Konstantin Goulianos^{*,§}

The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA

Abstract: We present results on central exclusive production of $\pi^+\pi^-$ in $\overline{p}p$ collisions at $\sqrt{s} = 900$ and 1960 GeV using events with two charged hadrons in the final state within the pseudorapidity region $|\eta| \le 1.3$ and no particles in $|\eta| > 1.3$. These results open a new window into hadron spectroscopy, and may be used as benchmarks for testing relevant theoretical models.

PACS Number(s): 13.30.Eg.

Keywords: Central exclusive production, diffraction, low mass states.

1. INTRODUCTION

The CDF Collaboration (CDF) has been studying diffraction in $\overline{p}p$ collisions for the past quarter century, aiming to understand the QCD aspects of the diffractive exchange, a strongly interacting color-singlet quark/gluon combination with vacuum quantum numbers, traditionally referred to as Pomeron (*IP*) exchange¹. Such exchanges lead to large, non-exponentially suppressed pseudorapidity regions devoid of particles, called rapidity² gaps. Diffractive processes are classified as single dissociation or single diffraction, SD, characterized by a forward gap adjacent to a surviving \overline{p} or *p*, double dissociation or double diffraction, DD, characterized by a central gap, and central diffraction or double-Pomeron exchange (CD or DPE), a process with two forward gaps.

A special class of diffraction is central exclusive production, a DPE process in which a specific state is centrally produced [3]. CDF has published results on exclusive *dijet* (2008) [4], $\mu^+\mu^-$ (χ_c , J/ψ and $J/\psi(2s)$ (2009) [5], and $\gamma\gamma/e^+e^-$ (2012) [6] production. In this paper, we report on the observation of exclusive $\pi^+\pi^$ production [7] and compare our results with theoretical expectations.

*Address correspondence to this author at The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA; Tel: +1.212.3278817; Fax: +1.212.3277786; E-mail: dino@rockefeller.edu

[§]On behalf of the CDF Collaboration.

²Rapidity, $y = \frac{1}{2} \ln \frac{E + p_L}{E - p_L}$, and pseudorapidity, $\eta = -\ln \tan \frac{\theta}{2}$, where θ is

the polar angle of a particle w.r.t. the proton beam ($+\hat{z}$), are approximately equal for particles detected in the calorimeters.

2. CENTRAL EXCLUSIVE PRODUCTION OF $\pi + \pi^{-1}$

2.1. Detector, Triggers, Datasets

Detector. The CDF II detector is shown schematically in Fig (1). It consists of the main detector, labeled CDF II in this figure, equipped with a tracking system and calorimeters (central: CCAL, plug: PCAL), and the forward components (Cherenkov Luminosity Counters: CLC, MiniPlugs: MP, Roman Pot Spectrometer: RPS). The RPS and MP were not active in this study, and from the BSC only those covering the pseudorapidity region of 5.4 <| η |< 5.9 are used.

Triggers. The following two triggeres were used for data collection:

- signal: two CCAL towers ($|\eta| < 1.3$) with energy E > 0.5 GeV (a very low threshold!) and no energy in BSC ($|\eta| = 5.4 5.9$) and in the Forward Plug Calorimeters ($|\eta| = 2.11 3.64$)
- **zero-bias:** offline selected bunch-crossing events with no tracks, for use in noise/exclusivity studies.

Datasets. The signal datasets consist of $90(22) \times 10^6$ events at $\sqrt{s} = 1960(900)$ GeV.

2.2. Preliminary Results

We report results for events with exactly two tracks within rapidity $|y_{\pi^+\pi^-}| < 1.0$ and $M_{\pi^+\pi^-} < 0.8$, where there is useful acceptance at all p_i . No particle ID is (yet) being used, and the observed tracks are assumed to be due to pions.

We select events in regions of instantaneous luminosity $1 \times 10^{30} < L < 2.2 \times 10^{30}$ cm⁻² s⁻² (Fig. 2-left), and set detector thresholds for optimum signal/noise ratio (Fig. 2-right).

Fig. (3) shows mass distributions of $\pi^+\pi^-$ candidate events uncorrected (left) and corrected (right) for acceptance. The f_0 (980), f_2 (1270), and f_0 (1370) are clearly visible.

Open Access

¹Recent CDF results on diffraction have been presented in *DIFFRACTION* 2012 [1]; in the present paper we concentrate on exclusive $\pi^+\pi^-$ production, closely following the CDF presentation in *EDS-2013* [2].

Fig. (1). Schematic plan view of the CDF II detector showing the tracking system and calorimeters (CCAL, PCAL), and forward components (MP, CLC, BSC, RPS); the BSC are electrostatic beam separators.

Fig. (2). Zero-bias data sample at $\sqrt{s} = 1960$ GeV with an exponential fit: (left) efficiency of event selection (probability that the whole detector is empty) vs beam-bunch instantaneous luminosity for a single bunch (the *L* quoted in the text is 36 times larger, as there are 36 colliding bunches); (right) detector-noise levels for "interaction" and "no-intezoomraction" events. The vertical dashed lines show the cuts used to define "empty" detectors or "noise" (the K^+K^- background in this area, measured with K^0K^0 events, amounts to a few %).

The small but significant peak at 3.1 GeV is understood to be from $J/\psi \rightarrow e^+e^-$ with $M_{e^+e^-}$ treated as $M_{\pi^+\pi^-}$. The integrated cross section over the region $0 < M_{\pi^+\pi^-} < 5$ GeV and $|y_{\pi^+\pi^-}| < 1.0$ at $\sqrt{s} = 1960$ GeV [900 GeV] is $1910 \pm 4 (stat.) \pm 380 (syst.)$ [825 ± 11 (stat) ± 160 (syst)] nb. The higher cross section at $\sqrt{s} = 1960$ GeV may be due to the same $\eta_{max} = 5.9$ cut at both energies, while the proton beam rapidity is $y_{beam} = \ln(\sqrt{s} / m_p) = 7.64$ [$y_{beam} = 6.87$], allowing higher M_{p+p} values at 1960 GeV.

Fig. (4) shows the ratio of $\pi^+\pi^-$ candidates at $\sqrt{s} = 1960/900$ GeV (top), and the mean p_t for $\sqrt{s} = 1960$ GeV (bottom-left) and $\sqrt{s} = 900$ GeV (bottom-right) vs

Fig. (3). M_{r+r} distributions at $\sqrt{s} = 1960$ GeV not corrected (left) and corrected (right) for acceptance.

Fig. (4). Ratio of events at $\sqrt{s} = 1960/900$ GeV (top), and mean p_t of π^+/π^- (left/right) vs $M_{\pi^+\pi^-}$.

 $M_{\pi^+\pi^-}$. The statistically more significant data at $\sqrt{s} = 1960$ GeV show structures at 1.5 GeV, 2.25 GeV, and between 3 GeV and 4 GeV. Work is in progress to understand these structures, including a phase-shift analysis.

In Fig. (5), we compare the distributions of $d\sigma / dM_{\pi^+\pi^-}$ of events at $\sqrt{s} = 1960$ and 900 GeV for $M_{\pi^+\pi^-} < 5$ GeV (left), and zoom into the region of $M_{\pi^+\pi^-} < 2$ GeV (right) for an expanded view. At $M_{\pi^+\pi^-} > 1.5$ GeV, we observe

CDF Run II Preliminary

features in the mass spectrum which are not yet understood and are the subject of further ongoing studies.

3. SUMMARY

We have measured exclusive $\pi^+\pi^-$ production in $\overline{p}p$ collisions at $\sqrt{s} = 900$ GeV and $\sqrt{s} = 1960$ GeV with the CDF II detector at the Fermilab Tevatron Collider. Using tracks, assumed to be from pions, which are the dominant charged-pair component, we explored the low mass region of $M_{\pi^+\pi^-} < 5$ GeV. We observe the well known resonances f_0

Fig. (5). Differential cross sections $d\sigma/dM_{\pi^+\pi^-}$ vs $M_{\pi^+\pi^-}$ at $\sqrt{s} = 1960$ and 900 GeV for $M_{\pi^+\pi^-} < 5$ GeV (left) and $M_{\pi^+\pi^-} < 2$ GeV (right).

CDF Run II Preliminary

(980) and f_2 (1270), and see a small but significant peak at

3.1 GeV understood to be from $J/\psi \rightarrow e^+e^-$ with $M_{e^+e^-}$

assumed as $M_{\pi^+\pi^-}$. We also observe features at $M_{\pi^+\pi^-} > 1.5$

GeV, which are not yet understood. Further investigations of these features, including a partial wave analysis, are currently underway.

CONFLICT OF INTEREST

The author confirms that this article content has no conflict of interest.

ACKNOWLEDGEMENTS

I would like to thank my colleagues at the CDF Collaboration who made this work possible, and the Office of Science of the Department of Energy for financial support.

REFERENCES

 Goulianos K. Diffractive dijet production at CDF, in proceedings of DIFFRACTION 2012: International Workshop on Diffraction in High Energy Physics; September 2012; Puerto del Carmen, Lanzarote, AIP Conf Proc 1523: pp. 298-301.

Received: November 25, 2013

Revised: January 24, 2014

Accepted: January 25, 2014

© Konstantin Goulianos; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

- [2] Goulianos K. New results on diffractive and exclusive production from CDF, to appear in proceedings of XXI international workshop on deep-inelastic scattering and related subjects -DIS2013; April 2013; Marseilles, France 2013.
- [3] Albrow MG, Coughlin TD, Forshaw JR. Central exclusive particle production at high energy hadron colliders. Prog Part Nucl Phys 2010; 65: 149.
- [4] Aaltonen T, Adelman J, Akimoto T, *et al.* (CDF Collaboration). Observation of Exclusive Dijet Production at the Fermilab Tevatron $\overline{p}p$ Collider. Phys Rev D 2008; 77: 052004.
- [5] Aaltonen T, Adelman J, Akimoto T, *et al.* (CDF collaboration). Observation of exclusive charmonium production and $\gamma\gamma \rightarrow \mu^+\mu^-$

in $\overline{p}p$ collisions at $\sqrt{s} = 1.96$ TeV. Phys Rev Lett 2009; 102: 242001.

[6] Aaltonen T, Albrow MG, Gonz'alez BA, *et al.* (CDF collaboration). Observation of exclusive $\gamma\gamma$ production in $p\bar{p}$

collisions at $\sqrt{s} = 1.96$ TeV. Phys Rev Lett 2012; 108: 081801.

[7] Albrow MG. (Representing the CDF collaboration). Central exclusive production of hadrons in CDF, in proceedings of DIFFRACTION 2012: International Workshop on Diffraction in High Energy Physics; September 2012; AIP Conf Proc 2013; vol. 1523: pp. 294-7.