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Abstract. Mechanical resonance dispersion is the inelastic response of a solid to a periodic shear stress. Instead of the 
elastic Young's Modulus, the phenomenon is described by both a real J', and an imaginary J'' component of complex shear 
compliance, corresponding to in phase and out of phase strain responses, respectively. The experimental results are plots 
of J' and J'' vs. frequency, which are typically in the audiofrequency range of 10 - 5600 Hz. Resonances are observed as 
maxima in J'' and inversions in J' at frequencies corresponding to modes of plastic deformation, which are much lower 
frequencies (audiofrequency range) than elastic normal modes. The theoretical explanation of Edwin R. Fitzgerald in-
volves particle waves and momentum transfer and leads to a particle-in-a-box frequency formula for these inelastic 
modes. Unfortunately, most of his and other published raw data were never analyzed by this model. The purpose of this 
article is to apply this formula to previously uninterpreted resonance dispersion curves and to address some of the earlier 
criticism of Fitzgerald's work. Results of these calculations support the Fitzgerald Theory to a high degree, demonstrate 
the importance of impurities and chemical analysis, largely mollify previous criticisms, and suggest the possibility of a 
new particle wave mass spectroscopy at great distances.  
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1. INTRODUCTION 

Mechanical resonance dispersion (MRD) has been ap-
plied to such diverse systems as whale blubber [1], violin 
wood [2], human cancellous bone, natural rubber, synthetic 
polymers, and a variety of single crystal and polycrystalline 
solids, both elements and compounds (other references be-
low in context), with the goal of understanding the mechani-
cal response of the solid to periodic stress in the audiofre-
quency range. According to Edwin R. Fitzgerald [3], the 
complex (hence "dispersion") shear compliance, 

  J *= J iJ , with  J equal to the (energy) storage compli-
ance and  J  equal to the (energy) loss compliance. This is 

the manifestation of a periodic shear stress, s = s
0
sin t , 

resulting in a periodic strain, a, with both in phase and out of 

phase components: 
  
a = s

0
(J sin t J cos t).

 
In a typical Fitzgerald experiment [3], the sample disk is 

clamped between piezoelectric transducers and is subjected 
to periodic shear stress at specific narrowly spaced frequen-
cies. J' and J" are calculated at each frequency from 
knowledge of the electrical circuit [1], yielding a "spectrum" 
for a particular material. The details of the spectrum are a 
function of the chemical composition, including impurities, 
the crystallinity, the previous processing (e.g., sintering, fu-
sion, quenching, or annealing), and to a lesser extent the stat-
ic stress on the sample and the duration of the experiment. 
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2. COMPUTATIONAL METHODS  

The classical mechanical model predicts a single reso-
nance frequency, but nearly all spectra, including those of 
elements, show multiple resonances. To explain these and 
other details, Fitzgerald [4] invoked a momentum transfer 
equation for a one dimensional lattice of N atoms (1, 2, ...N) 

of mass m and velocities, 
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where Kp is the momentum transfer constant, found to be 

equal to
  
ih / (4 d

2 ) , with h equal to Planck's Constant, m the 

atomic mass, and d the interatomic spacing. 

 Applying boundary conditions to standing particle wave 
solutions to (1), the Planck-Einstein Equation,  E = h , plus 

the deBroglie Relation, 
 
p = h , Fitzgerald derived the parti-

cle-in-a-box normal mode frequencies  

  
= q2h / (8mS 2 )  (2) 

from which we obtain the operational equation for interpret-
ing MRD spectra, 

  
S = q(h / 8m )1/2  (3) 

Here S equals Nd, the crystal mosaic size, and q a quan-
tum number 1, 2, ... N-1. A standing particle wave is thus 
fixed between the endpoints of the mosaic separated by  
S and can have N-1 wavelengths from 2S to 2d. Since  
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momentum is conserved in each of three dimensions, Eq. (1) 
is applicable to any row of like atoms in a crystal. An identi-
cal result, Eq. (2), was obtained [4, 5] by applying the time-
dependent Schrödinger Equation.  

For many materials a common dimension for crystal mo-
saics is on the order of 1 μm. This adds a further criterion for 
correct spectral assignments according to Eq. (3): S   1 μm. 
Of course, elements chosen, which determine m, must be 
known to be present in the sample or likely to be present 
based on sample origin and history.  

Interpretation of a spectrum of resonance frequencies by 
this model will consist of choosing an element or an isotope 
for a highly resolved spectrum and a value of q for each res-
onant frequency such that a common value of S is calculated 
by Eq. (3) for all resonant frequencies in the spectrum.  
 

This has been done only rarely previously for multiple reso-
nances [6-9] where frequency series with ratios 1: 4: 9: 
16…q2 were found (twice retrospectively). Such a complete 
spectrum is not observed in any of the 38 spectra interpreted 
below, and never without additional resonances, hence the 
need to identify previously unrecognized sample impurities 
in the large majority of MRD spectra. The purpose of this 
article is to apply this formula (Eqs. (2) and (3)) to previous-
ly uninterpreted MRD spectra and to address some of the 
earlier criticism of Fitzgerald's work.  

Experimental resonant frequencies  listed in the fol-
lowing tables were either specifically mentioned in text or 
tables by the authors of the respective references or were 
taken from their spectra figures by this author. Eq. (3) was 
used to calculate S from each frequency and the assigned 
values of atomic or isotopic mass and q. The average value 

of S, Sav, for each sample was used to calculate 
c

 from Eq. 

(2) for comparison with experimental values, . Throughout 
the following tables, an element symbol implies no resolu-
tion of isotopes or a monoisotopic element and the use of the 
atomic weight [10] in determining m for Eq. (3). A specific 
isotope designation implies use of the specific isotopic mass 
[11] in Eq. (3).  

3. RESULTS AND DISCUSSION 

3.1. Metals 

3.1.1. Elemental 

Table 1 lists data [3] from three different polycrystalline 
lead samples cut from the same bar. Samples A and C have 
the same dimensions, but were cut from different ends of the 
bar. Sample B was cut near A but had different dimensions. 

The importance of trace impurities (Cu, Ag, Ca, Ni and 
possibly Bi) is made strikingly obvious by this interpretation. 
Resonances due to copper were the strongest. Silver, a com-
mon lead impurity, was not reported in the chemical analy-
sis, but is indicated based on a weak resonance. Lead and 
bismuth resonances would probably not have been resolved, 
so both possibilities are listed. In the Betterton-Kroll refining 
process calcium is added to the molten lead to extract bis-
muth as dross (Ca3Bi2). The origin of Ni is unknown. The 
good agreement between calculated S values, all near one 
micron, supports the validity of Eq. (3) and the underlying 
theory. This degree of agreement or better will be seen 
throughout the following data sets for other materials. Notice 
that the annealed samples had fewer resonances, which may 
be the result of other impurities having moved to the grain 
boundaries. Spectral differences between the samples may be 
due to heterogeneity of the lead bar from which all samples 
were cut, orientation of the samples within the bar, or varia-
tion in time of analysis. Whether the free particles are atoms 
or ions is not known. 

In a higher resolution study of lead [12], S. R. Bodner 
obtained the results in Table 2. Natural frequency (elastic)  
 

Table 1. Polycrystalline leada, Ref. [3]. 

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

Sample A 

44Ca  975  977 1 1.08 

Ag 1600 1592 2 1.08 

Pb 1850  1865 3 1.08 

OR Bi  1849 3 1.08 

65Cu 2650 2645 2 1.08 

60Ni 2875 2866 2 1.08 

Sample A Annealed 

Cu 2900 2904 2 1.04 

Pb 3550 3363 4 1.04 

OR Bi  3532 4 1.04 

Sample Bb 

Cu 2825 2852 2 1.05 

Pb 3500 3498 4 1.05 

OR Bi  3469 4 1.04 

Sample B Annealed 

Pb 3550 3563 4 1.04 

OR Bi  3532 4 1.04 

Sample Cc 

65Cu 2815 2887 2 1.04 

Pb 3650 3619 4 1.03 

OR Bi  3588 4 1.02 

a Chemical analysis: Bi<0.0001%, Cu 0.0001%, Fe 0.0002% 
b Different dimensions 
c Obtained from different location on bar, dimensions same as Sample A. 
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resonances as calculated by Bodner are intermixed, and are 
indicated by E. Here we see the whole range of lead impuri-
ties. All the listed metals and metalloids except calcium 
(mentioned above) occur naturally with lead. Lead chloride 
is added to remove the calcium. Bromide probably enters 
with the chloride. Pb2 is a known vapor phase molecule near 
the boiling point of lead (as are Pb3 and Pb4) [13]. Pb6 has 
not been reported, so this low frequency resonance may have 
another origin, especially since the corresponding value of S 
is relatively low. 

Also of importance is the fact that nonmetals do not have 
strong arc or spark (the techniques of the time) atomic emis-
sion spectra as do metals and metalloids, because of their 
tendency to combine in molecules, e.g. as CN. Thus some 
impurities listed in tables below would not have been seen in 
a typical elemental analysis. Examples are F, Cl, Br, I, C (the 
electrodes are graphite), N, O, P, S. Metalloids, e.g. As and 

Sb, have typically weak emission lines compared to metals, 
so their detection limits would be higher. 

Polycrystalline indium results are listed in Table 3 [3]. 
Again the copper impurity had the strongest resonance; in 
this case it was a known impurity. Due to its nearly equal 
atomic mass, the tin impurity resonance, if present, was not 
resolved from that of indium. 

Data for polycrystalline aluminum [3] are presented in 
Table 4. In addition to the listed impurities silicon and iron, 
sodium and titanium are also indicated. Common minerals 
associated with bauxite, the chief source of aluminum, are 
goethite (FeO(OH)), hematite (Fe2O3), kaolinite 
(Al2Si2O5(OH)2), and anatase (TiO2). Sodium enters the 
aluminum process as sodium hydroxide or cryolite, Na3AlF6, 
a flux. Phosphorous is found in kaolinite. Thus we see the 
likely sources of each impurity element except Rb. 

3.1.2. Alloys 

Tables 5, 6, and 7 show spectral data for aluminum alloys 
2S (1100) and 3S (3003) from Bodner. Aluminum is hard-
ened by addition of Mg, Ti, V, Mn, Fe, Cu, and Zn, which in 
various combinations form separate precipitate phases. Spec-
tra of 2S (1100) and 3S (3003) aluminum alloys show three 
phases with different S-values: a primary (Al) phase with S 

1.47 μm av., a Mn-rich precipitate phase with S 1.30 μm 
av., and another containing the other elements with S  1.65 
μm av. This is consistent with microscopy studies. The silver 
entered with copper or lead, but the source of the lead is un-
known. Ag3 is a known molecule in the vapor phase near the 
silver boiling point [15] and as a cluster in the crystalline 
phase, where it is stabilized by substituted acetylene ligands. 
[16] Field-free regions may well resemble gas phases as far 
as the stability of atoms, ions, and molecules goes.  

Table 2. Polycrystalline lead, Ref. [12]. 

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

Pb6  15.9  14.7 1 1.59 

Pb2  45.5  44.0 1 1.63 

Pb  89.1  88.1 1 1.64 

Sb  146  150 1 1.68 

Br  221  228 1 1.68 

Fe  311  327 1 1.69 

44Ca  412  415 1 1.66 

Cl  532  515 1 1.63 

Ag  661  678 Ea 2 1.67 

Pb  808  795 3 1.64 

As  972  977 2 1.66 

Cu  1133 1134 2 1.65 

Sb 1313 1352 Ea 3 1.68 

Ag 1512 1526  3 1.66 

44Ca 1722 1665 2 1.62 

 1925 Eb   

As 2170 2198 3 1.66 

Sb 2405 2404 4 1.65 

Cu  2685 2591 Ea 3 1.62 

OR Ag 2685 2714 4 1.66 

Fe 2920 2948 3 1.66 

 3230 Eb   

a Coincident Elastic natural frequency 
b Pure Elastic natural frequency 

Table 3. Polycrystalline indium,a Ref. [3]. 

Element 

 
(Hz)  

c
(Hz) q S(μm) 

In 1540 1566 2 1.06 

OR Sn  1515 2 1.04 

Cu 2830 2830 2 1.05 

a Chemical analysis: Cu 0.006%, Zn 0.01%, Sn 0.01%, Pb trace 

 

Table 4. Polycrystalline aluminum,a Ref. [3]. 

Element 

 
(Hz)  

C
(Hz)  q S(μm) 

P 1315 1322 1 1.11 

Si 1435 1458 1 1.11 

Rb 1940 1916 2 1.10 

Fe 2890 2932 2 1.11 

Ti 3500 3421 2 1.09 

a Chemical analysis: Fe, Si, Cu <0.002% 
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Data [17] for coinage metals in US currency are listed in 
Table 8. These are polycrystalline alloys. The experimental 
apparatus here was slightly different, having a pick up (pho-
nograph type) needle to detect resonances. The spectra were 
extremely simple, and there were no resonances for tin or 
nickel, both known to be present in significant amounts. 
Lead, a common silver impurity, appears in the dime. With 
only one resonance each, the penny and nickel spectra (2900 
Hz, and 2800 Hz, respectively) could be fit with any ele-
ment. For consistency with the dime resonance at 2700 Hz, 
copper was selected. 

3.2. Single Crystal Salts 

Single crystal dispersion data for salts are listed in Tables 
9-11. No chemical analyses were given in the original refer-

ence [18]. Data for copper sulfate sheared along [001] ap-
pears in Table 9. In addition to copper, atomic sulfur and 
sulfate ion were found. The atomic sulfur resonance has an 
analogous precedent: atomic phosphorus in human cancel-
lous bone [6, 7]. However, the appearance of sulfate ion 
(SO4

2-) is of interest here, as a phosphate (PO4
3-) resonance 

was not observed in bone. The original Fitzgerald theory 
dealt with a monatomic solid, such as a metal. The assign-
ment of ions was not addressed. 

Rochelle Salt, sodium potassium tartrate [18], shows iso-
topic resolution and numerous impurity resonances (Table 
10) in the high temperature phase at 25.5°C. Shearing was 

Table 5. 2S (1100)a aluminum alloy data from Ref. [12].  

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

Ag3  57  57 1 1.64 

Ag  164  171 1 1.68 

Fe  333  330 1 1.64 

Mn  562  553 1 1.27 

Al  852  854 1 1.47 

Cu  1192 1162 2 1.62 

Ti 1588 1542 2 1.62 

Ni 2038 2059 2 1.29 

Cu  2545 2614 3 1.67 

24Mg 3100 3077 2 1.64 

25Mg 3695 3688 2 1.47 

a 1100 is the new designation for 2S aluminum. 

Table 6. 2S (1100) aluminum from Ref. [14]. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Pb  111  112 1 1.47 

Cu   295  294 1 1.63 

Mn  545  550 1 1.29 

Al  860  858 1 1.47 

Cu  1160 1177 2 1.65 

V 1430 1468 2 1.65 

Ti 1950 1934 2 1.46 

Mn 2220 2200 2 1.28 

Cu  2750 2647 3 1.60 

26Mg 3550  3564 Ea 2 1.47 

a Coincident Elastic resonance. 

Table 7. 3S (3003)a aluminum data from Ref.[12]. 

Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Ag  170  164 1 1.65 

Mn  503  497 1 1.34 

Cu  1095 1117 2 1.69 

Zn 1650 1670 2 1.36 

Cu  2480 2513 3 1.69 

a 3003 is the new designation for 3S aluminum. 

 

Table 8. Coinage metals, Ref. [17]. 

 Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Pennya 

Cu 2900 2900 2 1.04 

Nickelb 

Cu 2800 2800 2 1.06 

Dimec 

Pb 1900 1881 3 1.07 

Cu  2700 2727 2 1.08 

a Cu/Sn = 95/5 
b Cu/Ni = 75/25 
c Cu/Ag = 10/90 
 

Table 9. Copper sulfate single crystal, Ref. [18].  

Element/Ion 

 
(Hz)  

 C
(Hz)  q S(μm) 

Cu  730  749 1 1.04 

Sa 1515 1483 1 1.01 

Cu 2965 2994 2 1.03 

SO4
2- 4520  4456 3 1.02 

a Could be S atom or S2- ion. 
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along [010] of the orthorhombic form. Due to the use of steel 
and copper vessels, iron and copper are known impurities in 
cream of tartar (potassium bitartrate), the industrial precursor 
of Rochelle Salt [19]. Silver is a common copper impurity. 
Silicon, vanadium, chromium, and nickel are likely elements 
in the stainless steel. Potassium sulfate is used in the purifi-
cation process. Hence we understand the origin of all the 
impurities in Table 10.  

A lower temperature phase (20.2°C) was also studied. In-
terestingly, when the temperature was returned from 20.2°C 
to 26°C, the spectrum did not match the original at 25.5°C, 
but remained like that at 20.2°C. We see this, and other simi-
lar spectrum simplifications with time, as evidence to sup-
port the presence of impurities which move to dislocations or 
grain boundaries when the sample is stressed over time. As 

some impurities are removed, others are stimulated in a se-
quence determined more by crystal energetics than phase 
transitions. Specific isotopes were resolved in this and some 
subsequent materials. 

Table 11 presents data [18] for single crystal sodium 
chloride with shear applied in the [100] direction of the fcc 
crystal. Data from three different times and spectral regions 
in the original reference were combined. Germanium and 
scandium are unusual. The former may be from an electrical 
component of the apparatus. Water is a possible impurity. 

Table 12 lists sodium chloride data from another source. 
[20] The importance of source and chemical analysis is again 
demonstrated. 

Table 10.  Rochelle Salt single crystal, Ref. [18]. 

Isotope/Element 
 

(Hz)  
C
(Hz)  q S(μm) 

25.5°C phase 

Ag  440  420 1 1.03 

65Cu  665  698 1 1.07 

Ni  760  773 1 1.06 

57Fe  800  796 1 1.05 

54Fe  850  841 1 1.04 

Cr  875  872 1 1.05 

29, 30Si 1525 1539 1 1.05 

Ag 1720 1681 2 1.04 

Na 1980 1972 1 1.05 

65Cu 2720 2794 2 1.06 

63Cu 2910 2882 2 1.04 

Fe 3250 3248 2 1.05 

V 3565 3561 2 1.05 

20.2°C phase 

Ag  440  420 1 1.03 

41K 1125 1107 1 1.04 

39K 1210 1164 1 1.03 

29,30Si 1535 1539 1 1.05 

Ag 1735 1681 2 1.03 

Na 2000 1972 1 1.04 

65Cu 2815 2794 2 1.04 

63Cu 2910 2882 2 1.04 

Fe 3300 3248 2 1.04 

V 3620 3561 2 1.04 

Table 11.  Sodium chloride single crystal, Ref. [18]. 

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

81Br  635  640 1 0.985 

34S 1520 1525 1 0.983 

32S 1640 1620 1 0.975 

Al 1950 1920 1 0.974 

79Br 2650 2625 2 0.977 

F 2680 2726 1 0.990 

Ge 2875 2852 2 0.977 

18O 2890 2878 1 0.979 

OR H2O  2875 1 0.979 

16O 3210 3238 1 0.986 

Ni 3470 3530 2 0.990 

Fe 3700 3710 2 0.983 

Sc 4625 4608 2 0.980 

41K 5000 5058 2 0.987 

39K 5370 5317 2 0.976 

Table 12.  Sodium chloride single crystal, Ref. [20]. 

Element/Isotope 

 
(Hz)  

 C
(Hz)  q S(μm) 

Br  600  599 1 1.02 

37Cl 1300 1295 1 1.02 

I 1500 1509 2 1.02 

Mg 2000 1970 1 1.01 

Na 2100 2083 1 1.02 

Br 2400 2397 2 1.02 

63Cu 3100 3043 2 1.01 

I 3300 3396 3 1.04 

44Ca 4300 4357 2 1.03 
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Single crystal sodium chloride data from yet another 
source [21] are listed in Table 13. The apparatus here is simi-
lar to that employed above for coinage metals (Table 4) in 
that it employed two pick up needles (electrodes). Results of 
two electrodes are combined in Sample A. In Sample B 
Electrode 1 was on an original surface, while electrode 2 was 
on a freshly cleaved surface. The freshly cleaved surfaces 
had a higher value of Sav. The ultimate source of sodium 
chloride is the ocean, which is relatively rich in Mg, Ca, S, 
and K, with much less Fe, Cu, F, Br, and I  [22], all of which 
are present in Tables 11, 12, and 13. 

Tables 14 and 15 show data for potassium bromide under 
two different static stresses [20]. Impurities vary, which may 
be due to impurity particles entering the field free region in a  
 

sequence determined in part by external stress, especially as 
it affects dislocation arrays [20]. Rather than refer to reso-
nance peaks as "shifting" to higher frequencies with in-
creased static stress, we see here that some frequencies dis-
appear and others emerge, as the natural result of new impu-
rity particles being dislodged to the field free region. There 
remains, however, the lesser effect of decreasing mosaic size 
with increased stress, which shifts persisting resonances to 
higher frequency. 

 Tables 16 and 17 show data for potassium chloride and 
lithium fluoride, respectively [20]. These alkali halide salts 
show the familiar pattern of alkali metal and halide impuri-
ties (equal charge substituents) seen above, plus iron in lithi-
um fluoride. The impurities seen in all [20] alkali halide salts 
are typical for these materials.  

 

Table 13.  Sodium chloride single crystal, Ref. [21]. 

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

Sample A: Freshly cleaved 

41K  880  896 1 1.18 

39K  950  942 1 1.16 

Na 1600 1596 1 1.16 

37Cl 4000 3971 2 1.16 

Sample B: As received, Electrode 1 

39K 1100 1093 1 1.08 

Na 1900 1853 1 1.07 

81Br 2050 2106 2 1.10 

79Br 2150 2159 2 1.08 

Sample B: Freshly cleaved, Electrode 2 

44Ca  850  848 1 1.16 

39K  950  957 1 1.16 

Na 1600 1622 1 1.16 

79Br 1925 1890 2 1.15 

 

Table 14.  Potassium bromide single crystal, Ref. [20], as 

cleaved 31.3 g/mm2 static stress. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Na  1250 1292 1 1.32 

Br 1500 1486 2 1.29 

K 2950 3038 2 1.32 

37Cl 3275 3213 2 1.28 

35Cl 3440 3397 2 1.29 

Al  4500 4402 2 1.28 

Table 15.  Potassium bromide single crystal, Ref. [20], as 

cleaved, 8.9 g/mm2 static stress. 

Isotope 

 
(Hz)  

C
(Hz)  q S(μm) 

29Si 1000 1000 1 1.31 

41K 2800 2829 2 1.32 

39K 3000 2974 2 1.31 

37Cl 3150 3134 2 1.31 

35Cl 3300 3313 2 1.31 

 

Table 16.  Potassium chloride single crystal, Ref. [20], an-

nealed, 40.5 g/mm2. 

Element/Isotope 

 
(Hz)  

 C
(Hz)  q S(μm) 

Br 1500 1483 2 1.29 

41K 2850 2893 2 1.31 

39K 3050 3042 2 1.30 

37Cl 3200 3206 2 1.30 

35Cl 3400 3389 2 1.30 

Table 17.  Lithium fluoride single crystal, Ref. [20], annealed, 

28.9 g/mm2. 

Isotope/Element 

 
(Hz)  

C
(Hz)  q S(μm) 

18O 1200 1177 1 1.52 

OR H2O  1176 1 1.52 

Fe 1500 1518 2 1.54 

7Li 2950 3020 1 1.55 

6Li 3450 3522 1 1.55 

Na 3750 3686 2 1.52 
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3.3. Natural Polymers 

3.3.1. Quartz 

Quartz (SiO2) is a naturally occurring three-dimensional 
polymer. Tables 18 and 19 show dispersion data [23] for 
single crystals from the same source sheared  and 

   to 
the hexagonal c-axis, respectively. Chemical analysis 
showed Fe 0.01%, Al 0.004%, Mg 0.0001%, Ca 0.002%, Li 
and Bi possible trace. All of the above elements, except Al 
were found in the resonances, plus Si, P, Na, and K. We ex-
pect Si. Ti and W are also tetravalent. P balances Al as sub-
stituents for Si, as they have one more and one less valence 
electron, respectively. In fact, AlPO4 is isostructural with 
quartz with almost the same bond distances, Si-O, vs. Al-O 

and P-O. Trivalent Fe(III) is an alternative to Al, while one 
Ca, one Mg, or one Fe(II) atom (all divalent) requires two P's 
for balance of charge in the quartz matrix. 

Table 20 lists resonances for fused quartz samples of 
three different thicknesses, all cut from the same rod [23]. 
Chemical analysis showed Fe 0.02%, Al 0.004%, Mg 
0.0001%, Ca 0.002%, Cu 0.0005%, Cr 0.004%, Mn 0.001%, 
Li 0.001%, K possible trace. All the listed impurities showed 
up except Li, Al and Mn, plus P, S, Cl, Sc, Ti, V, Ni, Rb, W 
and the ubiquitous Na. P, Ti, V, and W are quadrivalent and 
could substitute for Si. They are also common elements in 
steel, as are Cu, Cr and Ni, suggesting that these elements 
may have been introduced in the fusion process. 

 

Table 20.  Fused quartz,a Ref. [23]. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Sample A, 0.199 inb 

P 1315 1311 1 1.11 

25Mg 1600 1625 1 1.12 

24Mg 1695 1692 1 1.11 

W 2040 1987 3 1.09 

65Cu 2495 2501 2 1.11 

Ni 2730 2766 2 1.12 

57Fe 2820 2852 2 1.11 

Cr 3120 3123 2 1.11 

Ti 3370 3392 2 1.11 

37Cl 4480 4392 2 1.10 

32S 5135 5078 2 1.10 

P 5185 5242 2 1.11 

30Si 5410 5417 2 1.11 

Sample B, 0.151 inb 

Ca 1050 1077 1 1.09 

S 1320 1346 1 1.09 

Si 1565 1536 1 1.07 

Rb 2030 2019 2 1.07 

63Cu 2810 2743 2 1.06 

Ni 2940 2941 2 1.08 

54Fe 3195 3200 2 1.08 

53Cr 3270 3260 2 1.07 

V 3400 3388 2 1.07 

Table 18.  Quartz single crystala sheared  to c-axis, Ref. [23]. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

P 1250 1251 1 1.14 

30Si 1300 1293 1 1.13 

Fe 2760 2776 2 1.14 

V 3025 3043 2 1.14 

Ti 3260 3238 2 1.13 

a Source: Minas Geraes, Brazil.  

 

Table 19.  Quartz single crystala sheared || to c-axis, Ref. [23]. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

P 1085 1091 1 1.22 

Na 1455 1470 1 1.22 

W 1625 1654 3 1.23 

Bi 2565 2587 4 1.22 

Ti 2865 2824 2 1.21 

44Ca 3150 3075 2 1.20 

Be 3840 3750 1 1.20 

35Cl 3890 3866 2 1.21 

P 4480 4364 2 1.20 

30Si 4540 4510 2 1.21 

29Si 4600 4665 2 1.22 

65Cu 4630 4685 3 1.22 

28Si 4700 4832 2 1.23 

63Cu 4780 4833 3 1.22 

Mg 5600 5562 2 1.21 

a Same source as Table 18. 
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Table 20. contd… 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

Ti 3580 3606 2 1.08 

Sc 3850 3839 2 1.07 

41K 4195 4214 2 1.08 

Ca 4300 4306 2 1.08 

 39K 4440 4430 2 1.07 

Sample C, 0.126 inb 

41K 1090 1097 1 1.06 

34S 1310 1322 1 1.06 

29Si 1560 1551 1 1.05 

28Si 1600 1606 1 1.06 

26Mg 1760 1730 1 1.04 

W 2160 2200 3 1.06 

Ni 3030 3063 2 1.06 

Cr 3450 3458 2 1.05 

V 3590 3529 2 1.04 

Ti 3780 3756 2 1.05 

44Ca 4100 4090 2 1.05 

40Ca 4510 4499 2 1.05 

a Source: General Electric Co. 
b Sample thickness 

 

Table 21.  Natural rubber, stretched 310%, Ref. [24]. 

Isotope/Element 

 
(Hz)  

 C
(Hz)  q S(μm) 

C 1020 1017 1 2.02 

29Si 1700 1686 2 2.01 

Na 2100 2125 2 2.03 

 

3.3.2. Natural Rubber 

Natural rubber is polyisoprene, [-CH2-C(CH3)=CH-CH2-
]N; isoprene is 2-methyl-1,3-butadiene, CH2=C(CH3)-
CH=CH2. Data from an early Fitzgerald spectrum of natural 
rubber are listed in Table 21 [24]. Natural rubber crystallizes 
upon stretching above 300%, as determined by x-ray diffrac-
tion. In stretched natural rubber, S was measured experimen-
tally by light scattering as 2.0 μm, [25, 26] from which a 
single carbon atom resonance was calculated [27] at 1040 Hz 

by Eq. (2) which compared well with an experimentally de-
termined resonance frequency, 1020 Hz, [24] but the entire 
spectrum is analyzed in the Table 21. The listed impurities 

are found in the latex [28-30] and/or its byproduct wastes 
[28, 31]. 

3.4. Synthetic Polymers 

3.4.1. Teflon
®
 

Teflon® is polytetrafluoroethylene, (C2F4)N . Tetrafluoro-
ethylene (TFE) is produced by reacting chloroform, CHCl3, 
with hydrogen fluoride gas. Only a few steels can withstand 
HF, chief among them is Hastelloy®. The "Teflon®" reso-
nances in Table 22 [27, 32] are seen to be due the metals 
present in Hastelloy® or similar steel. We see once again the 
importance of impurities and a thorough chemical analysis. 
Repeatedly, in this work spectra often have way more impu-
rity resonances than resonances due to the actual material 
under investigation. Sometimes the main elements do not 
even appear in the MRD spectrum at all.  

Calculated natural (elastic) frequencies by I. L. Hopkins 
[33] appear in column four as

H
. He considered the entire 

system of the 4-inch Teflon® bar plus the two attached cop-
per tension wires in his lengthy and very detailed calcula-
tions. He concluded as we do here that while elastic reso-
nances may appear in the same frequency range, the exist-
ence of other (particle wave) resonances is not therefore ex-
cluded. It should be noted that his calculated frequencies are 
equally spaced at all tensions, and the spacing increases with 
increasing tension, which has never been observed for parti-
cle wave resonances and is not predicted by particle wave 
theory. The spacing is 12.7 Hz in Table 22. Also of im-
portance is the fact that Fitzgerald's data became increasingly 
resolved with increasing tension, while Hopkins' calculations 
showed the opposite effect. Unfortunately, Hopkins' formu-
lae did not allow calculation of higher frequency resonances 
due to the ever increasing accuracy requirements of certain 
parameters with increasing frequency. His calculations on 2S 
Aluminum, when compared to Bodner's data at 870 psi ten-
sion yielded similar results to those for Teflon® in Table 22: 
some fortuitous matches to MRD experimental data (357, 
369, 380, and 393 Hz), one extra calculated frequency (405.9 

Table 22.  Teflon® at 100 g tension. Ref. [32, 33]. 

Element 

 
(Hz) a 

C
(Hz)  

H (Hz)b  q S(μm) 

Co, Nic  345 346  1 1.55 

 357  355.2   

Mn, Fec 369 364 367.9 1 1.56 

 380  380.5   

Cr 393 391 393.3 1 1.57 

V 397 399  1 1.57 

   405.9   

Tid 421 425  1 1.57 

a From Ref. [32]. 
b From Ref. [33]. 
c Average atomic weight used. 
d Appears at 500 g tension. 
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Hz), and some MRD experimental frequencies unaccounted 
for by elastic theory (345, 397, and 421 Hz). In contrast, the 
Fitzgerald Theory predicts all experimental frequencies ex-
cept the elastic frequencies calculated by Hopkins (357 and 
380 Hz). 

Additional Teflon® data of Fitzgerald [34], Table 23, 
showed resonances at higher frequencies due to fluorine and 
chlorine. The latter comes from chloroform in the synthesis 
of TFE. In this case the individual metal resonances were not 
resolved as in Table 22 but were contained in broad peaks. 

3.4.2. Polyethylene 

Polyethylene data of Bodner [12] is presented in Table 
24. Ethylene is polymerized via the Ziegler-Natta Process, 
which employs a complex catalyst of Al(C2H5)3, TiCl3 and 
TiCl4 on a MgCl2 support. The impurities in Table 24 are all 
from the catalyst system. The titanium moieties are the result 
of premature chain terminations. We see here the occurrence 
of large molecular "particles". There is no reason why en-
trained molecules and molecular ions cannot enter the field-
free region to become particle waves, so long as the energy 
required to do so is less than any bond energy in the mole-
cule. Fitzgerald found only a single resonance at 2750 Hz in 
the range of 100-4500 Hz [34]. Since corresponding details 

of such as molecular weight range and crystallinity are not 
known for both samples, a comparison is not possible. Fitz-
gerald's sample was under 1.0% compression, but Bodner's 
was under no load. Subsequent loading of Bodner's sample 

produced results similar to the no load case. Reasons for the 
different behavior of these samples remain unknown.  

3.4.3. Poly (Vinyl Stearate) 

Polymerization of vinyl stearate occurs via a free radical 
mechanism. Numerous free radical initiators are possible, 
including benzoyl hydroperoxide, benzoyl peroxide, diter-
tiary butyl peroxide, tertiary butyl hydroperoxide, diacetyl 
peroxide, diethyl peroxycarbonate, cumene hydroperoxide, 
and others. Add to this the possible solvents: methyl chlo-
ride, methylene chloride, chloroform, benzene, toluene, xy-
lene, cyclohexane, n-heptane, ethyl ether, and dioxane, 
among others. From among the many combinations of initia-
tor and solvent, the best fit of impurities to PVS data [34] is 
found in Table 25. Note the consistent occurrence of the 
benzoyl/benzoate molecular fragment as well as stear-
yl/stearic. Benzene would have been the logical solvent for 
either benzoyl hydroperoxide, benzoyl peroxide, or cumene 
hydroperoxide.  

4. PREVIOUS CRITICISMS OF THE FITZGERALD 
THEORY  

One of Fitzgerald's critics, R. W. Leonard, made the ar-
gument [35] that he could produce normal (elastic) reso-
nances in the audiofrequency range with an 8 ft lead rod, and 
therefore there need be no other explanation for resonances 
in this frequency range. He believed the Fitzgerald resonanc-
es to be artifacts of the apparatus, especially since so many 
occurred in the 2800-3000 Hz window. 

Table 26 gives Leonard's data (
 obs

) read off his semi log 

strip chart as reproduced in Refs. [21] and [35]. Standing 
waves were assigned in column 1, and the speed of sound 
(CS) was calculated using the standing wave formulae, Eqs. 
(4) and (5). A consistent value of CS was obtained (CS av = 
1041 m/s), compared to the value of 1190 m/s for annealed 
lead from Ref. [36]. Thus it is proven that these are natural 
frequencies due to standing wave modes. However, the ap-
pearance of an additional resonance at 205 Hz is attributed to 
a particle wave mode (q = 1), with additional such modes,  
q = 2, 3, coincident with the fourth (850 Hz), and ninth 

Table 23.  Teflon®. Ref. [34]. 

Element 

 
(Hz)  

C
(Hz)  q S(μm) 

Ti, V, Cr, Mn, Fe, Co, Ni  375  373a 1  1.60a 

F 1000 1020 1 1.62 

Ti, V, Cr, Mn, Fe, Co, Ni 1500 1490a 2  1.60a 

Cl 2200 2186 2 1.60 

a Average atomic weight of 52 used in calculation of S and 
  

c
.

 

 
Table 24.  Polyethylene from Ref. [12]. 

Element/Compound 

 
(Hz)  

 C
(Hz)  q S(μm) 

Ti2(C2H4)2Cl6
a  24.3  25.0 1 2.37 

Ti(C2H5)Cl3  52.0  49.7 1 2.29 

C2H4Cl2  89.0  92.1 1 2.38 

C2H5Cl 134 141 1 2.40 

Ti 194 190 1 2.32 

Cl 262 257 1 2.32 

Al 337 338 1 2.34 

MgEtCl 426 410 2 2.30 

a Structurally, Cl3Ti(CH2CH2CH2CH2)TiCl3 

Table 25.  Poly(vinyl stearate) from Ref. [34]. 

Molecule 

 
(Hz)  

C
(Hz)  q S(μm) 

Stearlyethyl benzoate  120  120 1 0.980 

stearic acid  185  183 1 0.974 

Stearlyethyl benzoate  490  481 2 0.970 

benzene  650  666 1 0.992 

stearic acid  720  731 2 0.987 

hydroxyethyl benzoate 1235 1252 2 0.986 

cumene hydroperoxide 1400 1366 2 0.968 

Ethyl radical 1790 1789 1 0.979 
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(1900 Hz) standing wave modes, respectively. These three 
inelastic modes give a consistent value of S (Sav = 1.07 μm) 

from Eq. (3). Elastic frequencies, 
 c

E  (Hz), are calculated 

from Eq. (4) using CS av = 1041 m/s. Particle wave frequen-

cies, 
c

p  (Hz), are calculated from Eq. (2) and Sav as in all the 

above Tables. 

 
C

S
=  (4) 

= 2L / N N = 1, 2, . . . (5) 

Thus it is seen that a large enough object (8 ft !) can give 
elastic mode resonances in the audiofrequency range, but 
that, in spite of some overlaps, these are distinct from the 
inelastic particle wave resonances in the same range and in 
no way disprove the existence of the latter.  

In arguing that the Fitzgerald resonances were instrumen-
tal artifacts, Leonard stated [35] that "The results on all hard 
crystalline materials yield a resonance at a frequency very 
near 2890 cps ... ." (emphasis ours) We summarize our re-
sults by element for the range 2790-2990 Hz (2890

 
±3.5%)  

in Table 27. In only 20 (not "all") of 38 samples analyzed 
here were resonances found in that range. Copper was re-
sponsible in 10 cases, but in all of these copper was a major 
constituent or known impurity in the sample. Iron was the 
next most commonly observed element (three samples). 
Since copper and iron are components of the apparatus, the 
suspicion of Leonard might be warranted. However, in 18 of 
38 samples no resonance was found in the target range. Due 
to the variety of elements in Table 27, many of which are not 
found in the seven different apparati used, and the 18 occur-
rences of no resonances at all in the target range, it seems 
unlikely that an apparatus constant (causing resonance at 
near 2890 Hz) is involved.  

Leonard also noted that fused quartz is amorphous, while 
the Fitzgerald Theory predicts resonances for crystalline 
solids with distinct rows of equally spaced atoms. More re-
cent research [37] shows that fused quartz has medium range 
order, 20 Å, which might be preferentially aligned to allow 
for much longer linear ordering. Obviously, a complete 
study of all forms of SiO2, including glasses, with measured 
impurities would be revealing. It is proposed here that crys-
tallinity is not required for these resonances, only a field free 
region which extends along a line without interruption of 
fixed particles. As noted below, more research in amorphous 
and partially ordered materials is recommended.  

Another of Fitzgerald's critics, I. L. Hopkins, measured 
resonances of steel balls of various diameters in the audiof-
requency range, and like Leonard he concluded that quantum 
mechanics was not necessary to explain elastic phenomena 
in the audiofrequency range [38, 39]. However, calculations 
in Table 28 indicate that the alnico magnet driver in his ap-
paratus may be the source of inelastic resonances of the Fitz-
gerald type at these frequencies. 

 Table 26. Lead resonances from Ref. [35]. 

a obs  
(Hz)  

c

E

 
(Hz)b 

c

P

 
(Hz)c 

CS 

(m/s)d 
q S(μm)e 

 205  209  1 1.08 

2L/1 225 213  1049   

2L/2 430 427  1024   

2L/3 630 640  1036   

2L/4 850 854 838 1034 2 1.06 

2L/5 1060 1067  1040   

2L/6 1280 1281  1038   

2L/7 1490 1494  1036   

2L/8 1700 1707  1030   

2L/9 1900 1921 1885 1024 3 1.07 

2L/10 2100 2134  1097   

a L = 8 ft 
b Calculated from Eq.(6), CS = CS av = 1041 m/s. 
c Calculated from Eq.(4), S = Sav = 1.07 μm. 
d Calculated from Eq.(6). 
e Calculated from Eq.(5).  

Table 27.  Summary of occurrence of elements in 2790-2990 Hz 

range. 

Element Occurrences 

Cu 10 

Fe 3 

K 3 

Ni 2 

Ti 1 

Li 1 

O 1 

Ge 1 

Nonea 18 

TOTAL 38b 

a No resonances in the 2790-2890 Hz range. 
b In two samples of 38 there were two elements in the range.  

Table 28.  Alnico magnet, Ref. [38]. 

Element 

 
(Hz)  

C
(Hz)  q S (μm)  

1 inch steel ball 

Co 1829 1826 2 1.36 

Co 4104 4110 3 1.36 

0.687 inch steel ball 

Ti 2059 2043 2 1.42 

Co 6585 6637 4 1.43 
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The composition of alnico (Al-Ni-Co) alloys is typically 
8–12% Al, 15–26% Ni, 5–24% Co, up to 6% Cu, up to 1% 
Ti, and the balance Fe (31-72%). Precipitation hardening in 
the production process can cause residual stress in the host 
lattice, either tensile or compressive. Either could affect the 
value of S. Resonances could be due to either host or precipi-
tate phase, which might have different mosaic sizes and 
hence different values of S. In view of this, the assignments 
in Table 28 must be considered tentative. The case of the 
0.687 inch ball is a bit unusual in that lower acoustic modes 
(q = 2, 3) for Co were apparently not observed, although 
Hopkins admits that the alnico magnet is part of the same 
resonant system as the steel ball, the base plate, the solenoid, 
and the rest of his apparatus, all of which contribute reso-
nances in the same range, and that filtering out the relevant 
ones is not straight forward. We do not know which reso-
nances he may have discarded and not reported. In any case, 
Fitzgerald never measured resonances in steel balls, so these 
experiments are hardly relevant to the particle wave theory. 
And, except for the Federal Communications Commission, 
nobody owns the audiofrequency band.  

5. SUMMARY OF RESULTS  

(1) Interpreting MRD spectra of 38 widely different sam-
ples - single crystal, polycrystalline - metals, salts, natural 
and synthetic polymers - according to the particle wave theo-
ry of E. R. Fitzgerald has shown excellent agreement be-
tween measured and calculated resonance frequencies by Eq. 
(2). 

(2) Standard deviations from the average value of crystal 
mosaic size calculated for each frequency within a sample 
phase by Eq. (3) varied from 0.08 %Sav to 1.78 %Sav, with a 
mean of 0.77 %Sav for 41 sample phases. By comparison, for 
Ca and P in human cancellous bone, the corresponding value 
was 2.27%Sav for 40Ca and P [6] and 0.64 %Sav for 44Ca and 
P (alternate interpretation) [8]. 

(3) The average % difference, 100
c

/
c

, for 238 

resonance frequencies in 41 sample phases was 1.3%. Of 
these, 189 (79%) were less than 2%. 

(4) Overall, the majority of resonances were the result of 
impurities in the lattice. The great majority of these was ei-
ther documented in the original sample analyses or was high-
ly likely due to chemical similarities, and/or sample origin, 
and/or sample processing. 

(5) Fig. (1) shows mass numbers M as a function of fre-
quency over the range of this study (0-5600 Hz) for S = 1 

μm, calculated from Eq. (6). 
  
N

0
 is Avogadro's number. 

Each curve represents a different q-value, 1 to 4. Frequency 
was chosen as the independent variable here to parallel the 
interpretation process. Physical reality is the opposite: mass 
determines frequency.  

  

M = q2hN
0

/ (8 S2 )

q=1

4

 (6) 

Fig. (2) shows the number of mass numbers within a  
2% frequency window as a function of frequency according 
to Eq. (7) [obtained by differentiating Eq. (6)], with

 
/ = 0.02 . 

  

M =
q2hN

0

8 S 2

q=1

4

 (7) 

Again, S = 1 μm. The discontinuities are the result of se-
quential addition of q-values from 1 to (1 and 2) to (1 and 2 
and 3) to (1 and 2 and 3 and 4) with increasing frequency.  

From Figs. (1 and 2) it is apparent that there are multiple 
choices of isotopic masses to satisfy Eq. (2) within a ±2% 
frequency window and that the number of choices increases 
with increasing frequency. This demonstrates the need for 

 

Fig. (1). M vs. , Eq. (6). 
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very complete and highly sensitive chemical analyses to 
guide interpretation. In this work, the (arbitrary) ±2% fre-
quency window was met for 195 of 238 experimental fre-
quencies. Better fits were possible in some cases, but only by 
introducing unlikely elements as impurities. Only about a 
fourth of all elements are "common," which constrains real-
istic assignments.  

 (6) Previous elastic mode interpretations of some of the 
audiofrequency resonances in lead, 2S Aluminum and in 
Teflon® failed to predict all the frequencies and no more. In 
these cases the particle wave theory predicted all the none-
lastic frequencies (including overlaps with elastic frequen-
cies) and no more. Only in the alnico samples did elastic 
theory predict all the frequencies (but only 2 in each of 2 
samples) and no more in the frequency range of the experi-
ment, but even here some frequencies were apparently dis-
carded. 

CONCLUSION 

The following conclusions are drawn from the present 
work and careful reading of previously reported work: 

(1) The Particle Wave Theory of plastic deformation in 
crystalline solids has been upheld by detailed quantitative 
interpretations of past MRD spectra of 38 samples obtained 
by six different research individuals or groups operating in-
dependently with seven different apparati. 

(2) In larger samples, elastic normal modes are found in 
the audiofrequency range, where they occasionally overlap 
particle wave frequencies. Alternate interpretations accord-
ing to various elastic theory expressions are either partially 
coincidental and inadequate as shown here or flawed as sug-
gested by Fitzgerald [21]. 

(3) In addition to atoms and monatomic ions, interpreta-
tion of some spectra requires that molecules or molecular 
ions be proposed, especially for very low frequency reso-
nances, necessitating a high mass particle (Eq. 2). 

(4) In complex, multiphase systems such as some alloys, 
multiple crystal mosaic sizes, S, corresponding to different 

phases, are necessary to interpret the spectra. This applies in 
particular to precipitation hardened alloys. 

(5) Fitzgerald's requirement that for particles to emerge 
in the field-free region they must be aligned in a row of 
evenly spaced like isotopes [8], seems unnecessary. The 
large number of isotopes and impurities in some materials 
and the imposition of maximum entropy (which favors mix-
ing over segregation) make this segregation improbable or 
impossible. In fact, a simple particle-in-a-box model, without 
reference to a lattice, would appear to suffice for the inter-
pretation of MRD spectra. This would also allow for a parti-
cle-wave interpretation of spectra of some amorphous or 
only slightly ordered structures with lengthy, open, field-free 
regions. 

(6) The overall simplification of spectra with time, with 
increased static stress, and with annealing suggests that, un-
der the influence of periodic shear stress, impurities move 
out of the primary phase into precipitates, dislocations, or 
grain boundaries. In this view, the odd substituent or intersti-
tial atom would be more likely to enter the field free region 
because it would be out of phase (and hence in a higher en-
ergy state) with lattice vibrations, due to its different mass.  

RECOMMENDATIONS FOR FUTURE WORK 

Recommendations are made for future experiments in 
MRD: 

(1) Repeat many of the original experiments on the same 
materials, this time analyzed for impurities by the current 
best techniques, including electron microprobe analysis (also 
see (3)). Keep sample size small enough to prevent interfer-
ence from natural (elastic) frequencies. Measure higher fre-
quencies (to 10 kHz or more) [40] to confirm assignments 
(same element, higher q-value). Always measure a no load or 
minimum load spectrum for comparison with other results 
and to complete the analysis in (5) below. 

(2) Measure the resonance spectra of some materials with 
exchangeable cations, such as clays, zeolites, and ion ex-
change resins. Replace the ions and redetermine the spectra 

 

Fig. (2). M  in a ±2% frequency window vs. , Eq. (7).  



Mechanical Resonance Dispersion Open Physics Journal, 2014, Volume 1    13 

to see if frequencies shift predictably, i.e., 
2

/
1
= m

1
/ m

2
 

for masses m1 of original ion and m2 of replacement ion. We 
will then know for certain the origin of both frequencies, 

 1
,

2
.  

(3) Integrate modern microscopy techniques on the same 
samples to determine distribution of impurities, their compo-
sition, and crystal mosaic size, before and after prolonged 
periodic stressing. 

(4) Measure complete spectra in far less time than was 
required in the past (minutes instead of days or weeks) em-
ploying, for example, a more recent apparatus such as de-
scribed in [40]. If equilibration is slow, this may not be pos-
sible, but it would open the possibility of studying the dy-
namics of equilibration. 

(5) With (1) - (4) in hand, do more detailed time studies 
on changing samples to determine the fate of impurity parti-
cles under periodic stress (e.g., do they migrate to disloca-
tions or grain boundaries, and do they form separate phas-
es?). The application of periodic audiofrequency stress is a 
potential means of strengthening materials and otherwise 
affecting their properties, because it affects the distribution 
of impurities.  

(6) Investigate amorphous and partially ordered materi-
als, including quasi-crystals, to determine whether crystallin-
ity is an absolute requirement for particle wave resonances. 

(7) Confirm and explain the release of P atoms in bone 
apatite and Si and other atoms in quartz where they are tight-
ly bonded to four oxygen atoms.  

(8) Investigate the interaction of electromagnetic induc-
tion and radiation with solids exhibiting mechanical reso-
nance dispersion. Potentially this could lead to detection and 
identification of materials at great distances, up to km. Fur-
ther, because of its long wavelength, radiation in this audiof-
requency region penetrates all common materials except 
metals, yielding opportunities for detection of hidden ob-
jects.  
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