis and concentration-response curve classification 
schema has been published previously [18]. In this study, 
compounds producing curve classes 1.1, 1.2, or 2.1 were 
defined as active, those producing class 2.2 or 3 curves were 
defined as inconclusive, and compounds producing class 4 
curves defined as inactive. 

 To evaluate assay robustness, traditional Z’ and Z factors 
[21], coefficients of variation (CV), and signal-to-
background ratio were used, but were interpreted somewhat 
differently given the nature of the concentration-response 
data generated by qHTS. In traditional HTS in which 
compounds are tested at a single concentration, Z factors less 
than 0.5 or CV (over 10%) are frequently used as cut-offs for 
acceptable assays, since they indicate assay performance 
below which compound activities cannot be reliably 
determined. However, we have found that the Z factor and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). qHTS reproducibility of -lactamase reporter gene assay. (A) LOPAC library was screened independently in CRE-bla CHO cells on 

three separate times. Linear correlations of EC50s from 48 compounds with curve classes 1-3 in three independent screening yielded an 

average R
2
 = 0.94 ± 0.02 ( 0.95, run 1 vs run 2; 0.94, run 1 vs run 3; and 0.92, run 2 vs run 3). 47 compounds were inactive in one or two 

runs and are colored gray in the figure. 1185 compounds were inactive in all three runs. (B) Examples of triplicate concentration-response 

curves for some of known PDE inhibitors, forskolin, rolipram and trequinsin hydrochloride, identified from the LOPAC library. 
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CV are less important in qHTS comparing to the single 
concentration screening because the hits are selected based 
on the significance of concentration-response of the 
compounds. In this qHTS, robust and reproducible results 
were obtained though the Z factor was 0.41 at the 38 M 
compound concentration, and CVs were 12% and 18% at the 
7.6 and 38 M compound concentrations – both outside the 
usually acceptable HTS parameters. This illustrates a general 
feature of qHTS, which is that it allows screening of assays 
that would be unscreenable in traditional HTS paradigms. 

 To evaluate data reproducibility, the LOPAC library was 
screened independently in CRE-bla CHO cells on three 
separate days. Of these 1280 compounds, 44 compounds 
(3.4%) showed a concentration dependent response (curve 
classes 1-3) in all three independent runs. The EC50 values 
from the three runs correlated well with an average R

2
 of 

0.94 (Fig. 5A). Example replicate concentration-response 
curves for some of these compounds are shown in Fig. (5B). 
1185 compounds were inactive in all three runs. Twenty-five 
compounds showed activity in only one or two of the three 
runs, but the curve classes of these compounds were mostly 
class 2.2 or 3, indicating a lower degree of data reliability. 

Identification of Potentiators of the CREB Pathway 

 The triple LOPAC library screen revealed 44 potentiators 
of the CREB pathway. The relatively high active rate (3.4%) 
is likely due to both the nature of the LOPAC library 
comprised of pharmacologically active compounds, and the 
nature of the assay, which detects compounds active against 
any molecular target in the CREB pathway. Among the 44 
compounds, twelve were known PDE inhibitors, including 
papverine [22], trequinsin [23], Ro20-1724 [23, 24], 
rolipram [23, 24], zardaverine [24], diprydamole [23], 

IBMX, methoxymethyl-IBMX, etazolate [25], ibudilast [26], 
T-1032 [27], and propentofylline [28]. Inhibition of PDE 
leads to a decrease in the cAMP degradation, which 
enhances CREB signaling. A direct activator of adenylate 
cyclase, forskolin, and two cAMP analogues, 8-bromo-
cAMP and 8-(4-chlorophenylthio)-cAMP were also found 
active. The EC50 values of these known compounds from the 
screen are listed in Table 1. These data suggest that this CRE 
qHTS assay is robust and can be used to identify small 
molecule compounds that potentiate CREB signaling from 
large compound libraries.  

CONCLUSIONS  

 We describe the development and validation of cell-
based CRE -lactamase reporter gene assay for the screening 
of potentiators of the CREB signaling pathway in a qHTS 
format. This cell-based assay has been miniaturized into a 
1536-well format and is suitable for large scale library 
screening [29]. The data from the qHTS allowed us to 
quickly and efficiently evaluate compound potencies and 
efficacies. From the LOPAC library, we identified 
compounds known to act on multiple different targets within 
the CREB pathway, including PDE inhibitors, activators of 
adenylate cyclase, and cAMP analogues. These data suggest 
that a larger compound screen may identify compounds that 
enhance CREB signaling via a variety of mechanisms of 
action, including action on previously unidentified members 
of this important pathway. 
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Table1. Summary of Compound Potencies ( M) with Known Activity in the CREB pathway identified from screening of the 

LOPAC library in qHTS  

Name First Run Second Run Third Run Mean ± SD 

Forskolin 0.32 0.25 0.25 0.27±0.04 

8-(4-Chlorophenylthio)-cAMP 25.12 25.12 15.85 22.03±5.35 

8-Bromo-cAMP 25.12 15.85 25.12 22.03±5.35 

Papaverine hydrochloride 1.58 0.79 0.79 1.06±0.46 

Trequinsin (HL-725) 2.51 1.58 1.26 1.79±0.65 

Rolipram 1.26 1.26 2.00 1.50±0.43 

Ro 20-1724 5.01 12.59 2.00 6.53±5.46 

Etazolate hydrochloride 12.59 15.85 15.85 14.76±1.88 

Ibudilast 10.00 12.59 12.59 11.73±1.49 

Tracazolate 5.01 5.01 5.01 5.01±0.00 

T-1032 12.59 12.59 12.59 12.59±0.00 

3-Isobutyl-1-methylxanthine  

8-Methoxymethyl-3-isobutyl- 

15.85 15.85 15.85 15.85±0.00 

1-methylxanthine 25.12 15.85 15.85 18.94±5.35 

Propentofylline 25.12 25.12 15.85 22.03±5.35 

Zardaverine 10.00 15.85 12.59 12.81±2.93 
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