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Abstract: The measurement of azimuthal correlations of Mueller-Navelet jets is generally considered as a decisive test to 
reveal the effect of BFKL dynamics at hadron colliders. The first experimental study of these correlations at the LHC has 
been recently performed by the CMS collaboration. We show that the ratios of cosine moments of the azimuthal 
distribution are successfully described within our next-to-leading logarithmic BFKL treatment. The whole set of CMS 
data for the azimuthal correlations can also be consistently described, provided that one uses a larger 
renormalization/factorization scale than its natural value. 
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1. INTRODUCTION 

 The understanding of the high energy limit of QCD, in 
the so-called perturbative Regge limit, has been the subject 
of many studies. Many observables have been suggested to 
test these dynamics, based on inclusive [1], semi-inclusive 
[2] and exclusive processes [3]. In this limit, the smallness of 
the strong coupling α s  can be compensated by large 
logarithmic enhancements of the type [α s ln(s / t )]

n  which 
have to be resummed, giving rise to the leading logarithmic 
(LL) Balitsky-Fadin-Kuraev-Lipatov (BFKL) Pomeron [4]. 
Mueller and Navelet proposed to study the production of two 
jets with a large rapidity separation at hadron colliders [5]. In 
a pure leading order collinear treatment, these two jets would 
be emitted back to back, while a BFKL approach allows 
some emission between these jets which should lead to a 
larger cross section and lower angular correlation of the jets. 
We present results of a full next-to-leading logarithmic 
(NLL) analysis, in which the NLL corrections are included 
for the BFKL Green's function [6] and the jet vertices [7, 8]. 

 In the following we will focus on the azimuthal 
correlations 〈cosnϕ〉  [9] and ratios of these observables, as 
well as on the azimuthal distribution, at a center of mass 
energy s = 7  TeV, which have been measured recently at 
the LHC by the CMS collaboration [10]. We make some  
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comparison of our results [11] with these data and 
investigate the dependency on the various scales, including 
the renormalization scale. 

 
Fig. (1). Kinematics of the process. 

2. BASIC FORMULAS 

 Let us consider, as shown on Fig. (1), two hadrons 
colliding at a center of mass energy s . Relying on the 
collinear factorization, the differential cross section reads 
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dσ
d kJ ,1 d kJ ,2 dyJ ,1dyJ ,2

 

=
a,b
∑ 0

1

∫ dx1 0

1

∫ dx2 fa (x1) fb (x2 )
dσ̂ ab

d kJ ,1 d kJ ,2 dyJ ,1dyJ ,2
,  (1) 

where kJ,1, kJ,2 are the transverse momenta of the jets, yj,1 and 
yj,2 their rapidities and fa (fb) are the parton distribution 
functions (PDFs) of a parton a (b) in the according proton. In 
this expression, the partonic cross section can be expressed 
as 

dσ̂ ab

d kJ ,1 d kJ ,2 dyJ ,1dyJ ,2  

= ∫dφJ ,1dφJ ,2 ∫d2k1d2k2Va (−k1, x1)G(k1,k2, ŝ)Vb (k2, x2 ),  (2) 

where φJ ,1  and φJ ,2  are the azimuthal angles of the jets,  

aV )( bV  is the jet vertex initiated by the parton a (b) and G  
is the BFKL Green's function which depends on ŝ = x1x2s . 
For further use, it is convenient to introduce the coefficients 

 Cn , defined as 

 
Cn = (4 − 3δ n,0 )∫dνCn,ν ( kJ ,1 , xJ ,1)Cn,ν

* ( kJ ,2 , xJ ,2 )
ŝ
s0

⎛
⎝⎜

⎞
⎠⎟

ω (n,ν )

,  (3) 

such that 

 

dσ
d kJ ,1 d kJ ,2 dyJ ,1dyJ ,2

= C0 ,  (4) 

and 

 
〈cos(nϕ )〉 ≡ 〈cos(n(φJ ,1 −φJ ,2 −π ))〉 =

Cn

C0
.  (5) 

In Eq. (3), ν,nC  is defined as 

Cn,ν (| kJ |, xJ ) = ∫dφJ d2kdx f (x)V (k, x)En,ν (k)cos(nφJ ),  (6) 

with ν,nE  being the LL BFKL eigenfunctions 

En,ν (k1) =
1

π 2
k1
2( )iν−

1
2 einφ1 .  (7) 

 At LL accuracy, the eigenvalue ω (n,ν )  of the BFKL 
kernel is 

ω (n,ν ) =α sχ0 n , 1
2
+ iν⎛

⎝⎜
⎞
⎠⎟ ,  (8) 

with 

χ0 (n,γ ) = 2Ψ(1)−Ψ γ + n
2

⎛
⎝⎜

⎞
⎠⎟ − Ψ 1−γ + n

2
⎛
⎝⎜

⎞
⎠⎟ ,  (9) 

where α s =α sNc /π , Ψ(z) = ′Γ (z) /Γ(z)  and the vertex is 

 

 

Va (k, x) =Va
(0)(k, x) = α s

2
CA/F

k2
δ 1− xJ

x
⎛
⎝⎜

⎞
⎠⎟ | kJ |δ

(2)(k − kJ ),  (10) 

with CA for a = g and CF for a = q. At NLL, despite the fact 
that the En,v are not eigenfunctions of the kernel anymore due 
to conformal invariance breaking terms, it is still possible to 
use them, the price to pay being an explicit dependency on 
kJ,1 and kJ,2 [12-14]: 

ω (n,ν ) =α sχ0 | n |,
1
2
+ iν⎛

⎝⎜
⎞
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+α s
2 χ1 n , 1

2
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µR
2

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
,  (11) 

with b0 = (33− 2N f ) / (12π )  and Va (k, x) =Va
(0)(k, x)+α sVa

(1)(k, x).
The expression for the NLL corrections to the Green's 
function resulting in 1χ  can be found in Eq. (2.17) of [11]. 
The expressions of the NLL corrections to the jet vertices are 
quite lengthy and will not be reproduced here. They can be 
found in [15], as extracted from [7] after correcting a few 
misprints. They have been recently reobtained in [8]. In the 
limit of small cone jets, they have been computed in [16] and 
applied to phenomenology in [17, 18]. Here we use the cone 
algorithm with a size of Rcone = 0.5 . Note, however, that 
using the kt or the anti-kt algorithm leads to negligible 
changes in our predictions. Our calculation depends on the 
renormalization scale µR , the factorization scale µF  and the 

energy scale s0 . In the following we set µR = µF ≡ µ . We 

choose the “natural” value kJ ,1 ⋅ kJ ,2  for µ  and s0 , and 
vary these scales by a factor of 2 to estimate the scale 
uncertainty of our calculation. We use the MSTW 2008 
PDFs [19] and a two-loop running coupling. We also include 
collinear improvement to the Green's function as was 
suggested in [20] and extended for n ≠ 0  in [13, 14, 21]. 

3. RESULTS: ASYMMETRIC CONFIGURATION 

 In [11] we performed a detailed study of several BFKL 
scenarios, from a pure LL approximation (LL Green's 
function and leading order jet vertex) to a full NLL 
calculation (NLL Green's function and NLL jet vertex). The 
main conclusion is that there is a dramatic effect when 
passing from a mixed treatment, which combines LL vertices 
with NLL Green's function, to a full NLL approach, of 
magnitude similar to the one when passing from a pure LL 
result to the mixed treatment; the inclusion of NLL 
corrections inside the jets vertices is therefore essential. Note 
that the effect of collinear improvement in the NLL Green's 
function is very small when using the NLL jet vertices. The 
inclusion of the whole set of NLL corrections leads to 
decorrelation effects which are much smaller than expected. 
Still, there remains a sizable difference between the full NLL 
approach and the fixed order predictions at next-to-leading 
order (NLO) for the ratios 〈cos2ϕ〉 / 〈cosϕ〉  and 
〈cos3ϕ〉 / 〈cos2ϕ〉 , when taking into account theoretical 
uncertainties. 
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 To study the need for high-energy resummation with 
respect to fixed order treatments, one should, however, pay 
attention to the fact that these fixed order calculations have 
instabilities when the lower cuts on the transverse momenta 
of the jets are identical. Thus, at the moment, it is not 
possible to make a direct comparison between these two 
predictions in an asymmetric configuration and the data of 
[10], which have been extracted in a symmetric 
configuration. Still, one can compare our BFKL calculation 
with the fixed order NLO code Dijet [22] in an asymmetric 
configuration with the following cuts, which could be 
implemented by CMS: 

35GeV < kJ ,1 , kJ ,2 < 60GeV,  

50GeV < Max( kJ ,1 , kJ ,2 ),  
0 < y1,y2 < 4.7.  (12) 

 This is illustrated for the ratios 〈cos2ϕ〉 / 〈cosϕ〉  and 
〈cos3ϕ〉 / cos2ϕ  in Fig. (2). In this figure, we show the 

variation of our NLL result when varying µ  and s0  by a 
factor of 2 and compare it with the Dijet prediction. Here the 
fixed order NLO calculation is significantly above the full 
NLL BFKL calculation. These observables are quite stable 
with respect to the scales so that the difference between NLL 
BFKL and fixed order NLO does not vanish when we take 
into account the scale uncertainty. 

4. RESULTS: SYMMETRIC CONFIGURATION 

 In this section, we compare our results with the data 
recently obtained by CMS [10], for a symmetric 
configuration (identical lower cut for the transverse 
momenta of the jets) and with cuts 

35GeV < kJ ,1 , kJ ,2 < 60GeV,  
0 < y1,y2 < 4.7.  (13) 

 These are the cuts used by CMS in [10], with the 
exception that for numerical reasons we have to set an upper 
cut on the transverse momenta of the jets. We have checked 
that our results do not depend strongly on the value of this 
cut as the cross section is strongly peaked near the minimum 
value allowed for kJ,1 and kJ,2. This enables us to compare 
our predictions with LHC data. 

 We begin our analysis with the azimuthal correlations 
〈cosnϕ〉 . In Figs. (3, 4) we show the variation of 〈cosϕ〉 , 
〈cos2ϕ〉  and 〈cos3ϕ〉  with respect to the rapidity 
separation between the two jets Y within a full NLL 
framework. We display the theoretical uncertainty obtained 
when varying µ  and s0  by a factor of 2 and we compare 
these predictions with CMS data (black dots with error bars). 
We see that NLL BFKL predicts a larger correlation than 
seen in the data, but these observables are strongly 
dependent on the value of the scales. 

 The extraction of ratios of the previously mentioned 
observables was also performed in [10]. In Fig. (5) we show 
results for 〈cos2ϕ〉 / 〈cosϕ〉  and 〈cos3ϕ〉 / 〈cos2ϕ〉 . The 
effect of NLL corrections to the vertices is important (see 
[11, 23] for detailed comparisons), but these observables are 
more stable with respect to µ  and s0  than the previous ones. 
The agreement with the data is very good over a large Y  
range. 
 Our code allows us to perform a complete study of the 
azimuthal distribution [24], which is most directly accessible 
in experiments, while more difficult to evaluate numerically 
than the individual moments discussed above. It is defined as 

1
σ
dσ
dϕ

 = 1
2π

1+ 2
n=1

∞

∑cos nϕ( ) cos nϕ( )⎧
⎨
⎩

⎫
⎬
⎭
.  (14) 

 If one tries to compare the full NLL BFKL prediction 
with CMS data, we fail to describe the distribution for large 
values of ϕ , corresponding to nearside jets configurations, 

 
Fig. (2). Comparison of the full NLL BFKL calculation including the scale uncertainty with Dijet predictions, using asymmetric cuts defined 
in Eq. (12). Left: value of 〈cos2ϕ〉 / 〈cosϕ〉  as a function of the rapidity separation Y. Right: value of 〈cos3ϕ〉 / 〈cos2ϕ〉  as a function of the 
rapidity separation Y. 
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when taking a “natural” scale µ = kJ ,1 ⋅ kJ ,2 .  We have 
seen also in Figs. (3, 4) that the data is better described if we 
use larger values of µ. Indeed, if we let the 
renormalization/factorization scale vary by more than a 
factor of 2, one can see that the whole set of CMS data can 
be very well described within the full NLL BFKL approach 
with a scale of the order of µ ~ 8 kJ ,1 ⋅ kJ ,2 .  This is 
illustrated in Figs. (6-8). 

CONCLUSION 

 We have been able to compare the predictions of our full 
NLL BFKL calculation of Mueller-Navelet jets with data 
taken at the LHC thanks to the measurement presented by 
the CMS collaboration. This comparison shows [23] that for 
the observables 〉〈 ϕncos  a pure LL BFKL treatment or a  
 

 
Fig. (4). Comparison of the full NLL BFKL calculation including 
the scale uncertainty with CMS data, using symmetric cuts defined 
in Eq. (13), for 〈cos3ϕ〉  as a function of the rapidity separation Y. 

 

 
Fig. (3). Comparison of the full NLL BFKL calculation including the scale uncertainty with CMS data, using symmetric cuts defined in 
Eq. (13). Left: value of 〈cosϕ〉  as a function of the rapidity separation Y. Right: value of 〈cos2ϕ〉  as a function of the rapidity separation Y. 

 
Fig. (5). Comparison of the full NLL BFKL calculation including the scale uncertainty with CMS data, using symmetric cuts defined in  
Eq. (13). Left: value of 〈cos2ϕ〉 / 〈cosϕ〉  as a function of the rapidity separation Y. Right: value of 〈cos3ϕ〉 / 〈cos2ϕ〉  as a function of the 
rapidity separation Y. 
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mixed treatment where the NLL Green's function is used 
together with LL vertices cannot describe the data. On the 
other hand, the results of our complete NLL calculation do 
not agree very well with the data when the scales involved, 

are fixed at their “natural” value kJ ,1 ⋅ kJ ,2 . The ratios of 
these observables are very stable with respect to changes of 
the scales and our calculation describes the data quite well. 

 The azimuthal distribution has also been measured by 
CMS, and its description based on our full NLL BFKL 
treatment with a natural renormalization/factorization scale 
fails for the nearside configurations. This description, as well 
as the description of ,cos 〉〈 ϕ 〈cos2ϕ〉  and 〈cos3ϕ〉  is very 
successful provided one takes a large 
renormalization/factorization scale, much larger than the 
natural one. We have shown recently [25] that this can be 
understood when fixing the renormalization scale according 
to the physically motivated Brodsky-Lepage-Mackenzie 

procedure [26], in the spirit of [27, 28], which indeed leads 
to a very good description of the CMS data. 

 To find a fully conclusive evidence for the need of BFKL-
type resummation in Mueller-Navelet jets, a comparison with 
a fixed order (NLO) treatment would be needed. We have 
compared our predictions with the ones obtained with the 
fixed order NLO code Dijet in an asymmetric configuration, 
as required to get stable results in a fixed order approach. We 
found that for the observables 〉〈 ϕncos  no significant 
difference is observed when taking into account the  
scale uncertainties. On the other hand, for 〈cos2φ〉 / 〈cosφ〉   
and 〈cos3ϕ〉 / 〈cos2ϕ〉  the two calculations lead to noticeably 
different results. Since these observables are quite stable with 
respect to scale variations, they are well-suited to study 
resummation effects at high energy. We thus, believe that an 
experimental analysis with different lower cuts on the 
transverse momenta of the jets would be of great interest. 

 

Fig. (6). Comparison of the full NLL BFKL calculation with either a “natural” scale µ = kJ ,1 ⋅ kJ ,2  or a large scale µ = 8 kJ ,1 ⋅ kJ ,2  and 

the CMS data, using symmetric cuts defined in Eq. (13). Left: value of 〈cosϕ〉  as a function of the rapidity separation Y. Right: value of 
〈cos2ϕ〉  as a function of the rapidity separation Y. 

 

Fig. (7). Comparison of the full NLL BFKL calculation with either a “natural” scale µ = kJ ,1 ⋅ kJ ,2  or a large scale µ = 8 kJ ,1 ⋅ kJ ,2  and 

the CMS data, using symmetric cuts defined in Eq. (13). Left: value of 〈cos3ϕ〉  as a function of the rapidity separation Y. Right: value of 
〈cos2ϕ〉 / 〈cosϕ〉  as a function of the rapidity separation Y. 
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