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Abstract: The paper focuses on the use of field programmable gate arrays (FPGA) for signal processing applications. By 

allowing designers to create circuit architectures developed for the specific applications, high levels of performance can 

be achieved using FPGA for many digital signal processing (DSP) applications providing considerable improvements 

over conventional microprocessor and dedicated DSP processor solutions. A key reason is that an FPGA can side step the 

classic Von Neumann architecture’s instruction—fetch, load/store bottleneck—found in most DSP. The paper highlights 

the flexibility offered by FPGA in realizing signal processing architectures and algorithms. The possibility of realizing 

low power signal processors on FPGA by functional transformation approach has also been discussed. The bottlenecks 

faced in the state of the art technologies have also been explained. 
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1. INTRODUCTION 

 Signal processing algorithms have been used to transform 
or manipulate analog or digital signals for a long time. One 
of the most frequent applications is obviously filtering the 
signal. Digital signal processing has found many 
applications, ranging from data communications, speech, 
audio or biomedical signal processing, to instrumentation 
and robotics. 

 Digital signal processing (DSP) has developed over the 
past decade and has almost replaced analog signal processing 
(ASP) systems in many applications. DSP systems enjoy 
several advantages over ASP systems such as insensitivity to 
change in temperature, aging or component tolerance [1]. 
Originally analog chips yielded smaller die sizes, but with 
the advent of VLSI design in the deep submicron regime, 
digital chips can be realized on a smaller area with denser 
integration. This yields compact low power and low cost 
designs. 

 Signal processing applications are typically 
computationally intensive and heavily rely on the efficient 
implementation of such digital signal-processing (DSP) 
algorithms as filtering, transforms and modulation. In past 
systems, conventional digital signal processors were used to 
perform many of these algorithms. Programmable DSP 
introduced in the late 70’s incorporated a multiply-
accumulate operation in only one clock cycle which was a 
dramatic improvement over the Von-Neumann micropro-
cessor based systems [2]. 
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 The advent of field programmable gate arrays (FPGA) 
has revolutionized the field of digital signal processing over 
the past decade. By allowing designers to create circuit 
architectures developed for the specific applications, high 
levels of performance can be achieved for many DSP 
applications providing considerable improvements over 
conventional microprocessor and dedicated DSP processor 
solutions. However, field-programmable gate arrays (FPGA) 
deliver an order of magnitude higher performance than 
traditional DSP. A key reason is that an FPGA can side step 
the classic Von Neumann architecture’s instruction—fetch, 
load/store bottleneck—found in most DSP. Modern FPGA 
families provide DSP arithmetic support with fast carry 
chains which are used to implement multiply accumulates at 
high speed, with low overhead and low costs [3]. Another 
reason is the FPGA has lower power consumption [4, 5]. 

2. OVERVIEW OF FPGA 

 FPGA is a member of a class of devices called field 
programmable logic (FPL). FPLs are defined as 
programmable devices containing repeated fields of small 
logic blocks, called configurable logic blocks (CLB). A 
typical FPGA consists of three major types of elements viz. 
configurable logic block (CLB), programmable interconnects 
and I/O blocks. Fig. (1) shows the basic architecture of 
FPGA that incorporates these three elements. 

 The CLB can usually form the function of typical logic 
gates but it is still small compared to the typical 
combinational logic block found in a large design. The 
programmable interconnects are made between the logic 
elements. These interconnects may be logically organized 
into channels or other units. FPGA typically offer several 
types of interconnect depending on the distance between the 
combinational logic blocks that are to be connected; clock 
signals are also provided with their own interconnection  
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networks. I/O pins may be referred to as I/O blocks (IOB). 
They are generally programmable to be inputs or outputs and 
often provide other features such as low power or high speed 
connections. Multiple I/O pads may fit into the height of one 
row or the width of one column. An application circuit must 
be mapped into an FPGA with adequate resources. 

 A typical FPGA configurable logic block consists of a 4-
input lookup table (LUT), and a flip-flop, as shown in Fig. 
(2) below: 

 

Fig. (2). Structure of a Configurable Logic block with multiplexed 

registered and unregistered output. 

 The look up table stores the truth table of the Boolean 
function to be implemented. Since the LUT is a 4 input LUT, 
hence, up to 4 variable Boolean functions can be 
implemented using LUT. By storing the truth tables of 
Boolean function on the LUT, the CLBs are configured for 
specific logic functions. There is only one output, which can 
be either the registered or the unregistered LUT output. The 
registered and unregistered LUT output is connected to the 
final output through a 2X1 multiplexer. The logic block has 
four inputs for the LUT and a clock input. Since clock 
signals (and often other high-fanout signals) are normally 
routed via special-purpose dedicated routing networks in 
commercial FPGAs, they are accounted for separately from 
other signals. 

3. FLEXIBILITY OFFERED BY FPGA IN SIGNAL 
PROCESSING APPLICATIONS 

 Fitting multiple DSP functions into a single FPGA has 
many integration challenges, but also offers significant 

advantages to the designer in performance and flexibility. 
The primary reasons for integrating DSP functions into a 
single FPGA are system-level reductions in size, weight and 
power. For example, eliminating the transfer pathways 
between separate FPGA and DSP significantly reduces 
power consumption and, therefore, heat. This, in turn, 
reduces the system-cooling burden of the design. Recent 
releases of design and place-and-route software have 
advanced power-awareness features that significantly reduce 
dynamic power use of the FPGA. These options can be 
important to the designer; the benchmark of device logic 
density among competitive FPGA providers is beginning to 
give way to functionality-per-watt metrics, due to the 
sensitivity of power and cooling requirements in emerging 
systems. 

 Performance is also a key driver as FPGA based signal 
processing has become more reliable and faster than 
traditional processing technologies [6]. We have reported in 
literature how FPGA based pipelined and pipelined parallel 
hybrid architectures lead to computation with an increased 
throughput [7, 8]. In applications where performance is the 
driving parameter, efficiency can be sacrificed for 
application speed, where a memory-intensive, massively 
parallel floating-point mathematical operation is desired. 
Alternatively, highly iterative DSP calculations can be 
implemented for applications where moderate performance 
is allowable, but where logic-element usage is limited [9]. 
This logically leads to the advantage of flexibility. The 
designer has the flexibility to decide between high-speed 
performance and the number of logic elements in every DSP 
operation, whereas calculation bandwidths and iterations 
would be more difficult and costly to modify in a dedicated 
DSP device. In addition, consolidating DSP functions within 
an FPGA allows for post-design system changes in the 
signal-processing architecture, whereas using separate DSP 
locks the designer into a fixed set of chip interfaces once the 

 

Fig. (1). Basic architecture of FPGA. 
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board is designed. FPGA designers can alternately switch 
between 9-bit, 18-bit or 36-bit or 18-bit complex math 
functions without changing the system hardware. Additional 
flexibility can be designed into the system when the designer 
uses fast-embedded processors for the execution or routing 
of complex floating-point operations. 

4. PROSPECTS IN ALGORITHMIC 
MATHEMATICAL FUNCTIONS 

 Typical algorithmic mathematical functions in signal 
processing systems include recursive least-square and 
square-root operations [10]. Many designers have 
implemented these functions in C-based processors (in fixed-
decimal and floating-point operations), or with proprietary 
FPGA VHDL operations. The current FPGA devices include 
embedded processor and logic-cell resources to efficiently 
implement these processes; future generations will also have 
these capabilities [11]. Additionally, IP cores and reference 
designs are becoming available to transition anywhere from 
dozens to hundreds of these operations into a single FPGA. 
Tools are available to translate processor-based algorithms 
from C code to hardware languages, such as very high-level 
descriptive language (VHDL). These tools can be used to 
optimize certain logic functions from a standard main 
processor into an FPGA co-processor operating in parallel 
with the main processor, or to move entire operations from 
the main processor to the FPGA hardware. 

 Matrix inversion is an important element of adaptive-
array designs and standard spatial-transceiver-array 
processing (STAP) [12]. These operations are commonly 
performed in fixed hardware elements, though efficiently 
implemented embedded processing has been demonstrated in 
some radar/sonar development programs. The logic-element 
size and potential parallelism of a matrix inversion engine 
depends on the size of the array used in the radar system. As 
the size of the array is increased, so does the number of 
floating-point multiplications required by the system. 
Therefore, in larger arrays, there are more trade-off options 
between the speed of the system and the number of logic 
elements required by the system (both of which increase as 
the parallelization of the architecture increases). 
Implementing this function using a combination of a DSP 
and a group of internal memory blocks is the most likely 

design path for radar-system designers. As these operations 
are often tailored to the adaptive-array algorithms of the 
radar system, they are likely to be custom designed in 
VHDL. However, reference designs that are optimized for 
the place-and-route capabilities of an FPGA device can be 
offered or designed-to-order from the FPGA manufacturer, if 
required for the radar or sonar system. 

5. IMPLEMENTING FAST FOURIER TRANSFORMS 
USING FPGA 

 Signal processing typically entails to time to frequency 
domain conversion and vice versa for the ease of analysis. 
Fast Fourier Transforms (FFT) and their inverse are 
effectively used for time to frequency domain conversion 
and vice versa. A review of literature reveals implementation 
of FFT with DSP and ASIC [13-18]. FFT has also been 
implemented with FPGA for 1D [19-21] and 2D [22, 23] 
transforms. Fig. (3) shows the performance comparison of 
different programmable devices in the perspective of signal 
processing. 

 Implementing fast-Fourier transforms (FFT) and their 
inverses in FPGA logic has advantages in prototyping and 
scalability, and offers design flexibility between a system’s 
speed and the number of required logic elements. For 
example, massively parallel implementations can be 
designed and distributed among the logic elements of a 
single or multiple FPGAs. However, while these 
implementations can significantly reduce latency, they 
impose the penalty of a greater number of logic elements. 
However, the limitations on the number of logic elements in 
an FPGA can be done away using reconfigurable 
architectures. Recently, a reconfigurable signal processing 
chip with an embedded flash memory has been patented 
[24]. 

 In fact, the primary flexibility advantage of an FPGA for 
FFT is the ability to select the optimal balance between these 
two parameters in the initial design. This is fortunate, 
because the implementation of large or complex FFT should 
be the primary factor in any design, and the advantages of an 
FFT implementation in an FPGA are apparent. Fig. (4) 
shows the FFT implementation using an FPGA. However, 
creating code or modifying existing code from previous 
designs can be cumbersome when testing and verifying code 

 

Fig. (3). Performance comparison of different programmable devices in the perspective of signal processing. 
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units. Therefore, what is needed is a comprehensive suite of 
FFT design tools that allows a nearly infinitely scalable FFT 
design. These tools are available and they allow scripted 
logic distribution among multiple FPGA where necessary. 
They can also automatically generate numerical coefficients 
having floating-point accuracy. 

6. LOW POWER SYSTEM IMPLEMENTATION 
USING FPGA 

 The average dynamic power dissipation of a CMOS logic 
circuit is given by: 

Pavg = Eswitching fCLK Cload VDD
2

        (1) 

where Pavg  is the average power dissipation, Cload  is the 

load capacitance, fCLK is the clock frequency, VDD  is the 

supply voltage and Eswitching  is the expected value of output 

switching per clock cycle. For a CLB in an FPGA, Cload  is a 

function of the number of fan outs of the CLB. CLKf  refers 

to the clock frequency of the FPGA. Eswitching  can be 

computed as  

Eswitching = 2p(1 p)            (2) 

where p refers to the probability that the output of the CLB is 

1, so that p(1 p)  is the probability of having a 1 to 0 

transition and p(1 p)  is the probability of having a 0 to 1 

transition and the two transitions being mutually exclusive. 

The probability p can be computed from the truth table 

realized in the CLB. Specifically, p is equal to the sum of the 

probabilities of the input combinations which produce a 1 in 

the output of the truth table of the Boolean function. 

Extensive studies have been carried out in technology 

mapping algorithms to reduce the power dissipation by 

minimizing the number of CLB [25] and minimizing the 

length of critical path [26, 27]. One transformational 

approach aims at minimizing the number of CLB as a 

starting objective and then applying functional 

transformation to the mapping solution to reduce the power 

consumption without increasing the number of CLB [4]. 

Formally, let the output of a CLB F0 is a Boolean function: 

(x1, x2 , ...., xn ) = F(G(x1, x2 , ...., xm ),

xm+1, xm+2 , ..., xn )
,          (3) 

where G(x1, x2 , ...., xm )  is the output of CLB G0. Obviously 

F(G(x1, x2 , ...., xm ), xm+1, xm+2 , ..., xn )  is a Roth Karp 

decomposition [28, 29] of (x1, x2 , ...., xn ) . The 

transformational approach attempts to find an alternative 

Roth Karp decomposition such that: 

(x1, x2 , ...., xn ) = F '(G '(x1 ', x2 ', ...., xm '), xm+1 ', xm+2 ', ..., xn ')   (4) 

where x1 ', x2 ', ...., xn '  is some permutation of x1, x2 , ...., xn . 

Here, F’ and G’ are functions, possibly different from F and 

G. However, F’ and G’ map into the same CLBs F0 and G0 

respectively, since the total number of inputs of F and G 

remains unchanged after transformation. If the switching 

density of G '(x1 ', x2 ', ...., xm ')  is less than that of 

G(x1, x2 , ...., xm ) then we achieve a reduction in power 

dissipation. 

7. CHALLENGES IN SIGNAL PROCESSING USING 
FPGA 

 Despite such huge potential of FPGA in signal 
processing applications, it suffers from lots of limitations. 
Signal processing algorithms often require elementary 
functions like logarithm, exponential, trigonometric, etc. 
There are no such operators defined in the library for FPGA 
based system design. Many libraries of floating point 
operators for FPGA now exist typically offering the basic 
operators like +, -, , / and  [30-34]. As FPGA floating 
point is clocked 10 times slower than the equivalent in 
contemporary processors, hence massive parallelism can 
allow these applications to be competitive to software 
equivalent [35-37]. We have reported in our work [38], how 
by using multi-core superscalar architectures on an FPGA, 
computational speed up have been achieved. Moreover even 
if it is possible to implement floating point algorithms on 
FPGA, the current state of the art algorithms do not scale 
well beyond single precision. It is therefore necessary to 
explore algorithms which work up to double precision which 
is standard in processors. 

 

 

Fig. (4). FPGA based implementation of FFT. 
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8. CONCLUSION 

 FPGA have been found to a highly robust architecture 
that can be tuned for lots of signal processing applications. 
By allowing designers to create circuit architectures 
developed for the specific applications, high levels of 
performance can be achieved using FPGA for many DSP 
applications providing considerable improvements over 
conventional microprocessor and dedicated DSP processor 
solutions. The paper highlights the flexibility offered by 
FPGA in realizing signal processing architectures and 
algorithms. The possibility of realizing low power signal 
processors on FPGA by functional transformation approach 
has also been discussed. However, there are lots of 
limitations in regard to floating point computation and 
implementing logarithmic, exponential and trigonometric 
functions using FPGA. The current state of the art algorithms 
for FPGA do not support multi-precision floating point 
operations. It is therefore necessary to explore algorithms 
which work up to double precision which is standard in 
processors. 
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