

Open Pharmaceutical Sciences Journal

Content list available at: www.benthamopen.com/PHARMSCI/

DOI: 10.2174/1874844901805010024, 2018, 5, 24-35

RESEARCH ARTICLE

Biocidal Activities of Substituted Benzothiazole of Copper Surfactants over *Candida albicans & Trichoderma harziamunon* on Muller Hinton Agar

Neha Mathur^{1,*}, Nisha Jain² and A.K. Sharma³

Received: May 24, 2018 Revised: September 1, 2018 Accepted: September 12, 2018

Abstract:

Background:

Heterocyclic complexes in the current era are aimed at evaluating as new products that possess wide biological, pharmacological, agricultural, medicinal, industrial applications and many more highly significant uses. Although they have been known from long ago for their great biocidal significance, still the researchers pay a great attention for profiling the pharmacological view of novel macrocycles like benzothiazoles. Increasing number of microbial infectious diseases and resistant pathogens create a demand and urgency to develop novel, potent, safe and improved variety of antimicrobial agents.

Objective:

This initiates a task for current chemistry to synthesize compounds that show promising activity as therapeutic agents with lower toxicity. It is very necessary to introduce new and biologically safe and active drugs eco-friendly in nature and effective as antimicrobial agents.

Methods:

Transition metal complexes share an important place in this regards. Therefore in this paper we report the synthesis and characterization of transition metal complex of N/S ligand by FT-IR, NMR, ESR, elemental analysis, conductometric and magnetic moment measurements. The synthesized metal complexes were successfully investigated for biological activities namely antifungal.

Results:

Based on the results we pronounced biocidal activities of the novel complexes. Concerned complexes contribute diverse applications by being more economical, harmless, non -toxic and eco-environmental friendly.

Keywords: Candida albicans, Trichoderma harzianumon, Benzothiazole, Copper surfactants, Muller Hinton Agar, Biocidal activities.

1. INTRODUCTION

The chemistry of nitrogen donor ligands is a very interesting field. Nitrogen containing ligands have a tendency of complexation with the transition metal soaps and they are recognized as pharmacophores which have received great attention in drug discovery and lead optimization [1]. A review of past researches reveals that among N- donor ligands, phenylthiourea and 2-amino benzothiazole are well known compounds bearing N-C=S linkage. This linkage enables the

¹Department of Chemistry, Pt. N.K.S. Govt. P.G. College, Dausa-303303, India

²Department of Chemistry, S.S. Jain Subhodh P.G. College Jaipur-302001, India

³Department of Chemistry, Govt. P.G. College, Jhalawar-326001, India

^{*} Address correspondence to this author at the Department of Chemistry, Pt. N.K.S. Govt. P.G. College, Dausa-303303, India; Tel: +91 9414738865; E-mail: nehavmathur@yahoo.co.in

metal complexes to possess a range of biological applications namely tranquilisers, sedatives, neuroleptic, antihistamines, anti-helminthes, anti-inflammatory, antipsychotic, anti-viral, anesthetics, anti-malarial, antibacterial, antifungal, diuretic, anticancerous, anticonvulsant, antibiotic etc. Some nitrogen and sulphur ligands are used in therapy, photo-sensitisers, indicators-dyes and heat stabilizers [2, 3]. The exact information of the nature and structure of these aromatic compounds is of great significance for explaining their characteristics under different conditions. The benzothiazole ring is present in various marine and terrestrial natural compounds which have biological significance. Heterocycles containing thiazole moiety are present in many natural products such as epothilone A, bleomycin,lyngbyabellin A and dolostatin [4]. Being a heterocyclic compound, benzothiazole finds use in research as a starting material for the synthesis of usually larger bioactive structures. Its aromaticity makes it relatively stable, although as heterocycle, it has reactive sites which allow functionalization [5]. A large number of therapeutic agents are synthesized with the help of benzothiazole nucleus [6]. Thiazole antifungal are known as potent inhibitors of the cytochrome, monooxygenase in the process of fungal biosynthesis of ergosterol, which is an important constitution of fungal cell membrane [7]. Metal co-ordination complexes have been widely studied for their antifungal, antibacterial and anticancer properties [8]. Many drugs possess pharmacological and toxicological properties when administered in the form of metallic complexes [9]. This stimulates our interest to extend the studies to their cumulative form as complexes because biological activity is often enhanced by complexation [10]. Copper in particular has attracted the researchers. Copper is an essential micronutrient required by all life forms [11]. The present research is an important effort to understand the characteristic nature and biocidal application of copper complexes of nitrogen donor ligands. The treatment with copper complexes produce remarkable pharmacological effects which are not observed when the parent ligands or inorganic forms of copper are used. The use of transition metal complexes as therapeutic compounds has become more and more pronounced. In the present study antifungal activity was performed for the synthesized complexes CP(BTA)A and CP(BTA)NA) on Muller Hinton Agar against Candida albicans, Trichodermaharzianum.

Abbreviation of complexes are as follows:

S3= CP[BTA] A Complex of copper palmitate with 2-amino-6-methoxy benzothiazole

S4 = CP[BTA]NA Complex of copper palmitate with 2-amino-6-nitro benzothiazole

2. EXPERIMENTAL

Copper soap and substituted benzothiazole ligand were prepared by earlier reported methods [12]. Their analytical and physical data of ligand, soap and complexes are summarized in Tables 1-4. The synthesized complexes are characterized by chromatography and spectroscopic techniques as follows:

Table 1. Analytical and physical data of 2-amino-6-methoxy benzothiazole ligand.

Compound	Molecular Weight	M.P. (°C)	Yield %	Colour	% Found (Calculated)				
					С	Н	О	N	S
C8H8ON2S	180.24	134	98	Sap green	53.28 [53.33]	4.4 [4.44]	8.8 [8.88]	15.5 [15.55]	17.71 [17.77]

Table 2. Analytical and physical data of 2-amino-6-nitro benzothiazole ligand.

Compound	M. W.	M.P. (°C)	Colour	Yield	% Found (Calculated)				
-		-	-	-	С	H	0	N	S
$C_7H_5O_2N_3S$	195.11	202	Black	98	42.09	2.47	16.35	21.47	16.38
-	-	-	-	-	[43.05]	[2.56]	[16.40]	[21.52]	[16.40]

Table 3. Analytical and physical data of copper palmitate soap (C₁₅H₃₁COO)₂Cu.

Compound	M. W.	M.P. (°C)	Colour	Yield	% Found (Calculated)				
-	-	-	-	-	Cu C H			0	
$C_{32}H_{62}O_4Cu$	573.5	80	Blue	98	11.02	66.9	10.78	11.12	16.35
-	-	-	-	-	[11.07]	[66.95]	[10.81]	[11.16]	[16.40]

Compound M.F. M.W. M.P. (°C) Yield Colour % Found (Calculated) Cu Н \mathbf{o} S \mathbf{C} N CP[BTA]A Cu2C80H140O10N4S2 1507.82 98 7.97 64.52 9.35 10.66 3.38 4.11 269 Dark green [63.72] [9.28] [10.60] [4.24] [8.42] [3.71]60.92 8.78 CP[BTA]NA Cu2C78H134O12N6S2 1537.78 232 98 12.09 4.92 Chatt black 8.02 [8.26] [60.92] [8.71] [12.48] [5.46] [4.16]

Table 4. Analytical and physical data of the complexes: CP[BTA]A & CP[BTA]NA.

2.1. Chromatography

TLC is probably the most versatile technique for the analysis of complexes and their mixtures. TLC is quite efficient technique for separation and identification of synthesized soap, ligand and their complexes in sub microgram amounts using silica gel plates in various non-aqueous solvent systems. $R_{\rm f}$ of copper soap, ligands and the synthesized complexes in non-aqueous solvent systems has been determined. A thin layer chromatographic applicator was used for coating sorbent material on 20×3 cm glass plates to obtain absorbent layer of 0.25 mm thickness [13]. The coated plates were developed in glass jars of 24×6 cm. A glass sprayer was used to spray chromogenic reagent on the plate to detect the spot. Silica gel G acted as stationary phase whereas the following solvent systems were used as mobile phase.

Acetone: Carbon tetrachloride
 Acetone: Petroleum ether

3. Benzene: Acetone: Petroleum ether

Silica gel G and double distilled water are mixed in 1:3 (w/v) ratio with constant mechanical shaking until homogenous slurry was obtained to prepare the plates. Approx. 10µl of the test solution was applied on thin layer plates by using micropipette. The solvent ascent was fixed to 10-12 cm in all cases. When the development was completed, the plates are withdrawn from the jar and dried at room temperature. The spots were visible in day light.

2.2. Spectroscopy

The spectral measurements (IR and NMR) and elemental analysis were carried out at the "Regional Sophisticated Instrumentation Centre", Central Drug Research Institute (RSIC, CDRI) Lucknow. The IR spectra of the complexes were obtained as KBr discs in the range 400-4000 cm⁻¹ on Perkin Elmer spectrophotometer. ¹H NMR spectra were recorded at CDRI, Lucknow using CDCl₃ as reference. ESR spectra of the complexes were recorded at SAIF, IIT, Mumbai in the X-band region at microwave frequency 9.1 GHz and microwave power 5 mW under the magnetic field of strength 2000G at room temperature. Tetracynoethylene (TCNE) was used as the standard. Magnetic susceptibility measurements were conducted at S.P. University, Vallabh Vidhyanagar, Gujrat.

2.3. Biocidal

Step 1. Processing of the sample.

The unknown compound is re-suspended in DMSO in mass concentration (w/v)

Step 2. Antimicrobial Susceptibility Testing (Kirby-Bauer and Stokes' methods.) [14]

I. Hinton susceptibility test agar

a. *Sabouraud*Dextrose Agar (antifungal screening) is the only susceptibility test medium that has been validated by NCCLS. Mueller-Hinton agar should always be used for disk diffusion susceptibility testing, accordingly.

II. McFarland turbidity standard

A McFarland 0.5 standard was prepared and quality controlled prior to the beginning of susceptibility testing.

III. Preparation of inoculum

Preparation of inoculums is shown in Fig. (1) as schematic diagram.

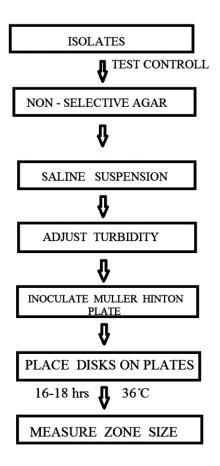


Fig. (1). Flow diagram for Antimicrobial study.

IV. Inoculation procedure

This procedure was exactly same as the earlier reported methods [15].

V. Loading the plate with Positive, negative control and sample

The working supply of antibiotic (streptomycin, positive control) should be stored in the refrigerator (4° C). 50 μ l of the antibiotic suspension was dispensed in the well labeled with C (control), (R, negative control), sample (S) to the plates as soon as possible, but no longer than 15 minutes after inoculation. Diffusion of the drug in the well begins immediately.

VI. Recording and interpreting results

After the Loading of C, S, R on the plate, the plate is inverted and incubated at 35°C for 16 to 18 hrs. After incubation, the diameter of the zones of complete inhibition were measured and recorded in millimeters.

Note:

- Di methyl sulfoxide (negative control) does not show any activity against test organism.
- Antifungal Sensitivity (Itraconozole 5 mg/well) serves as a positive control.
- Sample (unknown chemical compound) (5mg/ well (w/v))

3. RESULTS AND DISCUSSION

3.1. Chromatography

Results were reproducible with in $\pm 0.02~R_f$ unit values for various substituted compounds using procedure for three solvent systems – the main part of the chromatographic studies was the attempt to obtain the standard conditions for

their resolution and identification. The best shaped spots given by the solvents were considered to be suitable, and are A = Acetone = carbon tetrachloride, B = Acetone = Petroleum ether, C = Benzene = Acetone = Petroleum ether. In pure acetone spots run along with the solvent front hence could not be used [16].

Single spot was given by all compounds, uniform in shape in present investigation, so all of them are chromatographically pure. The results of copper palmitate, substituted benzothiazoles, phenylthiourea and complexes are given in Tables 5-7.

Table 5. Palmitate (C₁₅H₃₁COO)₂Cu.

S.No.	Molecular Formula	Solvent			Color of Spot
		A B C			
1.	$C_{32}H_{62}O_4Cu$	54.3	52.1	51.7	Blue

A = acetone = carbontetrachloride

Table 6. (BTA)A and (BTA)NA.

S.No.	Molecular Formula	Solvent			Color of Spot
		A	В	C	
1.	[BTA]A	80.2	76.5	75.4	Sap green
2.	[BTA]NA	78.5	75.4	73.8	Black

A = Acetone = Carbon tetrachloride

Table 7. Copper complexes.

S.No.	Complex	Solvent			Color of Spot
		A	В	C	
1.	CP[BTA]A	88.0	85.7	83.9	Dark green
2.	CP[BTA]NA	87.2	84.5	81.7	Chatt black

A = Acetone = carbon tetrachloride

Acetone = Carbontetrachloride, Acetone, Petroleum ether and Benzene, Acetone = Petroleum ether and Benzene, Acetone = Petroleum ether were selected as best solvent systems for synthesized compounds. In benzene, with or without nitrobenzene, the spots were diffused and comet likes having tail against the flow of solvent. We have observed that R_f values for the series of compounds under investigation increased as the amount of benzene increased in the solvent system. It is observed from the tables that for all the ligands as well as complexes; nitro derivatives gave higher R_f values as compared to methoxy derivatives [17].

3.2. Spectroscopy

(1). IR Spectral studies

The relative intensities / peaks of IR spectra of synthesized complexes are shown in Tables 8-9

Table 8. IR Spectral Data for Copper(II) Complexes.

Absorption Bands	CP[BTA]A (cm ⁻¹)	CP[BTA]NA (cm ⁻¹)
CH ₃ and CH ₂ , C-H antisym. stretching	2916	2919.0
CH ₃ and CH ₂ , C-H sym. stretching	2845	2840.2
N-H bonding	1590	1595
COO ⁻ , C-O antisym. stretching	1515	1520
COO ⁻ , C-O sym. stretching	1468	1472

B = Acetone = Petroleum ether

C = Benzene = Acetone = Petroleum ether

B = Acetone = Petroleum ether

C = Benzene = Acetone = Petroleum ether

B = Acetone = Petroleum ether

C = Benzene = Acetone = Petroleum ether.

Absorption Bands	CP[BTA]A (cm ⁻¹)	CP[BTA]NA (cm ⁻¹)
CH ₂ , C-H Bonding (δ) (twisting and wagging)	1355	1390.2
CH ₃ , C-H rocking	1120.8	1115.6
CH ₂ , C-H rocking	728.4	722.8
Cu-N stretching	545	520
Cu-O stretching	502.2	490.2

Table 9. IR Spectral Data for Copper(II) Complexes.

Absorption Bands	CP[BTA]A (cm ⁻¹)	CP[BTA]NA (cm ⁻¹)
NH ₂ , N-H stretching	3425	3460
Ar-C-NO ₂ stretching	-	1445
N-C=S stretching	1305	1320
C=S stretching	1175	1180
Ar-C-OCH ₃ asym. stretching	1250	-
Ar-C-OCH ₃ sym. stretching	1020	=
C-H, Deformation ("oop")	840	848.7

(A). Copper Palmitate

The IR spectrum of copper palmitate asymmetric stretching vibration of methyl and methylene group is observed at 2910 cm⁻¹ whereas, the symmetric stretching vibration of the group occurred at lower frequency i.e. at 2840 cm⁻¹. The absence of C=O band in the spectra of soap indicate that there is a resonance in the two C=O bonds of carboxylate group. The band in the region 485 cm⁻¹ is due to copper to oxygen bond stretching vibration. This is called characteristic absorption of metal constituent of soap molecule.

(B). CP[BTA]A: Complex of copper palmitate with 2-amino 6-methoxy benzothiazole

The IR spectra of complex of copper palmitate with 2-amino 6-methoxy benzothiazole is shown in Fig. (2) and all IR peaks are summarized in Tables 8-9, it is confirmed from results that the characteristic band of metal constituent of soap molecule i.e. copper oxygen (Cu-O) stretching band has been distinguished at 502.2 cm⁻¹. The strong band at 1604 cm⁻¹ is the characteristic feature of the N-H bending vibration of the -NH₂ group in the free ligand (2-amino 6-methoxy benzothiazole) but in this complex it is shifted to lower frequency at 1590 cm⁻¹ indicating that the primary nitrogen is the coordinating site in the complex. This is further supported by the formation of new band at 545 cm⁻¹, which is due to $v_{\text{M-N}}$ band.

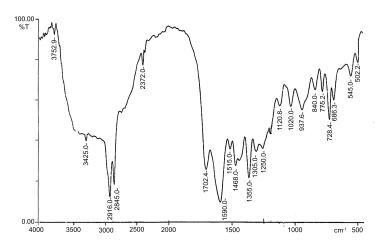


Fig. (2). IR Spectra IR Spectra of Complex: Copper (II) Palmitate with 2-Amino 6-Methoxy benzothiazole- CP[BTA]A.

(C). CP[BTA]NA: Complex of Copper palmitate with 2-amino 6-nitro benzothiazole

The IR peaks of the complex of copper palmitate with 2-amino 6-methoxy benzothiazole are summarized in Tables 8-9, it is confirmed from results that the characteristic band of metal (copper) constituent of soap molecule i.e. (Cu-O) copper oxygen stretching band has been distinguished at 490 cm⁻¹. A clear peak is observed at 1445 cm⁻¹ corresponding to Ar-C-NO₂ vibrations. An absorption band observed at 1320 cm⁻¹ corresponds to N-C=S stretching.

(2). NMR Spectral studies

The relative signals of NMR spectra of synthesized complex are shown in Table 10.

Table 10. NMR Spectral Data for Copper(II) Complexes.

Peak / Signal	CP[BTA]A (δ)	CP[BTA]NA (δ)
-CH ₃ -CH ₂ -R	0.87	0.91
-CH ₂ -CH ₂ -R	1.22	1.25
-NH ₂	3.75-3.85	3.80-3.86
Tautomeric –NH ₂	7.12	7.25

(A). CP[BTA]A: Complex of Copper palmitate with 2-amino-6-methoxy benzothiazole

Aliphatic $-CH_3$ and $-CH_2$ proton attached to $-CH_2$ -R group show signal at nearly δ 0.87 and δ 1.22 respectively. A broadened peak is observed at δ 3.75-3.85 corresponding to $-NH_2$ proton. These 2 peaks indicate the co-ordination through the -NH, group of benzothiazole segment to the metal atom of the soap segment. The proton present on the nitrogen atom may undergo rapid, intermediate or slow exchange. The broadening of the observed peak is suggestive to be a slow exchange because the electrical quadripole moment of nitrogen nucleus induces a moderately efficient spin relaxation. A very weak signal is observed at δ 7.12 in the spectra, which may be due to aromatic protons on benzothiazole moiety.

(B). CP[BTA]NA: Complex of Copper palmitate with 2-amino-6-nitro benzothiazole

Aliphatic -CH₃ and -CH₂ protons attached to CH₂-R group show signal at nearly δ 0.91 and δ 1.25 respectively. A broadened peak is observed at δ 3.80-3.86 corresponding to NH₂ group. This peak indicates the co-ordination through the -NH₂ group of benzothiazole segment to the metal atom of the soap segment. A very weak signal is observed at δ 7.25 in the spectra, which may be due to tautomerism and aromatic protons of benzothiazole moiety present in the complex [18].

(3). ESR Spectral studies

ESR spectrum is characterized by the position, intensity and shape of the component lines. The position of ESR is referred to as g-values and is directly determined by the energy levels. The variation in g-value is interpreted in terms of first and second order spin orbit interaction. The g-value for ESR signal is calculated by the formula [19]:

$$g = \frac{hv}{BH}$$

Where

v = Frequency of band in KHz

B = Bohr Magneton

H = Magnetic field

h = Plank's constant

On the basis of g_{\parallel} and g_{\parallel} the values of g_{av} and G were calculated using the following relations [20]

 $g_{av} (g_{||} + 2 g_{\perp})/3$

$$G = g_{\parallel} - 2/g_{\perp} - 2$$

(A). CP[BTA]A: Complex of Copper palmitate with 2-amino-6-methoxy benzothiazole

The ESR parameters are recorded in Table 11 The values of g_{\parallel} , g_{\perp} and g_{av} are 2.30, 2.05, 2.103, 4.012 and greater than the value of g i.e. 2.00-2.77. This fact suggests that distortion from regular octahedron has taken place in the shape of the complex. From the observed value, it is clear that $g_{\parallel} > g_{\perp} > g$ for CP[BTA]A, which suggests that the complex exhibited in elongated octahedral geometry and the unpaired electron lies predominantly in the d_{x2-y2} orbital of Cu(II) giving ${}^{2}B_{1g}$ as the ground state. It is well known that g_{\parallel} is 2.3 for copper nitrogen band.

Table 11. ESR Spectral Data for Copper(II) Complexes.

Complex	\mathbf{g}_{\parallel}	\mathbf{g}_{\perp}	\mathbf{g}_{av}	G
CP[BTA]A	2.30	2.05	2.103	4.012
CP[BTA]NA	2.32	2.02	2.102	4.892

Since values are moderately sensitive function for indicating covalency, thus the value of g_{\parallel} for complex of copper palmitate with 2-amino-6-methoxy benzothiazole is suggestive of covalent character of metal ligand. Since the value of G is greater than four for CP[BTA]A, it is suggestive of negligible exchange coupling interaction between the two copper centers in complexes.

(B). CP[BTA]NA: Complex of Copper palmitate with 2-amino-6-nitro benzothiazole

The value of g_{\parallel} , g_{\perp} and g_{av} are 2.32, 2.02 and 2.102 and 4.892 respectively. The value of g_{\parallel} , g_{\perp} and g_{av} are greater than the value of g i.e. 2.00-277. Also the trend g_{\parallel} and g_{\perp} for CP[BTA]NA indicates that the unpaired electron is most likely to be in d_{x2-y2} orbital of Cu (II) giving ${}^{2}B_{1g}$ as the ground state. This fact supports the statement that the complex possesses elongated octahedral geometry. Since g_{||}value is a moderately sensitive function for indicating covalency, the value of g_{\parallel} for benzothiazole complex is suggestive of covalent character of metal ligand band. Since the value of G is greater than four for complex, it is suggestive of negligible exchange coupling interaction between the two copper centers in the complex.

3.3. Magnetic Moment Studies

As it is reported earlier, the presence of copper ion leads to a magnetic moment of 1.73 BM. Various scientists have reported subnormal values for the magnetic moment of copper soap and fatty acid, inferring that the soap exists as a binuclear molecule. This has been attributed to the formation of δ -bonds arising from inter-molecular exchange demagnetization through lateral overlapping of $3d_{x_2-y_2}$ orbital on each copper ion.

The studies also reveal that these values of magnetic moments in the range 1.92-2.08 BM is due to the subdispersion unit of soap/complex which retains its binuclear configuration even in solution. It may be suggested that subdispersion units are bound together by weak polar forces resulting in the interaction between 3d_{xx} and 3d_{xx} orbital of two copper atoms [21].

The lower values of magnetic moments of copper ions in copper complex in benzene, as compared to those in solid state, reflect the terminals of binuclear molecules as [Cu₂(RCOO)₄L₂] Where L represents the solvent molecule in solution, but is replaced by the ligand on complexation.

3.4. Conductivity Studies

The nature of the complexes is found to be non-electrolytic as the molar conductance values in benzene, lies in the range of 3.9-6.14 mhos cm²mol⁻¹ [22].

3.5. Biocidal Studies

The study aims to evaluate the bioactivity of synthesized complexes against test organisms. Antimicrobial sensitivity was performed for synthesized complexes (Compound S₃ and S₄) on Muller Hinton Agar against Candida abicans, Trichodermaharzianumby Kirbyethod [23]

Results obtained using Itraconazole (5 mg (w/v)) as antifungal agent control (C) and for negative reference Ethanol/Methanol (R) are mentioned in Table 12 and Fig. 3)

BTA]NA

1.178

Zone of Inhibition (mm) Microorganism Sample S. No **Positive Control** Sample Mean Zone of Inhibition Reference Activity **Antifungal Sensitivity** (Itraconozole mg/well) 8.83 0.868 1. Candida albicans 19 [BTA]A Trichoderma harzianum 23.5 12 12 11.83 9 1.438 11.5 3. Candida albicans 19 9 8 9 8.67 10 0.858

11 10 10.5

10.5

Table 12. Antifungal activity of the substituted benzothiazole ligands against test fungi.

23.5

Note:

Sample I: Sample (5 mg/ well (w/v))
Diameter of the zone of inhibition is given.
Diameter of the well was 8mm.

Trichoderma harzianum

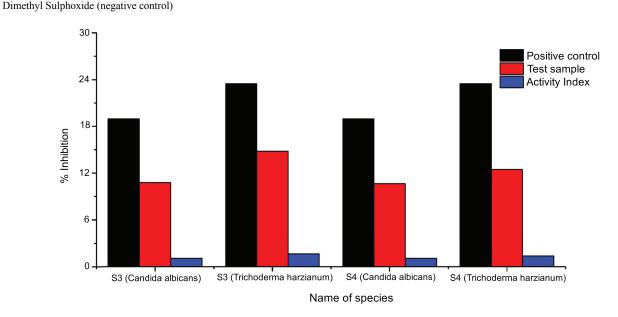


Fig. (3). Plots presenting the comparative study of complex sensitivity against different fungi under study.

Activity index = zone of inhibition of sample[S]/zone of inhibition of reference [R] And the activity can be found out by [24]:

Activity = activity index
$$\times$$
 10

If the Zone of Inhibition is

< 13 = it means that the extract is inactive,

13 - 18 = it means that the extract is bioactive.

> 18 = it means that the extract is highly active.

Table 12 data reveals that complexes show higher activity than ligands suggesting that complexes are more powerful anti- fungal agents and benzothiazole and other N, S, O etc. containing compounds are able to enhance the performance of copper soaps. The enhanced activity of newly synthesized complexes as compared to those of the ligand can possibly be explained on the basis of chelate formation, presence of donor atoms, basicity as well as the structural compatibility with molecular nature of the toxic moiety [25].

The results of ANOVA for the antifungal activities for all complexes are shown in Table 13. The predicted R^2 are in reasonable agreement and closer to 1.0. This confirms that the experimental data are well satisfactory. The descriptive static results of all complexes also confirm satisfactory results in triplet.

Table 13. ANOVA and descriptive statics results for antifungal activities of synthesized complexes.

-	Anova: Single Factor	-	-	-	-	-	-	-
-	SUMMARY	-	-	-	-	-	-	-
Complex	Groups	Count	Sum	Average	Variance	Std Deviation	Coff. Variance	Std Error
S3	Candida albicans	3	96	32	1.00	1.00	0.0313	0.018
-	Trichodermaharzianum	3	109	36	0.33	0.58	0.0159	0.009
S4	Candida albicans	3	30	10	0.08	0.29	0.0284	0.016
-	ANOVA	-	-	-	-	-	-	-
-	Source of Variation	SS	df	MS	F	P-value	F crit	-
-	Between Groups	1180.16	2	590.083	1249.588	1.37385E-08	5.1433	-
	Within Groups	2.833	6	0.472	-	-	-	=
	Total	1183	8	-	-	-	-	-

SS= sum of squares, MS= mean square, df= degree of freedom, p < F (level of significance)

CONCLUSION

The antifungal activity of the synthesized complexes has been evaluated by the Muller Hinton Agar method. The results are expressed in millimeter. The two antimicrobial disks (Itraconozole for anti-fungal) were taken as standards and the sample disks were compared with it. A scrutiny of results reveals that both pure soaps and ligands show less inhibition whereas on complexation the inhibition enhanced and also complexes show higher activities than pure ligands suggesting that complexes are more powerful agents. Hence, we can conclude that Benzothiazoles and other N and S containing compounds are able to enhance the performance of copper soaps.

ETHICS APPROVAL AND CONSENT TO PARTICIPATE

Not applicable.

HUMAN AND ANIMAL RIGHTS

No Animals/Humans were used for studies that are base of this research.

CONSENT FOR PUBLICATION

Not applicable.

CONFLICT OF INTEREST

The authors declare no conflict of interest, financial or otherwise.

ACKNOWLEDGEMENTS

The authors express their sincere thanks to the Principal, Head of the Department of Chemistry, Pt. N.K.S. Govt. P.G. College, Dausa for providing laboratory facilities. Heartfelt thanks to Therachem laboratories, Jaipur for NMR spectral data, IIT Mumbai for FT-IR and ESR spectral data.

REFERENCES

- [1] Mathur N, Bargotya S. Advances in the research of novel N/S containing metal complexes as potent antioxidants. J Applied Chem 2017; 10(8): 18-23.
- Sharma A K, Sharma R, Saxena M. Biomedical and antifungal application of Cu(II) soaps and its urea complexes derived from various oils. [2] Open access J Trans Med Res 2018; 2(2): 40-3.
- Bargotya S, Mathur N, Sharma AK. Physico-chemical analysis of environmentally safe complexes of copper ISBN 978-613-8-34672-2. LAP [3] LAMBERT Academic Publishing, Germany, 2018.
- Mathur N, Bargotya S. DNA-Binding and cleavage studies of macrocyclic metal complexes containing heteroatomic ligands. Chem Sci Trans [4] 2016; 5(1): 117-24.
- [5] Bhutra R, Sharma R, Sharma AK. Synthesis, characterization and fungicidal activities of Cu (II) surfactants derived from groundnut and mustard oils treated at high temperatures. J Inst Chemists (India) 2018; 90(3): 66-80.
- Pillai VV, Sreekanth B. DNA binding and antimicrobial studies of Ag (II) and Cu (II) metalcomplexes containing mixed ligands of 1, 10-[6] phenanthroline and 8-hydroxyuinoline. Int J Pharm Bio Sci 2013; 4: 739-47.

- [7] Tank P, Sharma R, Sharma AK. A pharmaceutical approach & antifungal activities of copper soaps with their N & S donor complexes derived from mustard and soyabean oils. Glob J Pharmaceu Sci 2017; 3(4): 1-6.
- [8] Sharma AK, Sharma R, Gangwal A. Biomedical and fungicidal application of copper surfactants derived from pure fatty acid. Org Med Chem Int J 2018; 5(5): 1-3.
- [9] Mathur N, Bargotya S. A facile synthesis and biological evaluation of some macro cyclic copper complexes. Int J Phar Sci Res 2015; 6(6): 2345.: 538.
- [10] Mathur N, Bargotya S. Synthesis characterization and plant growth regulatory activity of metal complexes with some bioactive ligands. World J Phar and Pharmace Sci 2016; 5(11): 945-55.
- [11] Jain P, Kachhwaha S, Kothari SL. Chloroplast ultra structure, photosynthesis and enzyme activities in regenerated plants of Stevia rebaudiana (Bert.) Bertoni as influenced by copper sulphate in the medium. Ind J Exp Bio 2014; 52: 898-904.
 [PMID: 25241590]
- [12] Bhutra R, Sharma R, Sharma AK, Biotechnol SAJ. Fungicidal activities of Cu (II) soaps derived from various oils treated at high temperature for biomedical use. SAJ Biotechnol 2018; 5: 1-3.
- [13] Sharma AK, Saxena M, Sharma R. Synthesis, spectroscopic and biocidal activities of environmentally safe agrochemicals. J Biochem Tech 2018; 7(3): 1139-47.
- [14] Kapoor P, Fahmi N, Singh RV. Microwave assisted synthesis, spectroscopic, electrochemical and DNA cleavage studies of lanthanide(III) complexes with coumarin based imines. Spectrochim Acta A Mol Biomol Spectrosc 2011; 83(1): 74-81. [http://dx.doi.org/10.1016/j.saa.2011.07.054] [PMID: 21903455]
- [15] Mathur N, Dobhal MP, Jain N. Comparative antibacterial analysis of substituted benzothiazole and substituted phenylthiourea complexes with copper metal. Int J Green and herb Chem 2017; 7(1): 1-6.
- [16] Mathur N, Sharma AK. Synthesis of hetero-cyclic compounds for bio-medical applications "ISBN 978-613-8-05861-8". LAP LAMBERT Academic Publishing, Germany 2018.
- [17] Sharma AK, Sharma R, Gangwal A K. Antifungal activities and characterization of some new environmentally safe Cu (II) surfactants substituted 2-amino-6-methyl benzothiazole. Open Phar Sci J 2018; 5: 3-12.

 [http://dx.doi.org/10.2174/187484490180501]
- [18] Khan S, Sharma R, Sharma AK. Antifungal activities of copper surfactants derived from neem (AzadirectaIndica) and karanj (Pongamiapinnata) oils: A pharmaceutical application. Glob J Pharmaceu Sci 2017; 3(4): 1-6.
- [19] Mathur N, Heda LC, Mathur VK, Saxena P. Study of CLSI-M44-A disk diffusion method for determining the susceptibility of candida species against novel complexes derived from copper stearate with 2-amino benzothiazoles. Tenside Surf Det 2011; 48(1): 1-5.
- [20] Sharma R, Sharma AK. Natural edible oils: Comparative health aspects of sesame, coconut, mustard (rape seed) and groundnut (peanut): A biomedical approach. Biomed J Sci & Tech Res 2017; 1(5): 1-4.
- [21] Rai BK, Kumar A. Synthesis, characterization and biocidal activity of some Schiff base and its metal complexes of Co (II), Cu (II) and Ni (II). Oriental J Chem 2013; 29(3): 1187-91.
- [22] Mathur N, Bargotya S. Evaluation of novel N/S containing heterocyclic metal complexes as biologically potent agents. Res J Chem Sci 2018; 8(4): 30-4.
- [23] Bargotya S, Mathur N, Sharma AK. Antimicrobial & DNA cleavage studies of heterocyclic metal complexes ISBN 978-613-8-34627-2. LAP LAMBERT Academic Publishing, Germany 2018.
- [24] Mathur N, Bargotya S, Manna B, Kasana A. Antifungal screening and oxidation behaviour of some microwave assisted benzothaizine drugs. Int J Chem Sci 2014; 12(2): 533-46.
- [25] Sharma AK, Sharma R, Saxena M. Synthesis, spectroscopic and fungicidal studies of Cu (II) soaps derived from groundnut and sesame oils and their urea complexes. Bulletin Pure Appl Sci 2017; 36(2): 26-37.

© 2018 Mathur et al.

This is an open access article distributed under the terms of the Creative Commons Attribution 4.0 International Public License (CC-BY 4.0), a copy of which is available at: https://creativecommons.org/licenses/by/4.0/legalcode. This license permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.