
10 Recent Patents on Space Technology, 2010, 2, 10-40  

 

 1877-6116/10 2010 Bentham Open 

Open Access 

Recent  Advances in GPS-based  Clock Est imation and  Steer ing 

 
Yuriy S. Shmaliy* and Oscar Ibarra-Manzano 

 
 

Guanajuato University, FIMEE, Ctra. Salamanca-Valle, 3.5+1.8km, Palo Blanco, Salamanca, Gto, Mexico 
 
 

Abst ract:  This paper observes recent advances in GPS-based estimation and steering of local clock errors employing the 
finite impulse response (FIR) technique. The problem we meet here is caused by the GPS time temporary uncertainties and 
non Gaussian sawtooth noise induces in the commercially available GPS timing receivers. It is connected with the clock 
nonstationary Gaussian noise with colored (flicker) components often making the Kalman filter low inefficient and requiring 
weighting averaging. We examine applications of the FIR filtering, prediction, and smoothing solutions for polynomial and 
state space clock models. Optimal and unbiased FIR estimators are observed in line with the basic and thinning algorithms. 
The trade-off with the Kalman algorithm is also briefly discussed. It is noticed that, for large averaging horizons featured to 
highly oversampled and slowly changing with time clock models, simple unbiased FIR solutions become virtually optimal. 
They seem to be the best choice in terms of simplicity, precision, stability, and robustness in solving many of clock problems in 
GPS-based timekeeping. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

*Address correspondence to these authors at the Guanajuato University, FIMEE, Ctra. Salamanca-Valle, 3.5+1.8km, Palo Blanco, Salamanca, Gto, Mexico 

 



Recent Advances in GPS-based Clock Estimation

and Steering

Yuriy S. Shmaliy and Oscar Ibarra-Manzano

January 19, 2010

1 Introduction

In our modern life, the function of accurate and precise time dissemination is
ordered to the Global Navigation Satellite Systems (GNSS) such as the Global
Positioning System (GPS) (USA) [1], Global Navigation System (GLONASS)
(Russia), Galileo (Europe), COMPASS (China), and IRNSS (India). The dis-
seminated time signals are used to synchronize time scales in different appli-
cations [17, 19, 20, 34, 35]. It is known that precision of the delivered time is
limited with noise and temporary time uncertainties caused by different satel-
lites in a view [2]. Therefore, precise correction and prediction of local clock
errors cannot usually be achieved directly and optimal estimators are used. The
problem with optimal estimation of clock state is also coupled with the clock
inherently nonstationary Gaussian noise with colored (flicker) components re-
quiring weighted average solutions. Among possible solutions, the optimal finite
impulse response (FIR) estimator seems to be a good choice [21] owing to the
following important advantages. Contrary to the infinite impulse response (IIR)
recursive structures such as the Kalman filter [12], the transversal FIR struc-
tures are inherently bounded input/bounded output (BIBO) stable [13] and have
better robustness against temporary uncertainties [11, 8] and round-off errors
[13, 14]. Moreover, they allow noise to be nonstationary and colored (flicker)
with arbitrary distribution and covariance functions [21].

In this paper, we observe recent advances in GPS-based clock estimation
and steering that have been achieved employing FIR estimators [3, 21, 22, 23,
24, 25, 26, 27, 28, 29, 30]. The rest of the paper is organized as follows. In
Section 2, we consider a typical measurement set. Time interval errors of the
clock are discussed in Section 3. Section 4 gives fundamentals of FIR filtering
and discusses problems solved with this technique. Unbiased FIR filtering as
well as prediction and smoothing are considered in detail in Sections 5 and 6,
respectively. Section 7 is devoted to FIR filtering in state space. Here, we also
present possible estimation algorithms. The trade-off with the Kalman filter is
outlined in Section 8 and applications are given in Section 9. Finally, concluding
remarks are drawn in Section 10.
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2 GPS-based Measurement Set

Figure 1 shows a typical measurement set for estimation and steering of local
clocks employing the one pulse per second (1PPS) signals of GPS timing re-
ceivers [21]. In such receivers, the 1PPS output is generated by the local time
clocks (LTCs) referred to the GPS time. To place the latter close to the abso-
lute time, measurements are permanently provided in the United States Naval
Observatory (USNO) for the coordinated universal time (UTC) of the USNO
master clock (MC). In order to get an estimate of UTC (USNO MC) time
derivable from a GPS signal, a set of UTC corrections is provided as part of the
message signal. This broadcast message includes the time difference in whole
seconds between GPS time and UTC (USNO MC). During 1996, this difference
was 11 s [1]. The message also includes the rate and time difference estimate
between GPS time and UTC(USNO MC) allowing for a receiver to calculate an
accurate estimate of UTC(USNO MC) with the mission goal of 28 ns (1 sigma)
[1]. Outside the selective availability (SA) induced for security purposes, the
estimate may have an accuracy of about 10 ns in the root mean squares sense.
Practically, the USNO has been successful in predicting UTC to within about
10 ns [1]. A real-time potential uncertainty of GPS time for UTC (USNO MC)
stays therefore at a level of about 14-ns [1]. The standard deviation of GPS
time available precision mostly depends on random errors in different onboard
clocks and different satellites in a view. It can be achieved at a level of 3-5 ns
[16, 18].

To obtain high accuracy, all time delays featured to channels and signal
propagation are compensated at the early stage. The main source of random
errors that cannot be removed from the received signal below 3–5 ns [16, 18]
is associated with the GPS time precision (b) limited by different satellites in
a view at their nonstationary orbits. The receiver adds the sawtooth noise

(c) bounded with ±∆, where ∆[ns] = 103

2fLTC[MHz]
and fLTC is the frequency of

the LTC oscillator. In the receivers such as the SynPaQ III GPS Sensor, this
frequency is chosen to be 10 MHz and the bound is thus ∆ = 50 ns.

Contrary to the error 1 PPS signal (d) that is zero-mean with uncertainty
(b) and sawtooth noise (c), the time interval error (TIE) (e) of a local clock is
inherently nonstationary and random, although having low intensity short-time
noise. If a high resolution time interval counter is used, then the difference be-
tween (e) and (d) represents the local clock measured TIE. The latter has the
form (f) or (g) if measurement is provided with and without sawtooth (using
the negative sawtooth code supplied by the receiver), respectively. To smooth
excursions and eliminate sawtooth in an optimum way, a digital estimator (Fil-
ter) of the clock TIE is used. If the filter is optimal or close to optimal in
the minimum mean square error (MSE) sense, then its output (h) ranges most
closely to the actual behavior (e) and the TIE of a locked clock becomes near
stationary (i) with a small amount of random departures.
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Figure 1: A typical set for GPS-based measurement, estimation, and steering
of clock errors [21].

4

Recent Advances in GPS-based Clock Estimation and Steering Recent Patents on Space Technology, 2010, Volume 2       13



+ flicker noise

Filtering of

Filtering of the

TIE behavior

n Time

TIE

n
x

n
x

n
x

and the environmental

influences

+ noisen
x

t

1?? Nnm =

Figure 2: FIR filtering of xn on a horizon of N points.

3 Clock TIE

Any clock has the time difference (TIE [5]) for an ideal uniform time scale. The
TIE can be modeled in continuous time t using the finite Taylor series as [6]

x(t) = x(0) + y(0)t +
z(0)

2
t2 + wPM(t) +

t
∫

0

wFM(θ)dθ , (1)

where x(0) is the initial TIE, y(0) is the fractional frequency offset at zero of
a local clock oscillator, z(0) is the linear frequency drift rate at zero, wPM(t)
is the phase noise, and wFM(t) is the frequency noise. The IEEE Standard [5]
suggests that the three state clock model such as (1) serves on an infinite time
interval and that the higher order states are included to the random part.

The TIE is measured over a time interval τ starting at t− τ and ending at
t. Thus, (1) can be represented in discrete time n with digital numbers xn as

xn = x0 + y0τn +
z0
2
τ2n2 + wPMn + τ

n
∑

i=0

wFMi , (2)

where x0 = x(0), y0 = y(0), and z0 = z(0). In precise clocks, y0 and z0 are
extremely small and the deterministic part in (2) is slowly changing with time.
On the other hand, both wPMn and wFMn contain fast white and slow colored
(flicker and random walk) Gaussian components. For wFMi white, the last term
in (2) represents the discrete-time Wiener process, making (2) near Markovian in
the presence of phase noise and the environmental influences (Fig. 2). Owing to
such features of the process, the clock estimation problems have some specifics:

• Short base of 102 . . . 103 s is employed for synchronizing the crystal and
rubidium clocks. Here the slow noise components are commonly tracked
and the white phase noise is filtered out.
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• Long base of about 105 s is required for filtering and prediction in atomic
clocks. Maximum accuracy is achieved here if most of the noise compo-
nents and the environmental effects are filtered out.

• A very long base of 107 s is processed in order to estimate the Allan
variance.

• All the data available is used in order to estimate the current clock state.

4 FIR Estimation of Clock Errors

The TIE measurement sn is commonly considered as an additive sum of the
TIE xn and zero-mean, E{vn} = 0, measurement noise vn,

sn = xn + vn , (3)

where noise is supposed to be negligible in direct measurement and can be large
when the reference time is remotely delivered by the commercially available
receivers of wireless GNSS systems.

The FIR filtering estimate x̂n of xn is the weighted average of sn over N >
2 points via the discrete convolution of sn and the FIR filter gain (impulse
response) hln , hln(N), where l is the degree of the gain [26]. This estimate
can thus be represented in the following equal forms of

x̂n =
N−1
∑

i=0

hlisn−i (4)

= WT
l SN = ST

NWl , (5)

where the N×1 measurement vector and the N×1 filter gain matrix are specified
with, respectively,

SN = [sn sn−1 . . . , sn−N+1]
T , (6)

Wl = [hl0 hl1 . . . , hl(N−1)]
T . (7)

Note that there always exists some error εn = xn − x̂n to be minimized in
some sense, by optimizing hln or Wl. The minimum MSE sense is commonly
used, albeit it is not always appropriate for all clock applications.

4.1 Problems Solved with FIR Structures

The following clock estimation problems can be solved employing the FIR struc-
tures.

• Filtering is commonly used in timescales to estimate the present state
[7, 22, 23, 24, 25, 26, 30, 31]. To enable, a nearest past history can be
processed from n − N + 1 to n and the estimate related to n, by (4) or
(5).

6
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• Prediction is employed to evaluate possible future errors in time scales [7].
A 1-step prediction is used in clock steering [3] and the p-step one is a key
solution for holdover [6, 27, 28], when a synchronizing signal is temporary
not available. The p-step prediction at n + p, p > 0, is provided with

x̃n+p =

N−1
∑

i=0

h̃li(p)sn−i , p > 0 , (8)

where h̃ln(p) , h̃ln(N, p) is the p-dependent gain defined in [21]. The
predictive FIR filtering estimate is obtained at n via the past history from
n−N + 1− p to n− p as

x̃n =

N−1+p
∑

i=p

hli(p)sn−i , p > 0 , (9)

where hln(p) , hln(N, p) is the gain defined in [28].

• Smoothing is used for noise reduction in postprocessing, identification of
clock models, and ascertaining the initial clock state for optimal algo-
rithms. In this regard, FIR smoothing can be organized to have a fixed
lag (p is constant), fixed interval (N is constant), or fixed point (n− p is
constant). The FIR smoother and the smoothing FIR filter are designed
as follows, respectively,

x̄n+p =

N−1
∑

i=0

h̃li(p)sn−i , p < 0 , (10)

x̄n =

N−1+p
∑

i=p

hli(p)sn−i , p < 0 . (11)

As can be seen, the difference between (8) and (10) as well as between (9)
and (11) exists only in the sign of p and that, by p = 0, (8)–(11) become (4).

The gains hln(p) and h̃ln(p) in (8)–(11) are coupled as h̃ln(p) = hl(n+p)(p).
Note that the estimates (4) and (8)–(11) have practical usefulness only if the
gains are specified and optimized in some sense. The most common ways of the
optimization are the following.

5 Unbiased FIR Filtering of the TIE

The unbiased FIR filtering estimate is optimal in the zero-bias sense. The
relevant unbiased gain hln can be found from the unbiasedness condition [33]

E{xn} = E{x̂n} , (12)

7
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meaning that the average of the estimate is required to be equal to that of its
origin. Substituting (3) to (4) and then averaging both sides of (4), by (12),
gives us

xn =
N−1
∑

i=0

hlixn−i (13)

Further substituting the determinist part of (2) to (13) leads to the funda-
mental properties of the unbiased FIR filters [22]:

N−1
∑

i=0

hli = 1 , (14)

N−1
∑

i=0

hlii
u = 0 , 1 6 u 6 l , (15)

which can be rewritten in a short matrix form as [22]

W̄T
l V = JT , (16)

where J = [1 0 . . . 0 ]T , W̄T
l is given by (6), and V is the Vandermonde matrix,

specified below for arbitrary l as

V =















1 0 0 . . . 0
1 1 1 . . . 1
1 2 22 . . . 2l

...
...

...
. . .

...
1 N − 1 (N − 1)2 . . . (N − 1)l















. (17)

A solution to (16) has the form of [22, 36]

W̄T
l = JT (VTV)−1VT , (18)

representing the first row of the minimum variance unbiased (MVU) estimator
[33], in which the observation matrix is Vandermonde (18).

5.1 Polynomial FIR Filter Gain

Further development of (18) has been provided in [22] exploiting what is knows
from the Kalman filter theory [12]: the order of the optimal filter is the same
as that of the system. Hence, the m-degree TIE polynomial function xn can
unbiasedly be filtered if the polynomial gain hlp has the same degree l = m.
Note that unbiasedness is also achieved if l > m, although with larger noise [22].
Referring to this fact, hln can be substituted with

hln =
l
∑

j=0

ajln
j , (19)

8
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where the generic coefficient ajl is defined as

ajl = (−1)j M(j+1)1

|D| (20)

via the determinant |D| and minor M(j+1)1 of a short (l+1)× (l+1) quadratic
symmetric matrix [22, 36]

D = VTV =











d0 d1 . . . dl
d1 d2 . . . dl+1
...

...
. . .

...
dl dl+1 . . . d2l











, (21)

which component dr, r ∈ [0, 2l], is calculated using the Bernoulli polynomials
Bn(x) as

dr(N) =

N−1
∑

i=0

ir =
1

r + 1
[Br+1(N)−Br+1] . (22)

By (20)–(22), hln can be found for any l, although, following [5], only low-
degree gains are exploited in solving clock problems.

5.1.1 Low-degree Polynomial Gains

For low-state clock models [5], the unique polynomial gains have been found in
[22] to be

h0n =
1

N
, (23)

h1n =
2(2N − 1)− 6n

N(N + 1)
, (24)

h2n =
3(3N2 − 3N + 2)− 18(2N − 1)n + 30n2

N(N + 1)(N + 2)
, (25)

h3n =
8(2N3 − 3N2 + 7N − 3)− 20(6N2 − 6N + 5)n

N(N + 1)(N + 2)(N + 3)

+
120(2N − 1)n2 − 140n3

N(N + 1)(N + 2)(N + 3)
. (26)

The gain (23) represents simple averaging widely used in atomic clocks for
noise reduction. The ramp gain (24) was originally derived in [23] via linear
regression, once the latter is used to model systematic behaviors in clocks [5].
Figure 3 illustrates these gains graphically and their applications in GPS-based
timekeeping can be found in [22, 23, 24, 26, 30].

5.1.2 Noise Power Gain

Following [9], noise amount in the unbiased FIR filter output can be estimated
with the noise power gain (NPG) gl = σ2x/σ

2
v , where σ2v is the variance of the

9
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Figure 4: The NPGs of the low-degree unbiased FIR filters.

delta-correlated measurement noise vn and σ2x is the variance of the estimate.
The NPG can also be evaluated via the gain hln as [9, 27]

gl =

N−1
∑

i=0

h2li = WT
l Wl = a0l . (27)

As can be seen, diminishing noise means reducing a0l in (19) by increasing N .
Figure 4 sketches gl for the low-degree unbiased FIR filters. A shadowed area

is a dead zone that theoretically can never be reached. Its bound is depicted
by 1/

√
N associated with simple averaging with the gain (23) producing noise

minimum among all other filters [32]. It has been shown in [22] that, if l > 0,
the function

√

gl(N) traces above the lower bound 1/
√
N and below the upper

10
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bound as

1√
N

<
√

gl(N) <

{

l+1√
N

, N > (l + 1)2

1 , N < (l + 1)2
, l > 0 . (28)

5.1.3 Optimal τ and N

Although the IEEE Standard [5] suggests that the clock has three states, the
m-degree polynomial can be applied in order to filter out measurement noise.
It follows from Fig. 2 that the l-degree gain fits the clock model only on a finite
horizon of N points, when l > m. If l < m, bias occurs in the estimate and N
is thus limited with the minimum MSE. Because N depends on the sampling
time τ , the MSE must also be minimized by searching for a proper τ .

In GPS-based timekeeping via 1PPS signals, τopt is 1 s [24]. In turn, Nopt for
simple averaging (23) and ramp gain (24) are determined in [24] by, respectively,

Nopt(l = 0) =

⌊

3

√

2σ2v
τ2y2

⌋

, (29)

Nopt(l = 1) =

⌊

5

√

144σ2v
τ4z2

⌋

, (30)

where bac means an integer part of a. If yn and zn are not available at n, one
can substitute them with the maximum values featured to particular clocks.
Then (29) and (30) would serve as lower bounds for Nopt.

5.1.4 Optimal Ramp Gain

A modification of the ramp gain to be optimum in the minimum MSE sense
was provided in [26] in the form of

h1n(η) =
1

N

[

1 + η
3(N − 1)− 6n

N + 1

]

, (31)

where η is an optimization coefficient. As can be seen, (31) becomes (24), if
η = 1, and η = 0 simplifies it to (23). The optimal value of η0, 0 < η0 < 1, was
specified in [26] in the minimum MSE sense as

η0 =
α2N(N2 − 1)

α2N(N2 − 1) + 12
(32)

with α2 = τ2y2/σ2v . It has also been shown in [26] that, for crystal, rubidium,
and cesium clocks, η0 ranges as, respectively,

0.992124198176391 < η0 < 0.999999999964719 ,

0.998451946589028 < η0 < 0.999999993798186 ,

0.969923570257806 < η0 < 0.999950387946414 ,

11
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meaning that η0 takes values very closely related to unity. The unbiased and
optimal estimates are thus indistinguishable and there would be no reasonable
necessity in using optimal filters to solve many of the clock problems. Note that
(31) requires four coefficients, τ , y, σ2v , and N , whereas (24) needs only N .

6 Unbiased FIR Prediction and Smoothing

It follows from (8)–(11) that prediction and smoothing are provided by the same
convolution batch if to let p be either positive or negative, respectively.

To organize unbiased predictive FIR filtering (9), by p > 0, or smoothing
FIR filtering (11), by p < 0, the Vandermonde matrix was modified in [21] to

V(p) =















1 p . . . pl

1 p + 1 . . . (p + 1)l

1 p + 2 . . . (p + 2)l

...
...

. . .
...

1 N − 1 + p . . . (N − 1 + p)l















, (33)

obeying the following fundamental properties of the unbiased gain, existing from
p to p + N − 1:

N−1+p
∑

i=p

hli(p) = 1 (34)

N−1+p
∑

i=p

hli(p)i
u = 0 , 1 6 u 6 l . (35)

With V(p) specified by (33), the gain hli(p) can serve to provide prediction and
smoothing.

Substituted (33) to (22), the p-dependent components of the matrix D(p) is
specified via the Bernoulli polynomials with [28]

dr(N, p) =

N−1+p
∑

i=p

ir =
Br+1(N + p)−Br+1(p)

r + 1
. (36)

Provided D(p), the p-dependent gain hln(p) can also be found analytically
for any l and p. Below we consider only the p-step predictive ramp FIR filter,
noticing that a quadratic solution can be found in [21, 28].

6.1 The p-step Predictive Ramp FIR Filter

The gain of the p-step ramp predictive FIR filter has a familiar form of

h1n(p) = a01(p) + a11(p)n (37)

12
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Figure 5: The NPG of the p-step predictive unbiased ramp FIR filter.

with the p-dependent coefficients found in [27, 28] to be

a01(p) =
2(2N − 1)(N − 1) + 12p(N − 1 + p)

N(N2 − 1)
, (38)

a11(p) = −6(N − 1 + 2p)

N(N2 − 1)
. (39)

The NPG for this gain is g1(p) = a01(p) (38). By p = 0, (37) becomes (24).
For p = 1, function (37) was originally derived and investigated in [9] using
the Lagrange multipliers. An analysis reveals that an increase in p results in a
higher slope of h1n(p) as well as in an increase on 6p/N(N +1) in both positive
and negative peak values.

A payment for prediction is instability. In fact, both (38) and (39) tend
toward infinite if N → 1 that makes prediction inefficient when gl(p) exceeds
unity (noise is not attenuated) with small N . The latter is neatly seen in Fig.
5. On the other hand, with N À 1, the filter is highly efficient and its NPG fits
an asymptotic gl ∼= 4/N (dashed in Fig. 5) that does not depend on p.

Figure 6 gives us an idea of how well the ramp FIR predictor works, cover-
ing the range of about 0.5 hours via the GPS-based measurements of the TIE
[27]. As can be seen, x̃n inherently diverges in the holdover range, when mea-
surement is not temporary available, and then converges to xn in the hold-in
range. Different prediction algorithms with examples of applications for such
measurements can be found in [27, 28].

7 FIR Filtering in State Space

In line with the polynomial model (2), clock representation in state space is also
widely used. It has been proposed in [2], to represent the clock in state space

13
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Figure 6: Prediction of clock errors with a ramp unbiased FIR filter in the
presence of large measurement noise.

with the state and observation equations, respectively,

xn = Axn−1 +wn , (40)

sn = Cxn + vn , (41)

where the 3× 1 state vector is given by

xn = [xn yn zn]
T , (42)

the 3× 3 clock matrix

A =





1 τ τ2

2
0 1 τ
0 0 1



 (43)

projects the nearest past state xn−1 to the present state xn via the finite Taylor
series expansions, and the 1× 3 observation matrix is C = [ 1 0 0 ].

The 3× 1 vector of the clock zero-mean noises,

wn = [wxn wyn wzn]
T , (44)

has the covariance matrix Ψ = E{wiw
T
j }, which components are specified via

the noise power laws determined in [5]. As shown in [4], the following matrix
can be used for the white Gaussian approximation of Ψ,

Ψ̄ = τ







q1 +
q2τ

2

3 + q3τ
4

20
q2τ
2 + q3τ

3

8
q3τ

2

6
q2τ
2 + q3τ

3

8 q2 +
q3τ

2

3
q3τ
2

q3τ
2

6
q3τ
2 q3






, (45)
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where the diffusion coefficients q1, q2, and q3 specify the white FM noise (WHFM),
white random walk FM noise (WRFM), and white random run FM noise (RRFM),
respectively, in the τ -domain power law [5] of the clock’s oscillator.

The noise vn associated with GPS-based measurement is zero-mean, E{vn} =
0. It has the variance E{v2n} = σ2v and supposedly arbitrary distribution and
covariance. An analysis of this noise can be found in [21].

7.1 Representation on the Averaging Horizon

To apply FIR filtering to the clock state space model, (40) and (41), the latter
is represented in [21] on a horizon of N point from m = n−N +1 to n (Fig. 2)
as

Xn,m = An−mxm +Bn−mNn,m , (46)

Sn,m = Cn−mxm +Gn−mNn,m +Vn,m , (47)

where

Xn,m =
[

xT
n x

T
n−1 . . . xT

m

]T
, (48)

Sn,m = [sn sn−1 . . . sm ]
T

, (49)

Nn,m =
[

wT
n wT

n−1 . . . wT
m

]T
, (50)

Vn,m =
[

vn vn−1 . . . vm
]T

, (51)

Ai =
[

(Ai)T (Ai−1)T . . . AT I
]T

, (52)

Ai =





1 τi (τi)2

2
0 1 τi
0 0 1



 , (53)

Bi =















A0 A . . . Ai−1 Ai

0 A0 . . . Ai−2 Ai−1

...
...

. . .
...

...
0 0 . . . A0 A

0 0 . . . 0 A0















, (54)

Ci =
[

(Ai)T1 (Ai−1)T1 . . . (A1)T1 (A0)T1
]T

, (55)

(Ai)1 =
[

1 τi (τi)2/2
]

, (56)

Gi =















(I)1 (A)1 . . . (Ai−1)1 (Ai)1
0 (I)1 . . . (Ai−2)1 (Ai−1)1
...

...
. . .

...
...

0 0 . . . (I)1 (A)1
0 0 . . . 0 (I)1















, (57)

where (Z)1 means the first row of a matrix Z and 0 is a relevant matrix with
all components equal to zero. Note that the initial state xm is supposed to be
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given exactly, although it is randomly valued. Therefore, wm is always zero
valued.

By this model, the slowly changing clock states are represented at n with
the finite Taylor series expansions via the states at m as follows:

xn = xm + (n−m)τym

+
(n−m)2τ2zm

2
+ wxn , (58)

yn = ym + (n−m)τzm + wyn , (59)

zn = zm + wzn , (60)

where wxn, wyn, and wzn conventionally represent the noise components on the
averaging horizon.

7.2 Optimal FIR Filtering of the TIE

Utilizing N measurement points from n−N +1 to n, the FIR filtering estimate
x̂n of xn is obtained, by (5) applied to (47), as

x̂n = WT
l Sn,m . (61)

In order for the estimate (61) to be optimal, the degree of the gain must
be set such that l = K − k, where K is a number of the states and k is the
filtered state [22]. For the 3-state clock model and filtered first state, one thus
sets l = 2.

The optimal gain matrix W̃l for (61) was specified in [25, 29] as

W̃T
l = (AN−1)1RmC

T
n−m(Zm + Z̃Ψ +ΦV )−1 , (62)

where

Zm = Cn−mRmC
T
n−m , (63)

Z̃Ψ = Gn−mΨNG
T
n−m . (64)

The noise covariance function matrices are

ΨN = E{Nn,mN
T
n,m} , (65)

ΦV = E{Vn,mV
T
n,m} (66)

and the initial state covariance is

Rm = E{xmx
T
m} . (67)

It has been shown in [21] that the initial state function Zm can a posteriori

be determined in the filter algorithm by solving the discrete algebraic Riccati
equation.

Although (62) can be applied to the state space models with different kinds
of noise sources (unlike the Kalman filter claiming all noises to be white se-
quences), it presumes large computational burden when N is large. Following
[25], substantial simplifications of (62) can be achieved for N À 1 associated
with GPS-based timekeeping and precision clocks.
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Figure 7: The basic FIR filtering algorithm for TIE measurements of the 3-state
clock model.

7.2.1 Large Averaging Horizon, N À 1

When N À 1 or the initial mean square state dominates noise in order of
magnitudes, the second and third terms can be neglected in the parenthesis of
(62) [25]. Accordingly, (62) first reduces to

W̃T
l = (AN−1)1RmC

T
n−m(Cn−mRmC

T
n−m)−1 . (68)

and, following [21], can be transformed to the unbiasedness (or deadbeat [13])
constraint

W̃T
l Cn−m = (AN−1)1 , (69)

where the gain W̃l is exactly that specified with (19) [22]. Provided large N ,
the optimal estimate of the clock TIE is thus obtained with the unbiased FIR
filter (see an experimental verification given in [26]).

8 FIR Filtering Algorithms

An important special feature of FIR filtering is that it can be applied to each
of the states separately [13, 22]. Although, so far, we discussed the estimates
of the clock first state xn, the remaining states can be estimated similarly [22],
even with the individual optimal horizons and sampling intervals [24, 30]. The
clock states can also be estimated all at once as shown in [21].

8.1 Basic Algorithm

The basic unbiased FIR filtering algorithm for the most common 3-state clock
model is shown in Fig. 7 [22]. Here, the quadratic gain (25) is used to produce
the estimate x̂n of the TIE (Fig. 8) via the convolution (4). The noise variance
in the produced estimate is approximately evaluated by the NPG g2 = a02.

Because the fractional frequency offset can be specified by the discrete-time
derivative of the TIE, the measurement of yn is formed as syn = (x̂n− x̂n−1)/τ .
Then the FIR filter with the ramp gain (24) is applied to produce the estimate
ŷn with the variance calculated by the NPG g1 = a01. The procedure is repeated
using simple averaging (23) applied to the derivative szn = (ŷn − ŷn−1)/τ in
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order to obtain an estimate ẑn of the linear frequency drift rate zn with the
error approximately calculated by the NPG g0 = 1/N .

For the 3-state and 2-state clock models, the unbiased FIR filtering batch
algorithms are hence as in the following.

3-state clock model. If the clock is identified to have three states, FIR
filtering obtains

x̂n =

Nx−1
∑

i=0

h2isn−i , (70)

ŷn =
1

τ

Ny−1
∑

j=0

h1j [x̂n−j − x̂n−j−1] , (71)

ẑn =
1

τNz

Nz−1
∑

r=0

[ŷn−r − ŷn−r−1] , (72)

where the averaging horizons Nx, Ny, and Nz are typically different. The first
accurate value of x̂n appears at Nx − 1, of ŷn at Nx + Ny − 1, and of ẑn at
Nx + Ny + Nz − 1.

2-state clock model. For the 2-state clock model, the existing states are
filtered by

x̂n =

Nx−1
∑

i=0

h1isn−i , (73)

ŷn =
1

τNy

Ny−1
∑

j=0

(x̂n−j − x̂n−j−1) . (74)

Here, the first accurate value of x̂n appears at Nx− 1 and of ŷn at Nx +Ny− 1.

8.2 Thinning Algorithm

Following [24], the optimal step τxopt is 1 s for the first clock state in GPS-based
measurements via the 1 PPS signals. In contrast, τyopt and τzopt must be set
individually for the second and third states [24].

An improved “thinning” algorithm has been proposed in [30] with the dia-
gram shown in Fig. 8. This algorithm accounts for the individual τy and τz,
implied that the thinning coefficients, ky and kz, are chosen such that informa-
tion is not lost about the states.

It follows from Fig. 8 that the first state xn is estimated by (70) as x̂n and
that this estimate is then thinned out by changing τ to τy = kyτ . In a new

discrete scale my =
⌊

n
ky

⌋

, where
⌊

a
b

⌋

represents an integer part of the ratio,

the estimate becomes x̂kymy
. Then the one pulse per ky seconds (1PPkyS)
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Figure 8: The thinning FIR filtering algorithm for TIE measurements of the
3-state clock model.

measurement of the second state is artificially formed by the backward time
derivative as

sykymy
=

x̂kymy
− x̂ky(my−1)
kyτ

. (75)

The estimate ŷkymy
of the second state is then provided at each kymy point

in a like manner using the gain h1i to yield

ŷkymy
=

Ny−1
∑

i=0

h1isyky(my−1) . (76)

Similarly, the estimate ẑkykzmz
can be found and two particular cases rec-

ognized.

3-state clock model. For the clock identified to have three states, the
thinning unbiased FIR filtering algorithm results in the following batch forms:

x̂n =

Nx−1
∑

i=0

h2isn−i , (77)

ŷkymy
=

1

kyτ

Ny−1
∑

j=0

h1i[x̂ky(my−j) − x̂ky(my−j−1)] , (78)

ẑkykzmz
=

Nz−1
∑

r=0

ŷkykz(mz−r) − ŷkykz(mz−r−1)
kykzτNz

. (79)
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It can be shown that the first correct estimate of the third state, for the
worst case of asynchronous thinning, appears at Nx − 1 + ky(Ny + kzNz).

2-state clock model. The 2-state model fits well atomic clocks and is often
applied to crystal clocks. For this model, the thinning algorithm is given by

x̂n =

Nx−1
∑

i=0

h1isn−i , (80)

ŷkymy
=

1

kyτNy

Ny−1
∑

j=0

[x̂ky(my−j) − x̂ky(my−j−1)] . (81)

In the worst case of asynchronous thinning, the first correct estimate of the
second state appears at Nx − 1 + kyNy.

Applications of both basic and thinning algorithms to crystal clocks can be
found in [22, 23, 24, 25, 27, 28, 30].

8.3 Generic p-shift Optimal Estimation Algorithm

Assigned the K × N gain matrix H(p), the estimate x̃n+p = H(p)Sn,m of the
clock state xn has been found in [21] at n + p as

x̃n+p = H̄(p)Zm(Zm + Z̃Ψ +ΦV )−1Sn,m (82)

= An−m+p(CT
n−mCn−m)−1CT

n−m

×Zm(Zm + Z̃Ψ +ΦV )−1Sn,m , (83)

where Zm is determined by solving the discrete algebraic Riccati equation
(DARE)

0 = Zm(Z̃Ψ +ΦV )−1Zm + 2Zm + Z̃Ψ +ΦV

−Sn,mS
T
n,m(Z̃Ψ +ΦV )−1Zm , (84)

and
H̄(p) = An−m+p(CT

n−mCn−m)−1CT
n−m (85)

is the unbiased gain associated with the noiseless both system and measurement
when Z̃Ψ = 0 and ΦV = 0. Table 1 summarizes the generic p-shift optimal FIR
estimation algorithm of the clock state at n + p.

8.4 Generic recursive p-shift Unbiased Estimation Algo-

rithm

The unbiased FIR estimate of clock state has been found in [21] in the batch
form of

x̃n+p|n = H̄(p)Sn,m (86)

= An−m+p(CT
n−mCn−m)−1CT

n−mSn,m (87)
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Table 1: Generic p-Shift Optimal FIR Estimation Algorithm

Stage

Given: N > K and p

Set: H̄(p) = AN−1+p(CT
N−1CN−1)−1CT

N−1

Find Zn−N+1: 0 = Zn−N+1(Z̃Ψ +ΦV )−1Zn−N+1 + 2Zn−N+1 + Z̃Ψ +ΦV

−Sn,n−N+1S
T
n,n−N+1(Z̃Ψ +ΦV )−1Zn−N+1

Compute: H̃n(p) = H̄(p)Zn−N+1(Zn−N+1 + Z̃Ψ +ΦV )−1

x̃n+p = H̃n(p)Sn,n−N+1

Table 2: Recursive Form of the Generic p-Shift Unbiased FIR Estimation Algo-
rithm

Stage

Given: K, N , p, v = K, ..., N − 1

Set: Ξ = ATCTCA

PK−1 = (CT
K−1CK−1)−1

FK−1 = AK−1PK−1(AK−1)T

x̃n−N+K+p = AK−1+pPK−1CK−1
TSn−N+K,n−N+1

Update: Fv = AFv−1AT −AFv−1(I+ΞFv−1)−1ΞFv−1AT

x̃n−N+1+v+p = Ax̃n−N+v+p +ApFvC
T (sn−N+1+v −CA1−px̃n−N+v+p)

Instruction: Use x̃n−N+1+v+p as the output when v = N − 1

21

30   Recent Patents on Space Technology, 2010, Volume 2                                        Shmaliy and Ibarra-Manzano



and in the recursive form given in Table 2. Here, a set of auxiliary functions,
Ξ, PK−1, and FK−1, is computed and a posteriori initial vector x̃n−N+K+p

determined via measurement without prediction. Then an auxiliary matrix Fv

and the estimate vector x̃n−N+1+v+p are both updated by changing v from K
to N − 1 for all n > K. The true estimate is taken when v = N − 1.

Note that both algorithms (Table 1 and Table 2) can be used on arbitrary
averaging horizons. If all the data available is employed, from zero to n, one
must set m = n−N + 1 = 0.

9 The Trade-off with the Kalman Algorithm

The Kalman-Bucy algorithm [12] is useful for various applications in timescales
[7]. However, it is known to be a nice engineering solution if the noise sources
are all white sequences and there are no uncertainties neither in the model nor
in the measurement. Otherwise, the algorithm may become noisy and unstable
[8, 13, 14].

Contrary to the infinite impulse response (IIR) recursive structures, includ-
ing the Kalman-Bucy filter, the transversal FIR ones demonstrate the following
important properties [11, 13, 14, 26]:

• Inherent BIBO stability featured to weighted average.

• Better robustness against temporary uncertainties and round-off errors,
especially when N À 1.

• Convergence of optimal and unbiased estimates with N À 1.

Experimental and numerical evidences of these advantages can be found in
many papers [8, 13, 14, 22, 29, 30]. As an example, Fig. 9 sketches typical errors
featured to the 2-degree (ramp) optimal FIR filter and two-state Kalman filter
[29], both applied to the GPS-based measurement of a crystal clock imbedded
in the Stanford Frequency Counter SR620. As can be seen, there is no time
delay between the estimates and the filters thus have similar time constants.
Herewith, the FIR filter demonstrates better robustness against the GPS time
uncertainty, producing lower noise and smaller regular errors.

10 Applications

Below, we observe several most typical applications of FIR filtering to GPS-
based timekeeping. For a comparison, the relevant Kalman estimates are also
discussed. The results have been obtained using a measurement set (Fig. 1) with
the GPS timing SynPaQ III Sensor as a receiver, Stanford Frequency Counter
SR625, and local crystal clock imbedded in the SR625. Actual clock errors
have been measured simultaneously for the Symmetricom cesium standard of
frequency CsIII.
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Figure 9: Typical errors in the GPS-based TIE filtering estimates produced by
the 2-degree optimal FIR filter and two-state Kalman filter [29].

10.1 Estimation of the TIE

Figure 10a sketches a typical GPS-based measurement with sawtooth (for about
2 hours) and an actual TIE behavior. It also incorporates the unbiased FIR
estimate x̂n and the Kalman estimate x̂Kn [30].

To ascertain the difference between the estimates, Fig. 10b shows the time
deviation (TDEV) [5, 6] computed over all the measurement points. As can be
seen, the TDEV associated with x̂n and x̂Kn behave closely to each other and
trace above the actual values. Although, better behavior of the FIR estimate
can be watched.

10.2 Estimation of the Frequency Offset

In [30], the thinning algorithm (79) has been applied in order to estimate the
second clock state. Following [24], the minimum MSE in the FIR estimate was
found in the range of 10s 6 τ 6 100s and the filter parameters were allowed to
be ky = 100 and Ny = 130.

Figure 11 shows the GPS-based and reference measurements along with the
FIR and Kalman estimates. One infers from Fig. 11a that both x̂2 and x̂2K
fit well the actual trend (reference measurement) and the time derivative of
the thinned out estimate of the TIE (GPS-measurement). The goodness-of-fit
estimates are demonstrated in Fig. 11b in terms of the Allan deviation (ADEV)
[5]. One notices that the FIR filter produces much lower noise that the Kalman
filter when τ < 103 s, although both estimates still inherently trace above the
actual value.

10.3 Clock Steering

Steering of the local clock errors in the loop (Fig. 1) has been investigated
in [3]. Because only fast noise components are commonly filtered out in clock
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Figure 10: Typical GPS-based measurement with sawtooth and estimates of the
TIE of a crystal clock [30]: (a) measurements and estimates and (b) TDEV.
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Figure 12: Typical errors in the GPS-based TIE filtering estimates produced by
the 2-degree optimal FIR filter and two-state Kalman filter [29].

synchronization, an averaging horizon was chosen as shown in Fig. 2 (“Filtering
of the TIE behavior”) to produce a minimum MSE in the output of a GPS-locked
crystal clock.

For the GPS-based measurement with sawtooth, the optimum N was ex-
perimentally found, as in [24], to be Nopt ∼= 250. By this value, the TIE has
been measured to range from −30 ns to 40 ns over time as shown in Fig. 12a.
An additional 1-order low-pass (LP) filter included to the loop with the time
constant T = 2000 s was used for smoothing the TIE as shown in Fig. 12b.

As can be seen, the smoothed TIE (Fig. 12b) ranges within the same bounds
as in the origin (Fig. 12a). Therefore, a subtle comparison of both function was
provided in [3] in terms of the TDEV and ADEV (Fig. 13).

The TDEV of the unlocked crystal clock inherently increases with large
averaging time, whereas the reference GPS 1PPS signal with sawtooth has a
uniform TDEV function (Fig. 13a). The optimal FIR filter included to the loop
allows for a substantial steering of clock errors with large averaging times. An
additional smoothing filter (1-order LP with T = 1000 s) completes the picture,
providing a substantial noise reduction for small averaging times. It can be seen
that the resulting TDEV traces much lower the mask specified in [6] for digital
communications networks.

Contrary to the TDEV, the ADEV of the reference GPS 1PPS signal de-
creases linearly in the Bode plot, whereas that of the unlocked crystal clock
inherently reduces and then grows passing through a minimum (Fig. 13b). The
effect of the optimal FIR filter with the smoothing 1-order LP filter included
in the loop results in the following. In the locked crystal clock, noise with
small averaging times mostly depends on precision of its oscillator (effect of the
smoothing filter) and time error departures with large averaging times are lim-
ited by the accuracy of the optimal FIR filter output. Note that an excursion
in the ADEV observed in the middle of the averaging times range shown in Fig.
13 cannot be avoided from the standpoint of control. Its peak value can only
be minimized and position optimized by the smoothing filter.
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11 Conclusions

In this paper, we observed recent advantages in GPS-based estimation and steer-
ing of local clock errors employing FIR algorithms. Advantages of the approach
against the Kalman filter were shown experimentally for real measurements in
the presence of the GPS temporary time uncertainty and non Gaussian sawtooth
noise induced by the GPS timing receiver.

Both the optimal and unbiased FIR solutions can be used in order to es-
timate clock state with minimum errors via the GPS-based measurement. An
important point here is that simple unbiased polynomial FIR estimators with
gains (24)–(26) become virtually optimal at large averaging horizons, N À 1,
featured to clock problems. That means, by extension, that unbiased FIR esti-
mators (filters, predictors, and smoothers) with such gains may become the best
choice in terms of simplicity, accuracy, stability, and robustness for GPS-based
timekeeping. First of all, it relates to GPS-based clock estimation and synchro-
nization. Such estimators can also be useful in design of the GNSS composed
clock algorithms, in which case any increase in accuracy is highly appreciated.

12 Acknowledgements

The first author would like to thank Dr. Demetrios Matsakis of the United
States Naval Observatory (USNO) for the offer to give a Tutorial at the V
Int. Time Scale Algorithms Symp. (San Fernando, Spain, 28–30 April, 2008),
to Dr. Judah Levine of the National Institute of Standards and Technology
(NIST) for the invitation to give a Tutorial at the joint meeting of the IEEE
Int. Freq. Control Symp. and European Freq. Time Forum (Besançon, France,
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