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Abstract:  Theory of general relativity (GR) has been scrutinized by experts for almost a century and describes accurately 
all gravitational phenomena ranging from the solar system to the universe. However, this success is achieved provided one 
admits three completely independent new components in the energy-stress tensor Tµv ! inflaton, dark matter and dark 
energy, which though do not have any non-gravitational or laboratory evidence and have remained generally speculative. 
Moreover, the dark energy poses a serious confrontation between fundamental physics and cosmology. 

The present situation reminds us of Einstein's `biggest blunder' when he forced his theory to predict a static universe, 
perhaps guided by his religious conviction that the universe must be eternal and unchanging. It seems that we are making 
a similar blunder by forcing Tµv into the field equations while the observations indicate that it is not needed. We seem to 
have a deep-rooted conviction that the spacetime will remain empty unless we fill it by the energy-stress tensor. However, 
we have been ignoring numerous evidences earnestly indicating otherwise. 

From a critical analysis of the present situation, we develop an entirely new insight about the source of curvature in 
equations Rµv = 0 which, though may appear orthogonal to the usual understanding, is in striking agreement with all 
known phenomena in GR. Moreover, it answers some hitherto unexplained puzzles and circumvents some long-standing 
problems of the standard paradigm. 

Keywords: General Relativity and Gravitation - theory - fundamental problems and general formalism - cosmological 
observations. 

1. INTRODUCTION 

Einstein's theory of general relativity (GR) ranks as one 
of the crowning intellectual achievements of the twentieth 
century. Although GR is not the only relativistic theory of 
gravitation, it is the simplest theory that has survived the 
tests of nearly a century of observational confirmation 
ranging from the solar system to the largest scales, the 
universe itself. However, this success is achieved provided 
we admit three completely independent new components in 
the energy-stress tensor Tµv  - inflaton, dark matter and dark 
energy, which are believed to play major roles in the 
dynamics of the universe during their turns. However, there 
is, until now, no non-gravitational or laboratory evidence for 
any of these dark sectors. Admittedly, the conditions of the 
early universe cannot be brought back to directly observe 
inflaton, but neither has been observed any relic thereof. 
Neither the dark matter has any confirmed observational 
evidences, though the efforts to directly observe it are still 
going on. The dark energy is the most enigmatic among all 
the dark sectors which poses a serious confrontation between 
fundamental physics and cosmology. The most favored 
candidate of the dark energy - the cosmological constant - is 
plagued with the long-standing `cosmological constant 
problem'. 
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The origin of the cosmological constant problem lies in a 
conflict between the energy-stress tensor µ!

T  and the 
quantum field theory (QFT): The vacuum energy, according 
to the QFT, results from the quantum vacuum fluctuations 
which provide an energy contribution of the order of the 
Planck mass. In GR, the vacuum energy is represented by Tµv  
with a particular equation of state 2

vv = cp acac !"  (i.e., 
through the cosmological constant). Einstein's theory 
(through the Friedman equation) then provides an estimate of 
the vacuum energy of the order of 2

0H , where 0H  is the 
present value of the Hubble parameter. This is, however, 
smaller than the QFT-value by a factor of 120

10
!

" ! (This 
discrepancy has been called `the worst theoretical prediction 
in the history of physics!'). 

A huge value of the vacuum energy is also predicted by 
inflation which requires it to expand the early universe by a 
factor of 1078 in just 10-36 seconds, leaving a nearly � flat space 
time. However, a flat spacetime, which is a notion of special 
relativity (SR), is not compatible with the real universe in the 
presence of matter in the existing framework of GR. The 
origin of this problem is again the energy-stress tensor Tµv. 
As the derivation of Tµv assumes its validity in the absence of 
gravitation in SR1, this goes contradictory to the very notion 
of Tµv  being the source of curvature. 

                                                
1Let us recall that the general expression of the tensor Tµv  is obtained by first deriving 
it in SR. The bridge between the ideal case of SR and the actual case in the presence of 
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Thus, besides its incompatibility with the other three 
forces of nature, GR seems to face the following three 
problems. 

  1. Admittance of the speculative dark sectors in Tµv  
without any direct experimental support. 

 2. The cosmological constant problem, which appears 
through the presence of Tµv  in Einstein's equations. 

 3. No scope for a flat spacetime in the presence of 
matter. 

Surprisingly all these problems are somehow related with 
the energy-stress Tµv, which has become an integral part of 
the modern theories of gravitation, including the candidate 
theories of quantum gravity. The present situation reminds 
us of Einstein's `biggest blunder' when he forced his theory 
to predict a static universe, perhaps guided by his religious 
conviction that the universe should be eternal and 
unchanging. It seems that a similar blunder is being made by 
forcing Tµv into the field equations. We seem to have a deep-
rooted conviction that the spacetime will remain empty 
unless we fill it by the energy-stress tensor, despite 
numerous evidences earnestly indicating otherwise and the 
observations hinting that Tµv is not needed. Interestingly, all 
the problems mentioned above, including many more, can be 
avoided if one drops Tµv from Einstein's field equations 
resulting in the so-called `vacuum' field equations  

0.=
µ!
R  (1) 

 As we shall see later, this equation is strongly supported, 
not only by the observations of the local universe (through 
various experiments performed to test GR), but also by the 
cosmological observations. It is believed that equations (1) 
cannot represent the actual universe as they represent an 
empty spacetime. Let us see if this is so. 

2. A NEW INSIGHT ABOUT THE SOURCE OF 
CURVATURE 

In an empty space in the absence of any source of 
curvature, one should expect a flat spacetime as a unique 
solution of field equations (1). However, it has already been 
realized that this is not true, and in a space with dimensions 
four or more, equations (1) can have curvature. A brilliant 
example of this case is the Schwarzschild solution which 
represents the spacetime structure outside an isotropic mass 
m. In the Schwarzschild coordinates2, the solution is given 
by  
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The source of curvature in (2) is attributed to the mass m 
sitting at r = 0, which appears in the guise of a singularity in 
                                                                                
gravity, is provided by an inertial observer, which exists admittedly at all points of 
spacetime (by courtesy of the principle of equivalence). The fluid is defined in a small 
neighbourhood of the observer. Then, the expression of the tensor, in the presence of 
gravity, is imported from SR through a coordinate transformation. 
2In Schwarzschild coordinates, t is the time coordinate (measured by a stationary clock 
located infinitely far from the origin r = 0) and r, !, " are the spherical polar coordi-
nates. The radial coordinate r is measured as the circumference, divided by 2!, of a 
sphere centered around r = 0. As the space may not be Euclidean, we cannot claim that 
r is the `radial distance' from the origin. Rather, r is simply an arbitrary radial coordi-
nate scaled to give the usual Euclidean circumference. 

GR. However, it should be noted that the metric (2) 
represents space exterior to the central mass at r = 0 and not 
the point r = 0 itself, where the metric breaks down. So, how 
can a mass situated at the point r = 0 (which is not even 
represented by the metric) curve the space of (2) at the points 
for which r > 0? Obviously, the agent responsible for the 
curvature in (2) at the points for r = 0, must be the 
gravitational energy, which can definitely exist in an empty 
space. It is then clear that the spacetime of Rµv = 0, as 
represented by one of its solutions, viz. (2), does have 
energy, and is not empty. 

The important point to note is that equations Rµv = 0 
reveal the gravitational energy without containing any 
formulation thereof (neither Tµv contains the gravitational 
energy, as a proper energy-stress tensor of the gravitational 
field does not exist). This then implies that the gravitational 
energy already exists there implicitly in the geometry, 
through the non-linearity of the field equations (1), and no 
additional incorporation thereof is needed. This fits very well 
in the story of the failure to discover the energy-stress tensor 
of the gravitational field3. A proper energy-stress tensor of 
the gravitational field does not exist simply because it is not 
needed in the geometric framework of GR, it already exists 
there inherently in the geometry. 

One can argue that equations Rµv = 0 can represent only 
empty space (except for having the gravitational energy), 
outside massive objects. However, this conviction does not 
seem correct and equations Rµv = 0 can also support curved 
cosmological solutions valid through the whole span of 
spacetime. The Kasner solution may be considered as an 
example:  

,=
23

222
221

2222 dztdytdxtdtcds
ppp

!!!  (3) 

 where the constants 1p , 2p  and 3p  satisfy  

0.=  1,= 133221321 ppppppppp ++++  

The usual interpretation of solution (3) is provided in 
terms of an empty homogeneous universe in which the space 
is expanding/contracting anisotropically at different rates in 
different directions (for example, the space is expanding in 
two directions and contracting in the third). Hence, in the 
absence of matter, the only other possible source of 
curvature in this solution, can be a singularity. The solution 
(3) does contain a singularity at t = 0, but not at any other 
time. However, the solution is curved at all times! A past 
singularity, which does not exist now, fueling the 
gravitational energy now without any other source, does not 
seem compatible with our understanding of the gravitational 
energy. 

The usual source of curvature in the Kasner metric (3) is 
regarded a net non-zero momentum resulting from the 
anisotropic expansion/contraction of the homogeneous 
space, since the space expands and contracts at different 
rates in different directions in it. However, how can nothing 

                                                
3It may be mentioned that despite a century-long dedicated efforts of many luminaries, 
the attempts to discover a unanimous formulation of the energy-stress tensor of the 
gravitational field have failed. Primarily, because of the the non-tensorial character of 
the energy-stress pseudo-tensors of the gravitational field and the lack of a unique 
agreed-upon formula for it. Secondly, because of the inherent difficulty in the localiza-
tion of the gravitational energy. 
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expand/contract? It does not make sense to imagine of 
momentum resulting from the expanding/contracting empty 
space. Hence, the Kasner solution has remained an 
unexplained puzzle. 

An important point regarding the Kanser solution, which 
has not been paid attention to, is that unlike the 
Schwarzschild solution, it represents a cosmological 
solution, which is not expected to have any `outside'. Since 
the ultimate source of the gravitational field is matter, the 
(homogeneously distributed) matter source, present around 
the time of singularity in the Kanser metric, must be present 
at all other times as well, as it must not have been destroyed 
mysteriously! This simply means that the Kasner solution 
represents a homogeneous distribution of matter expanding 
and contracting anisotropically! 

This implies that, like the energy and momentum of the 
gravitational field, those of the matter fields are also 
included in equations Rµv = 0 inherently (without including 
any additional formulation thereof) whose effects are 
revealed through the geometry. The futility of the energy-
stress tensor is also corroborated by the Kerr solution 
wherein the angular momentum also contributes to its 
curvature:  
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which describes the spacetime surrounding a spherical mass 
m spinning with angular momentum per unit mass = # (so 
that its total angular momentum =mc#). Here $2 = r2 + #2 
cos2!, ∆ = r2-rSr + #2 and rS = 2Gm/c2 is the Schwarzschild 
radius. It may be mentioned that there is no place for the 
angular momentum in Tµv in the framework of Einstein's 
theory4. But, since angular momentum does provide a source 
of curvature/gravitation, as is evidenced by (4), this provides 
another reason why Tµv should not appear in the field 
equations. 

Einstein believed that [1] 
“On the basis of the general theory of relativity, space as 

opposed to `what fills space', which is dependent on the 
coordinates, has no separate existence. ... The functions gµv  
describe not only the field, but at the same time also the 
topological and metrical structural properties of the 
manifold. ... Spacetime does not claim existence on its own, 
but only as a structural quality of the field''. 

 Thus the mere consideration of a spacetime structure 
(conditioned by the equations Rµv = 0) must be equivalent to 
considering the accompanying fields (material and 
gravitational) as well, and there should be no need to add any 
extra formulation thereof to the field equations. Hence, the 
structure of the geometry is determined by the net 
contribution from the material and the gravitational fields (of 
                                                
4which needs to be extended to non-Riemannian curved spacetime with torsion (as in 
the Einstein-Cartan theory) to support asymmetric Ricci and metric tensors, so that an 
asymmetric energy-stress tensor of spin can appear on the right hand side of the equa-
tions. 

the chosen matter distribution). This new discovery might 
appear orthogonal to the usual understanding of Einstein's 
theory. Nevertheless, it is in perfect agreement with all 
gravitational phenomena encountered in GR. Moreover, it 
also provides natural explanations to some unexplained 
puzzles of GR, as we shall see in the following. 

The above-gained insight about the implicit presence of 
material and gravitational fields in equations Rµv = 0 makes a 
powerful prediction: As the source of curvature in the 
Kasner solution (3) is a net non-zero momentum resulting 
from the anisotropic expansion/contraction of the 
homogeneous material distribution, one should expect a flat 
spacetime as a solution of equations Rµv = 0 for a 
homogeneous matter distribution expanding or contracting 
isotropically. This prediction is perfectly realized in the 
following cosmological solution, which provides a concrete 
evidence for the correctness of our new discovery about the 
source of curvature in GR. Obviously, the symmetries of a 
homogeneous matter distribution expanding or contracting 
isotropically require the metric to be the Robertson-Walker 
one given by  
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where S(t) is the scale factor of the universe. For this metric, 
equations (1) yield  

0,=
3

=
2

0
0 

S

S

c

R

&&

 (6) 

0,=
1

22
1

===
2

2

2

2

2

3
3 

2
2 

1
1 !

!
"

#
$
$
%

&
++

S

kc

S

S

S

S

c

RRR

&&&

 (7) 

which uniquely determine 

1,=  with  = !kctS  (8) 

so that the final solution reduces to 
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It may be noted that by the use of the transformations 
2

1= rtt + , ctrr = , the solution (9) can be brought to 
manifestly Minkowskian form in the coordinates !" ,,,rt  [2]. 

It would be natural to ask why solution (9) is flat while 
solutions (2) ! (4), of the same field equations Rµv = 0, are 
curved. One may argue that the reason one gets the 
Minkowskian solution (9) is simply because Tµv is vanishing 
in (1). However, if this is so, why do we get curved solutions 
(2) ! (4) from the same equations (1) without imposing any 
extra condition? If equations Rµv = 0 represent a non-empty 
space in solutions (2) ! (4), they must do so in solution (9) 
also. One may further argue that solutions (2) ! (4) have 
singularities and so they are curved, while the solution (9) 
does not have a singularity, and so it is not curved. But, what 
is there to stop the singularity to occur in (9)? The only 
difference between the considerations leading to solutions 
(2) ! (4) and (9) is that we have assumed different types of 
symmetries in their spacetime structures. While the metric 
(9) is homogeneous and isotropic, the metrics (2) ! (4) are 
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either inhomogeneous or/and anisotropic. However, how a 
relaxation in the homogeneity and/or isotropy can result in a 
singularity, cannot be explained by the conventional 
wisdom. For example, solutions (3) and (9) represent similar 
spacetime structures with the only difference that while the 
homogeneous space in (3) is expanding and contracting in 
different directions at different rates, the same space is 
expanding or contracting isotropically in (9). How does this 
difference account for their curved and flat states and 
controls the appearance of the singularity? These questions 
cannot be answered satisfactorily in the framework of the 
conventional wisdom. 

A convincing and natural explanation emerges from the 
above-made discovery that the sources of curvature (the 
material and the gravitational fields) are inherently present in 
the geometry of equations (1). According to this, solution (9) 
represents a spacetime structure resulting from the 
homogeneously distributed matter throughout the space at all 
times, expanding or contracting isotropically. Then, why is it 
not curved? Simply because the positive energy of the matter 
field is exactly balanced, point by point, by the negative 
energy of the resulting gravitational field (contrary to the case 
of the Schwarzschild metric where there is only the 
gravitational energy and no matter at the points represented by 
the metric), providing a net vanishing energy. Neither is there 
any net non-zero momentum contribution from the isotropic 
expansion or contraction of the material system (contrary to 
the case of the Kasner metric). Hence, in the absence of any 
net non-zero energy, momentum or angular momentum, the 
spacetime of (9) must not have any curvature. 

It thus appears that it is the symmetry of the chosen 
spacetime structure, which determines whether the solution 
of Rµv = 0 will be curved (may possess a singularity) or flat 
(may not possess a singularity). This fact is also reflected in 
the appearance of different kinds of singularities in 
accordance with the chosen symmetries in solutions (2) ! (4): 
while the Schwarzschild solution (describing the spacetime 
structure exterior to a point mass) has a point singularity, the 
Kerr solution (describing the spacetime structure exterior to 
a rotating mass) has a ring singularity, the Kasner solution 
(in which the t = constant hyper-surfaces are expanding and 
contracting in different directions at different rates) presents 
a singularity of the oscillating kind at t = 0. 

The discovery, of the net vanishing energy-momentum-
angular momentum in a homogeneous distribution of matter 
expanding or contracting isotropically, appears consistent 
with several investigations and results which indicate that the 
total energy of the universe is zero. Thus, here we get a flat 
spacetime solution in the presence of matter, which 
originates dynamically from the field equations, and is not 
assumed a priori (or put by hand) as in SR. It is thus clear 
that equations Rµv = 0 constitute consistent field equations of 
gravitation even in the presence of matter. Further, a solution 
of Rµv = 0 is curved when the conditions of homogeneity 
and/or isotropy are relaxed, otherwise the curvature is lost if 
the solution is homogeneous and isotropic. 

3. SUPPORT FROM THE COSMOLOGICAL 
OBSERVATIONS TO Rµv = 0 

As the last words on any physical theory are to be spoken 
by the observations/experiments, let us see how equations 

Rµv = 0 fair against the observations. The validity of the 
equations has already been well-established by the local 
observations through the classical tests of GR. Most of these 
tests are treated with the solutions of Rµv = 0 obtained under 
the simplifying assumptions of isotropy5 and time-
independence, which describe, to a good approximation, the 
gravitational field around the sun. Let us study the 
compatibility of Rµv = 0 with the cosmological observations. 
For this purpose let us consider its homogeneous-isotropic 
solution (9), as would be expected from the observations at a 
sufficiently large scale. It may be mentioned that there is a 
genuine controversy surrounding the interpretation of 
redshift in cosmology, leading to various alternative 
interpretations thereof. However, in order to compare our 
results with those obtained in the standard cosmology, we 
consider the standard interpretation of redshift given in terms 
of the cosmological expansion. 

Observations of Supernovae Ia 

In order to study the compatibility of equation (9) with 
the cosmological observations, let us first consider the 
observations of supernovae of type Ia (SNeIa). It can be 
checked that solution (8) is efficient enough to define 
uniquely, without requiring any inputs from the matter fields, 
different distance measures, for example, the luminosity 
distance dL and the angular diameter distance dA, in this 
theory. 

It is already known that the model based on equation (9), 
albeit non-accelerating (neither decelerating), is consistent 
with the observations of SNeIa without requiring any dark 
energy. As early as in 1998, the Supernova Cosmology 
Project team noticed from the analysis of their first-
generation of the SNeIa data that `the performance of the 
empty model ( !"" =0=m ) is practically identical to that of 
the best-fit unconstrained cosmology with a positive ! ' [3]. 
Let us consider a newer dataset, for example, the `new gold 
sample' of 182 SNeIa [4]6, which is a reliable set of SNeIa 
with reduced calibration errors arising from the systematics. 
The present model provides an excellent fit to the data with a 
value of x2 per degrees of freedom (DoF) = 174.29/181=0.96 
and a probability of the goodness of fit 63%=Q . Obviously 
the standard ! CDM model has even a better fit as it has 
more free parameters: x2 /DoF = 185.75/180 = 0.88 and Q = 
87% obtained for the values 0.040.34=1=m ±!"! # . 

Observations of High-Redshift Radio Sources 

Let us now consider the data on the angular size and 
redshift of radio sources compiled by Jackson and Dodgson 
[6], which has 256 sources with their redshift in the range 
0.5 - 3.8. These sources are ultra-compact radio objects of 
angular sizes of the order of a few milliarcseconds, deeply 
embedded in the galactic nuclei and have very short lifetime 
compared with the age of the universe. Thus they are 
expected to be free from evolutionary effects and hence may 
be treated as standard rods, at least in the statistical sense. 
These sources are distributed into 16 redshift bins, each bin 

                                                
5except for the recently made Gravity Probe B experiment which involves anisotropic 
effects owing to the rotation of the earth and is treated with solution (4). 
6Although various newer SNeIa datasets are available, however, the way they are 
analyzed has left little scope for testing a theoretical model with them. This issue has 
been addressed in [5]. 
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containing 16 sources. This compilation has recently been 
used by many authors to test different cosmological models 
[7-10]. 

We find that the present model has a satisfactory fit to the 
data with x2/DoF = 20.78/15 = 1.39 and Q = 14%. In order to 
compare, we find that the best-fitting ! CDM model has a 
slightly better fit: x2/DoF 1.15=16.03/14=  and Q = 31% 
obtained for the values 0.080.21=1=m ±!"! # . 

 Observations of H0 and tGC 

 The age of the universe t0, in the big bang-like theories, 
is the time elapsed since the big bang. It depends on the ex-
pansion dynamics of the model and is given by  

.
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 Hence, the Hubble parameter controls the age of the 
universe, which in turn depends on the free parameters of the 
model. For example, in the standard cosmology, 

1/22
m

3
m0 }))(1(1)(1{=)( zzHzH +!"!"+!++! ## . Thus, 

by using the observed value of H0, one can calculate the age 
of the universe predicted by a particular theory. As the 
universe is expected to be at least as old as the oldest objects 
in it, a lower limit is put on t0. This is done through tGC, the 
age of the globular clusters in the Milky Way which are 
among the oldest objects we so far know. Thus the 
measurements of H0 and tGC provide a powerful tool to test 
the underlying theory. 

For instance, by using the current measurements of 
671=0 ±H  km s 1!  Mpc 1!  from the Hubble Space 

Telescope Key Project [11], equation (10) gives 0t  for the 
Einstein-deSitter model ( 1=m! , 0=! ) as 9.18  Gyr. This 
cannot be reconciled with the age of the oldest globular 
cluster estimated to be 1.212.5=G ±Ct  Gyr [12] and the age 
of the Milky Way as 312.5 ±  Gyr coming from the latest 
uranium decay estimates [13]. However, for the concordance 
! CDM model with 0.27=1=m !"#"  (as estimated by the 
WMAP project [14]), equation (10) gives a satisfactory age 
of the universe 13.67=0t  Gyr which is well above the age of 
the globular clusters. The age of the universe in the present 
model is given by 1

00 =
!

Ht , as can be checked from (8). For 
the above-mentioned value of H0, this gives 13.77=0t  Gyr 
which is even higher than the concordance model value. 

 Observations of CMB and BAO 

 Any proposed model of the universe is expected to 
provide a consistent theory of the structure formation and 
hence it is expected to explain the observations of the cosmic 
microwave background (CMB) radiation and the baryon 
acoustic oscillations (BAO). Though a detailed study of this 
subject would be out of scope of the essay, it may be 
mentioned that taking at the face values, the only unanimous 
prediction of the CMB observations is a flat geometry (of the 
=t  constant hyper-surface) [14-16]. In this connection, it 

should be noted that equation (9) can be brought to the 
Minkowskian form by the use of the suitable 

transformations, as has been mentioned earlier. In the new 
form, the metric obviously has a flat spatial geometry. 

Additionally, as we have shown, the universe is not 
empty in the present model, though the matter fields do not 
play a direct role, hence providing full leverage on the 
parameters 

m
! , b! , etc., to fit the observations of CMB 

and BAO which point out that 0.3m !"  [17, 18]. 

4. CONCLUSION 

In whatever manner we interpret the curvature appearing 
in a variety of solutions of Rµv = 0, the important point is that 
this curvature appears without incorporating any formulation 
of the source (gravitational or material) into equations Rµv = 
0. Further, if the source of curvature, according to the metric 
theories of gravitation, is necessarily energy-matter, then the 
existence of non-zero curvature in these solutions guarantees 
the presence of energy-matter, implying that equations Rµv = 
0 do not represent an empty spacetime. Moreover, if this is 
true in one situation, this must be true in all the gravitational 
situations. This simply means that the sources (gravitational 
fields as well as the matter fields) are inherently present in 
the equations (perhaps through their non-linearity), whose 
effects are revealed through the geometry. 

The fact that the sources of curvature are implicitly 
present in equations Rµv = 0 and must not be added again 
(through the energy-stress tensor), is vindicated by the 
failure to obtain a proper energy-stress tensor of the 
gravitational field. It is further supported by a number of 
paradoxes and inconsistencies discovered recently in the 
relativistic formulation of matter given by the energy-stress 
tensor Tµv [19] implying that, akin to the case of the 
gravitational field, a flawless proper energy-stress tensor of 
the matter fields neither exists. 

This, in fact, leaves equation Rµv = 0 as the only 
possibility for a consistent field equation of gravitation. It is 
generally believed that a consistent field equation of 
gravitation should reduce to Poisson's equation in the case of 
a weak stationary gravitational field. Nevertheless, this 
requirement has already been compromised in the 
concordance ! CDM cosmology and no longer seems 
mandatory. It should be noted that the Einstein field 
equations with a non-zero !  do not reduce to the Poisson 
equation [20]. While, there is no scope in the standard 
paradigm to mend this shortcoming, the new theory (being a 
fundamentally different theory wherein matter does not 
appear explicitly) should not be compared with the Poisson 
equation (wherein matter appears explicitly). 

Although this entirely new insight about the geometry 
serving as the source of gravitation in the metric theories of 
gravity, may appear orthogonal to the usual understanding, it 
is not only in striking agreement with the theory and 
observations, but also provides natural explanations to some 
unexplained puzzles. Additionally, it solves the long-
standing problems of the standard cosmology: The flatness 
problem (requiring the initial density of matter, represented 
by the energy-stress tensor, to be extremely fine-tuned to its 
critical value) and the cosmological constant problem 
(whose origin lies in a conflict between the energy-stress 
tensor and the vacuum expectation values derived from the 
quantum field theory) are averted due to the absence of the 
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energy-stress tensor from the field equations. Horizon 
problem is solved, as no horizon exists in the resulting 
cosmological model given by equation (9), and the whole 
universe is always causally connected. 

Equations Rµv = 0 get strong supports from observations 
ranging from the solar system to the universe without 
requiring the usual epicycles of the standard theory, such as 
inflaton, non-baryonic dark matter and dark energy. Let us 
recall that the classical tests of GR consider Tµv = 0 in 
Einstein's equations, and hence they have been limited to test 
Rµv = 0 only (more specifically, they have tested the 
predictions of the Schwarzschild and Kerr solutions only). 
Thus the complete Einstein's equations with a non-vanishing 
Tµv have never been tested directly in any experiment. 
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