
 Recent Patents on Signal Processing, 2010, 2, 1-5 1

 1877-6124/10 2010 Bentham Open

Open Access

Signal Processing through Field Programmable Gate Arrays: Prospects
and Challenges

Shubhajit Roy Chowdhury
*

IC Design and Fabrication Centre, Department of Electronic and Telecommunication Engineering, Jadavpur

University, Kolkata-700032, India

Abstract: The paper focuses on the use of field programmable gate arrays (FPGA) for signal processing applications. By

allowing designers to create circuit architectures developed for the specific applications, high levels of performance can

be achieved using FPGA for many digital signal processing (DSP) applications providing considerable improvements

over conventional microprocessor and dedicated DSP processor solutions. A key reason is that an FPGA can side step the

classic Von Neumann architecture’s instruction—fetch, load/store bottleneck—found in most DSP. The paper highlights

the flexibility offered by FPGA in realizing signal processing architectures and algorithms. The possibility of realizing

low power signal processors on FPGA by functional transformation approach has also been discussed. The bottlenecks

faced in the state of the art technologies have also been explained.

Keywords: Field programmable gate array, signal processing, low power.

1. INTRODUCTION

 Signal processing algorithms have been used to transform
or manipulate analog or digital signals for a long time. One
of the most frequent applications is obviously filtering the
signal. Digital signal processing has found many
applications, ranging from data communications, speech,
audio or biomedical signal processing, to instrumentation
and robotics.

 Digital signal processing (DSP) has developed over the
past decade and has almost replaced analog signal processing
(ASP) systems in many applications. DSP systems enjoy
several advantages over ASP systems such as insensitivity to
change in temperature, aging or component tolerance [1].
Originally analog chips yielded smaller die sizes, but with
the advent of VLSI design in the deep submicron regime,
digital chips can be realized on a smaller area with denser
integration. This yields compact low power and low cost
designs.

 Signal processing applications are typically
computationally intensive and heavily rely on the efficient
implementation of such digital signal-processing (DSP)
algorithms as filtering, transforms and modulation. In past
systems, conventional digital signal processors were used to
perform many of these algorithms. Programmable DSP
introduced in the late 70’s incorporated a multiply-
accumulate operation in only one clock cycle which was a
dramatic improvement over the Von-Neumann micropro-
cessor based systems [2].

*Address correspondence to this author at the IC Design and Fabrication

Centre, Department of Electronic and Telecommunication Engineering,

Jadavpur University, Kolkata-700032, India;

E-mail: shubhajit@juiccentre.res.in

 The advent of field programmable gate arrays (FPGA)
has revolutionized the field of digital signal processing over
the past decade. By allowing designers to create circuit
architectures developed for the specific applications, high
levels of performance can be achieved for many DSP
applications providing considerable improvements over
conventional microprocessor and dedicated DSP processor
solutions. However, field-programmable gate arrays (FPGA)
deliver an order of magnitude higher performance than
traditional DSP. A key reason is that an FPGA can side step
the classic Von Neumann architecture’s instruction—fetch,
load/store bottleneck—found in most DSP. Modern FPGA
families provide DSP arithmetic support with fast carry
chains which are used to implement multiply accumulates at
high speed, with low overhead and low costs [3]. Another
reason is the FPGA has lower power consumption [4, 5].

2. OVERVIEW OF FPGA

 FPGA is a member of a class of devices called field
programmable logic (FPL). FPLs are defined as
programmable devices containing repeated fields of small
logic blocks, called configurable logic blocks (CLB). A
typical FPGA consists of three major types of elements viz.
configurable logic block (CLB), programmable interconnects
and I/O blocks. Fig. (1) shows the basic architecture of
FPGA that incorporates these three elements.

 The CLB can usually form the function of typical logic
gates but it is still small compared to the typical
combinational logic block found in a large design. The
programmable interconnects are made between the logic
elements. These interconnects may be logically organized
into channels or other units. FPGA typically offer several
types of interconnect depending on the distance between the
combinational logic blocks that are to be connected; clock
signals are also provided with their own interconnection

2 Recent Patents on Signal Processing, 2010, Volume 2 Shubhajit Roy Chowdhury

networks. I/O pins may be referred to as I/O blocks (IOB).
They are generally programmable to be inputs or outputs and
often provide other features such as low power or high speed
connections. Multiple I/O pads may fit into the height of one
row or the width of one column. An application circuit must
be mapped into an FPGA with adequate resources.

 A typical FPGA configurable logic block consists of a 4-
input lookup table (LUT), and a flip-flop, as shown in Fig.
(2) below:

Fig. (2). Structure of a Configurable Logic block with multiplexed

registered and unregistered output.

 The look up table stores the truth table of the Boolean
function to be implemented. Since the LUT is a 4 input LUT,
hence, up to 4 variable Boolean functions can be
implemented using LUT. By storing the truth tables of
Boolean function on the LUT, the CLBs are configured for
specific logic functions. There is only one output, which can
be either the registered or the unregistered LUT output. The
registered and unregistered LUT output is connected to the
final output through a 2X1 multiplexer. The logic block has
four inputs for the LUT and a clock input. Since clock
signals (and often other high-fanout signals) are normally
routed via special-purpose dedicated routing networks in
commercial FPGAs, they are accounted for separately from
other signals.

3. FLEXIBILITY OFFERED BY FPGA IN SIGNAL
PROCESSING APPLICATIONS

 Fitting multiple DSP functions into a single FPGA has
many integration challenges, but also offers significant

advantages to the designer in performance and flexibility.
The primary reasons for integrating DSP functions into a
single FPGA are system-level reductions in size, weight and
power. For example, eliminating the transfer pathways
between separate FPGA and DSP significantly reduces
power consumption and, therefore, heat. This, in turn,
reduces the system-cooling burden of the design. Recent
releases of design and place-and-route software have
advanced power-awareness features that significantly reduce
dynamic power use of the FPGA. These options can be
important to the designer; the benchmark of device logic
density among competitive FPGA providers is beginning to
give way to functionality-per-watt metrics, due to the
sensitivity of power and cooling requirements in emerging
systems.

 Performance is also a key driver as FPGA based signal
processing has become more reliable and faster than
traditional processing technologies [6]. We have reported in
literature how FPGA based pipelined and pipelined parallel
hybrid architectures lead to computation with an increased
throughput [7, 8]. In applications where performance is the
driving parameter, efficiency can be sacrificed for
application speed, where a memory-intensive, massively
parallel floating-point mathematical operation is desired.
Alternatively, highly iterative DSP calculations can be
implemented for applications where moderate performance
is allowable, but where logic-element usage is limited [9].
This logically leads to the advantage of flexibility. The
designer has the flexibility to decide between high-speed
performance and the number of logic elements in every DSP
operation, whereas calculation bandwidths and iterations
would be more difficult and costly to modify in a dedicated
DSP device. In addition, consolidating DSP functions within
an FPGA allows for post-design system changes in the
signal-processing architecture, whereas using separate DSP
locks the designer into a fixed set of chip interfaces once the

Fig. (1). Basic architecture of FPGA.

Signal Processing through Field Programmable Gate Arrays Recent Patents on Signal Processing, 2010, Volume 2 3

board is designed. FPGA designers can alternately switch
between 9-bit, 18-bit or 36-bit or 18-bit complex math
functions without changing the system hardware. Additional
flexibility can be designed into the system when the designer
uses fast-embedded processors for the execution or routing
of complex floating-point operations.

4. PROSPECTS IN ALGORITHMIC
MATHEMATICAL FUNCTIONS

 Typical algorithmic mathematical functions in signal
processing systems include recursive least-square and
square-root operations [10]. Many designers have
implemented these functions in C-based processors (in fixed-
decimal and floating-point operations), or with proprietary
FPGA VHDL operations. The current FPGA devices include
embedded processor and logic-cell resources to efficiently
implement these processes; future generations will also have
these capabilities [11]. Additionally, IP cores and reference
designs are becoming available to transition anywhere from
dozens to hundreds of these operations into a single FPGA.
Tools are available to translate processor-based algorithms
from C code to hardware languages, such as very high-level
descriptive language (VHDL). These tools can be used to
optimize certain logic functions from a standard main
processor into an FPGA co-processor operating in parallel
with the main processor, or to move entire operations from
the main processor to the FPGA hardware.

 Matrix inversion is an important element of adaptive-
array designs and standard spatial-transceiver-array
processing (STAP) [12]. These operations are commonly
performed in fixed hardware elements, though efficiently
implemented embedded processing has been demonstrated in
some radar/sonar development programs. The logic-element
size and potential parallelism of a matrix inversion engine
depends on the size of the array used in the radar system. As
the size of the array is increased, so does the number of
floating-point multiplications required by the system.
Therefore, in larger arrays, there are more trade-off options
between the speed of the system and the number of logic
elements required by the system (both of which increase as
the parallelization of the architecture increases).
Implementing this function using a combination of a DSP
and a group of internal memory blocks is the most likely

design path for radar-system designers. As these operations
are often tailored to the adaptive-array algorithms of the
radar system, they are likely to be custom designed in
VHDL. However, reference designs that are optimized for
the place-and-route capabilities of an FPGA device can be
offered or designed-to-order from the FPGA manufacturer, if
required for the radar or sonar system.

5. IMPLEMENTING FAST FOURIER TRANSFORMS
USING FPGA

 Signal processing typically entails to time to frequency
domain conversion and vice versa for the ease of analysis.
Fast Fourier Transforms (FFT) and their inverse are
effectively used for time to frequency domain conversion
and vice versa. A review of literature reveals implementation
of FFT with DSP and ASIC [13-18]. FFT has also been
implemented with FPGA for 1D [19-21] and 2D [22, 23]
transforms. Fig. (3) shows the performance comparison of
different programmable devices in the perspective of signal
processing.

 Implementing fast-Fourier transforms (FFT) and their
inverses in FPGA logic has advantages in prototyping and
scalability, and offers design flexibility between a system’s
speed and the number of required logic elements. For
example, massively parallel implementations can be
designed and distributed among the logic elements of a
single or multiple FPGAs. However, while these
implementations can significantly reduce latency, they
impose the penalty of a greater number of logic elements.
However, the limitations on the number of logic elements in
an FPGA can be done away using reconfigurable
architectures. Recently, a reconfigurable signal processing
chip with an embedded flash memory has been patented
[24].

 In fact, the primary flexibility advantage of an FPGA for
FFT is the ability to select the optimal balance between these
two parameters in the initial design. This is fortunate,
because the implementation of large or complex FFT should
be the primary factor in any design, and the advantages of an
FFT implementation in an FPGA are apparent. Fig. (4)
shows the FFT implementation using an FPGA. However,
creating code or modifying existing code from previous
designs can be cumbersome when testing and verifying code

Fig. (3). Performance comparison of different programmable devices in the perspective of signal processing.

4 Recent Patents on Signal Processing, 2010, Volume 2 Shubhajit Roy Chowdhury

units. Therefore, what is needed is a comprehensive suite of
FFT design tools that allows a nearly infinitely scalable FFT
design. These tools are available and they allow scripted
logic distribution among multiple FPGA where necessary.
They can also automatically generate numerical coefficients
having floating-point accuracy.

6. LOW POWER SYSTEM IMPLEMENTATION
USING FPGA

 The average dynamic power dissipation of a CMOS logic
circuit is given by:

Pavg = Eswitching fCLK Cload VDD
2

 (1)

where Pavg is the average power dissipation, Cload is the

load capacitance, fCLK is the clock frequency, VDD is the

supply voltage and Eswitching is the expected value of output

switching per clock cycle. For a CLB in an FPGA, Cload is a

function of the number of fan outs of the CLB. CLKf refers

to the clock frequency of the FPGA. Eswitching can be

computed as

Eswitching = 2p(1 p) (2)

where p refers to the probability that the output of the CLB is

1, so that p(1 p) is the probability of having a 1 to 0

transition and p(1 p) is the probability of having a 0 to 1

transition and the two transitions being mutually exclusive.

The probability p can be computed from the truth table

realized in the CLB. Specifically, p is equal to the sum of the

probabilities of the input combinations which produce a 1 in

the output of the truth table of the Boolean function.

Extensive studies have been carried out in technology

mapping algorithms to reduce the power dissipation by

minimizing the number of CLB [25] and minimizing the

length of critical path [26, 27]. One transformational

approach aims at minimizing the number of CLB as a

starting objective and then applying functional

transformation to the mapping solution to reduce the power

consumption without increasing the number of CLB [4].

Formally, let the output of a CLB F0 is a Boolean function:

(x1, x2 ,, xn) = F(G(x1, x2 ,, xm),

xm+1, xm+2 , ..., xn)
, (3)

where G(x1, x2 ,, xm) is the output of CLB G0. Obviously

F(G(x1, x2 ,, xm), xm+1, xm+2 , ..., xn) is a Roth Karp

decomposition [28, 29] of (x1, x2 ,, xn) . The

transformational approach attempts to find an alternative

Roth Karp decomposition such that:

(x1, x2 ,, xn) = F '(G '(x1 ', x2 ',, xm '), xm+1 ', xm+2 ', ..., xn ') (4)

where x1 ', x2 ',, xn ' is some permutation of x1, x2 ,, xn .

Here, F’ and G’ are functions, possibly different from F and

G. However, F’ and G’ map into the same CLBs F0 and G0

respectively, since the total number of inputs of F and G

remains unchanged after transformation. If the switching

density of G '(x1 ', x2 ',, xm ') is less than that of

G(x1, x2 ,, xm) then we achieve a reduction in power

dissipation.

7. CHALLENGES IN SIGNAL PROCESSING USING
FPGA

 Despite such huge potential of FPGA in signal
processing applications, it suffers from lots of limitations.
Signal processing algorithms often require elementary
functions like logarithm, exponential, trigonometric, etc.
There are no such operators defined in the library for FPGA
based system design. Many libraries of floating point
operators for FPGA now exist typically offering the basic
operators like +, -, , / and [30-34]. As FPGA floating
point is clocked 10 times slower than the equivalent in
contemporary processors, hence massive parallelism can
allow these applications to be competitive to software
equivalent [35-37]. We have reported in our work [38], how
by using multi-core superscalar architectures on an FPGA,
computational speed up have been achieved. Moreover even
if it is possible to implement floating point algorithms on
FPGA, the current state of the art algorithms do not scale
well beyond single precision. It is therefore necessary to
explore algorithms which work up to double precision which
is standard in processors.

Fig. (4). FPGA based implementation of FFT.

Signal Processing through Field Programmable Gate Arrays Recent Patents on Signal Processing, 2010, Volume 2 5

8. CONCLUSION

 FPGA have been found to a highly robust architecture
that can be tuned for lots of signal processing applications.
By allowing designers to create circuit architectures
developed for the specific applications, high levels of
performance can be achieved using FPGA for many DSP
applications providing considerable improvements over
conventional microprocessor and dedicated DSP processor
solutions. The paper highlights the flexibility offered by
FPGA in realizing signal processing architectures and
algorithms. The possibility of realizing low power signal
processors on FPGA by functional transformation approach
has also been discussed. However, there are lots of
limitations in regard to floating point computation and
implementing logarithmic, exponential and trigonometric
functions using FPGA. The current state of the art algorithms
for FPGA do not support multi-precision floating point
operations. It is therefore necessary to explore algorithms
which work up to double precision which is standard in
processors.

REFERENCES

[1] Lapsley P, Bier J, Shoham A, Lee E. DSP processor fundamentals.
New York, IEEE Press 1997.

[2] Shear D. EDN’s DSP Benchmarks. Emerg Dep News 1988; 33:
126-148.

[3] Dipert B. EDN’s first annual PLD directory. Emerg Dep News
2000; 45: 54-84.

[4] Chen CS, Hwang TT, Liu CL. Low power FPGA design-a
reengineering approach. Proceedings of Design Automation

Conference. Anaheim, California, USA 1997; 1: 656-661.
[5] Wolff FG, Knieser MJ, Weyer DJ, Papachristou CA. High level

low power FPGA design methodology. Proceedings of IEEE
National Aerospace and Electronics Conference. Dayton, OH, USA

2000; 1: 554-559.
[6] Kenny R. FPGA signal processing for Radar/Sonar applications.

Defense Electron Magazine 2007; 14(6): 9-12.
[7] Chowdhury SR, Saha H. A high performance generalized fuzzy

processor architecture and realization of its prototype on an FPGA.
IEEE Micro 2008; 28(5): 38-52.

[8] Chowdhury SR, Chakrabarti D, Saha H. FPGA realization of a
smart processing system for clinical diagnostic applications using

pipelined datapath architectures. Microprocess Microsyst 2008;
32(2): 107-120.

[9] Peterson R, Hutchings B. An assessment of the suitability of FPGA
based systems for use in digital signal processing. Lect Notes

Comput Sci 1995; 975: 293-302.
[10] Detrey J, Dinechin FD. Parameterized floating-point logarithm and

exponential functions for FPGAs. Microprocess Microsyst 2007;
31; 537-545.

[11] Lienhart G, Kugel A, Manner R. Using floating point arithmetic on
FPGAs to accelerate scientific N-body simulations. FPGAs for

Custom Computing Machines. Proceedings: 10th Annual IEEE
Symposium, New York, IEEE Press 2002; 182-191.

[12] Roy S, Boudreault FR, Dupont L. An end-to-end prototyping
framework for compliant wireless LAN transceivers with smart

antennas. Comput Commun 2008; 31(8): 1551-1563.
[13] Baas B. SPIFFEE an energy efficient single chip 1024 point FFT

processor. http://www.standford.edu/bbaas/spiffee1.html 1998.
[14] Sunada G, Jin J, Berzins M, Chen T. COBRA: An 1.2 million tran-

sistor expandable column FFT chip. Proceedings of International

Conference on Computer Design: VLSI in Computers and

Processors. Cambridge, MA, USA 1994; 546-550.
[15] Texas Memory Systems: TM-66 swiFFT Chip. http://www.texmem

sys.com 1996.
[16] Sharp Microelectronics. BDSP9124 digital signal processor.

http://www.butterflydsp.com 1997.
[17] Mellot J. Long instruction word computer. Ph.D thesis, University

of Florida, Gainesville 1997.
[18] Lavoie P. A high speed CMOS implementation of the Winograd

Fourier transform algorithm. IEEE Trans Signal Process 1996;
44(8): 2121-226.

[19] Panneerselvam G, Graumann P, Turner L. Implementation of fast
Fourier transforms and discrete cosine transforms in FPGAs. Lect

Notes Comput Sci 1996; 1142: 272-281.
[20] Altera Corporation. Fast Fourier transforms. Solution brief 12,

Altera Corporation, 1997.
[21] Goslin G. Using Xilinx FPGAs to design custom digital signal

processing devices. Proceedings of DSP. San Jose, CA USA 1995;
595-604.

[22] Shirazi N, Athanas P, Abbott A. Implementation of a 2D fast
Fourier transform on an FPGA based custom computing machine.

Lect Notes Comput Sci 1995; 975: 282-292.
[23] Dick C. Computing 2D DFTs using FPGAs. Lect Notes Comput

Sci 1996; 1142: 96-105.
[24] Landry J, Plants W, Sexton R.: US7360068 (2009).

[25] Lai YT, Pendram M, Sastry AKAS. BDD based decomposition of
logic functions with application to FPGA synthesis. Proceedings of

Design Automation Conference. Dallas, Texas, USA 1993; 642-47.
[26] Cong J, Ding Y. An optimal technology mapping algorithm for

delay optimization in lookup table based FPGA designs.
Proceedings of IEEE International Conference on Computer Aided

Design. San Jose, CA, USA 1992; 154-158.
[27] Dewan, H.: US 7430726 (2008).

[28] Roth JP, Karp RM. Minimization over Boolean graphs. IBM J Res
Dev 1962; 227-238.

[29] Ratchev, B., Hwang, Y.Y., Pedersen, B.: US 7100141 (2006).
[30] Belanovic P, Leeser M. A library of parameterized floating point

modules and their use in field programmable logic and
applications. Lect Notes Comput Sci 2002; 2438: 657-666.

[31] Detrey J, De dinechin F. A tool for unbiased comparison between
logarithm and floating point arithmetic. Technical Report RR2004-

31, LIP, Ecole Normale Superieure de Lyon March 2004.
[32] Dido J, Geraudie N, Loiseau L, Payeur O, Savaria Y, Poirier D. A

flexible floating point format for optimizing data-paths and
operators in FPGA based DSPs. ACM SIGDA FGPA 2002; 50-55.

[33] Lee B, Burgess N. Parameterized floating point operators in
FPGAs. Proceedings of 36th Asilomar Conference on Signals. Syst

Comput 2002; 1064-1068.
[34] Shirazi N, Walters A, Athanas P. Quantitative analysis of floating

point arithmetic on FPGA based custom computing machine.
FPGAs for Custom Computing Machines. New York, IEEE Press

995; 155-162.
[35] De Lorimier M, De Hon A. Floating point sparse matrix vector

multiply for FPGAs. ACM/SIGDA 13th International Symposium,
Filed Programmable Gate Arrays. New York, ACM Press 2005;

75-85.
[36] Dou Y, Vassiliadis S, Kuzmanov GK, Gaydadjiev GN. 64 bit

floating point FPGA matrix multiplication. ACM/SIGDA Field
Programmable Gate Arrays, New York, ACM Press 2005; 86-95.

[37] Lienhart G, Kugel A, Manner R. Using floating point arithmetic on
FPGAs to accelerate scientific N-body simulations. FPGAs for

Custom Computing Machines, New York, IEEE Press 2002.
[38] Pani S, Saha H, Chowdhury SR. Performance enhancement in the

associative processing of floating point numbers using multicore
superscalar architecture. IEEE TENCON 2008; 1-6.

Received: September 9, 2009 Revised: October 1, 2009 Accepted: October 16, 2009

© Shubhajit Roy Chowdhury; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-

nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

