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Abstract: The high-order harmonic-wave generation of ultrasonic shear waves has not yet been studied. We generated 

high-order shear harmonic waves and studied them in terms of the nonlinear wave mechanism associated with strain 

waves. When the shear waves propagated through highly dissipative MnCu20Ni5Fe2, TiNi, and Sn-3Al specimens and 

were reflected from the far side of the specimen, we observed high-order harmonic waves up to the fifth- order of the 

fundamental frequency. The frequency f increases linearly with the harmonic-frequency order number n, f= a (n-1) + c. 

The order number coefficient a increases as Poisson’ s ratio increases, suggesting that the generation of high-order 

harmonic waves can be attributed to anharmonic solids with large elastic deformability and high transparency for shear 

waves. 
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1. INTRODUCTION 

 Studies of the propagation of shear waves have long been 

of interest to researchers in the field of geophysics [1], 

acoustics [2], and electromagnetics [3], because shear waves 

provide significant phonon interaction with solids in sharp 

contrast to longitudinal waves [4]. The application of these 

studies includes technologically important areas such as non-

destructive testing [5] and residual stress measurement [6]. 

Although it is necessary to use high-frequency shear waves 

for precise ultrasonic measurements, the inorganic 

piezoelectric resonator in the wave generation puts severe 

constraints on the use of high frequencies above 15 MHz 

because of its brittleness. A unique way to solve this 

problem is the use of high-frequency harmonic waves. 

 It is known that a second-harmonic bulk wave is 

generated when a fundamental bulk wave is reflected from a 

linear medium to a nonlinear one [7, 8]. Indeed, Mao et al. 

[9] have reported that second-harmonic surface waves are 

generated at the interface between glass and iron. In liquids, 

such behavior, which has been observed by optical [10] and 

acoustic filter methods [11], has shed new light on the 

equation of state of liquids [12]. To the best of our 

knowledge, however, no previous research has been 

conducted on the generation of high-order shear harmonic 

waves for solids over the second degree. Our interest lies in 

the generation of high-order shear harmonic waves in terms 

of the nonlinear wave mechanism associated with strain 

waves. It is of great interest to generate high-frequency shear 

waves for industrial applications such as ultrasonic 

microscopy and diagnosis [13, 14]. 

 Seeger and Buck [15] and Breazeale and Thompson [16] 

have predicted the generation of high-order harmonics when  
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a sinusoidal ultrasonic wave with a sufficiently large stress 

amplitude is introduced into a nonlinear or anharmonic solid. 

Such a wave induces a distortion of the stress field. This 

implies a deviation from Hooke’s law, which describes the 

relation between pressure and volume or between stress and 

strain in a medium. The extreme example is the formation of 

N and repeated sawtooth waves in repeated adiabatic 

compression and tension [17, 18]. However, to our know-

ledge, since 1960, no evidence has been reported of such 

occurrences. A major cause for an unsuccessful result at the 

time would have been the usage of wave-transparent solids 

such as aluminum and copper [16, 19].
 
In this study, we 

investigate the possibility of the generation of high-order 

harmonic shear waves, utilizing anharmonic strain due to 

propagation of waves in nonlinear solids, and explore the 

effects of elastic deformability or elastic parameters. 

2. EXPERIMENTAL 

 The materials used in this study are seven types of 

ceramics (fused quartz, silicon nitride, silicon carbide, 

alumina, zirconia, magnesia and graphite); nine types of 

metals (stainless steel (Fe-18 mass%Cr-8 mass%Ni, 

SUS304), copper, aluminum, silicon, magnesium, solders 

(Zn-3Al, Sn-37Pb), TiNi, and MnCu20Ni5Fe2 (M2052)); and 

six types of polymers (polymethyl methacrylate (PMMA), 

polyimide (PI), polyetherimide (PEI), polystyrene (PS), 

polyvinyl chlolide (PVC), and polycarbonate (PC)). Some 

properties of the specimens are listed in Table 1. Each 

specimen was in the form of a 10 10 10 mm cube. The 

density was determined accurately by the Archimedes 

method; the specimen was weighed in air and distilled water. 

 The apparatus and block diagram for the measurement 

setup are shown in Fig. (1). The gated output of a pulser-

receiver was connected to an A/D converter. The ultrasonic 

pulser and receiver were composed of synchronized PCI 

boards. The reading accuracy of the flight time for the 

longitudinal and shear waves was ±20 and 50 ps, 

respectively. The damping ratio and frequency of the 
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specimen were measured by use of an Ultrasonic Diagnosis 

and Analyzer (USH-D, Toshiba Tungaloy) at 298 K. 

 Poisson’ s ratio was calculated from the longitudinal and 

shear wave velocities, Vl and Vs, respectively, using Elastic 

Parameters Measuring System (UMS-R, Toshiba Tungaloy). 

Broad-bandwidth shear wave PZT ceramic and PVDF 

polymer transducers of 0.5, 1, 1.6, 2, 5, 7, 10, and 20 MHz, 

were used to measure the dynamic viscosity. The transducers 

made contact with the specimen under a pressure of 0.2 MPa 

via a water-free couplant (Tungsonic oil H [20]). To 

investigate the propagation characteristics, shear wave PZT 

resonators with fundamental frequencies of 1, 2, 3, 4, and 5 

MHz were bonded to the highly dissipative specimen. 

Table 1. Some Properties of 22 Types of Solids Used in this Study. The Frequency Below the Names of Each Solid is the Central 

Frequency Used in this Study 

 

Solid 
Fused quartz  

2.8 MHz 

Si3N4  

2.8 MHz 

SiC  

2.6 MHz 

Al2O3  

2.8 MHz 

ZrO2  

2.2 MHz 

MgO  

1.8 MHz 

Graphite  

2.4 MHz 

Fe-18Ni-8Cr  

2.8 MHz 

Cu  

2 MHz 

Al  

2.6 MHz 

Si  

2.8 MHz 

Density  

(Mg/m3) 
 2.220  3.272  2.981  3.982  6.050  3.367  1.799  7.899  8.936  2.717  2.331 

Attenuation Coefficient  

(neper/cm) 
 0.061  0.195  0.057  0.092  0.090  2.96  0.834  0.058  0.107  0.203  0.125 

Shear wave  

Velocity (m/s) 
 3768  6111   7519  6246  3634   5836   2462  3128   2293  3154  5853 

 Solid  Mg 1.6 MHz  
 Zn-3Al  

2.8 MHz 

 Sn-37Pb  

2.4 MHz 

 TiNi  

2.8 MHz 

 M2052  

2.2 MHz 

 PMMA  

1.2 MHz 

 PI  

2.8 MHz 

 PEI  

3.8 MHz 

 PS  

2.6 MHz 

 PVC  

2.6 MHz 

 PC  

2.8 MHz 

 Density (Mg/m3)  1.809  6.783  8.407  6.459  7.343  1.197  1.488  1.284  1.048  0.991  1.194 

Attenuation Coefficient  

(neper/cm) 
 0.280  0.558  0.415  0.521  0.455  1.338  0.521  0.629  0.608  2.072  4.062 

Shear wave  

Velocity (m/s) 
 3051  2318  1464  2040  2375  1356  1417  1070  1144  1390  1113 

 

Fig. (1). Block diagram of the apparatus and setting used in this study. 
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 The dynamic viscosity  is expressed by the following 

formula [21], 

 = 2 Vs
3
/(2 f)

2 
           (1) 

 = ln(A1/A2)/l            (2) 

Vs= 2l/(t2-t1),            (3) 

where Vs, , f, and  are the shear velocity, density, 

frequency, and attenuation coefficient, respectively, and l is 

length of the specimen. A1 and A2, and t1 and t2 are the 

amplitudes and flight times of the first and second waves, 

respectively. 

3. RESULTS 

3.1. Higher Dissipative Alloys for Shear Waves 

 Since strain waves can be formed during propagation 

through dissipative solids [15, 16], we looked for dissipative 

solids with higher dynamic viscosity in terms of the 

nonlinear shear wave mechanism. Since waveform distortion 

is governed by the decrease in wavelength, we investigated 

the frequency dependence on the dynamic viscosity using 22 

different specimens [22]. The results for 10 types of metallic, 

inorganic, and organic solids are shown in Fig. (2). The other 

12 types of solids were eliminated because of lower dynamic 

viscosities. The dynamic viscosity of all specimens used in 

this study increases parabolically with increasing 

wavelength, i.e., decreasing frequency. Consequently, the 

highly dissipative M2052, TiNi, and Zn-3Al alloys showed 

the highest dynamic viscosity. The M2052 alloy has the 

highest damping constant [23] and TiNi is a shape memory 

alloy with high damping properties [24]. The solider alloy 

Zn-3Al is a unique alloy that shows creep behavior at room 

temperature. Thus, to utilize the acoustic distortion of the 

waveform, it is reasonable to use the three alloys with the 

highest viscosity as propagation media. 

 

Fig. (2). Wavelength dependence of dynamic viscosity for 10 
representative types of metallic, inorganic, and organic solids. 

 

 

3.2 Generation of Highest Shear Harmonic Waves 

 When we use these high-viscosity alloys as propagation 

media for the shear waves, the emitted elastic shear waves 

are reflected at the far end of the alloy specimens and return 

back at the resonators as echoes. First, we investigated the 

frequency effect on the propagation characteristics of the 

propagation media. Fig. (3) presents the Fourier spectra of 

the reflected wave echoes for TiNi by using of five types of 

resonators with initial fundamental frequencies from 1 to 5 

MHz. The reflected wave patterns are shown in the inset for 

each spectrum. In contrast to the wave of 1, 3, 4, and 5 MHz 

that have a narrow frequency spectrum, the wave pattern 

with an initial frequency of 2 MHz consists of combination 

of many frequencies. As a result, the resonator of 2 MHz 

shows five peaks corresponding to the fifth-order harmonics 

of the fundamental frequency in the equency region of 

interest. Therefore, we used the 2 MHz signal hereafter as 

the initial frequency of the resonator. 

 The patterns and spectra of the reflected waves for the 

highest dissipative alloys, M2052, TiNi, and Zn-3Al are 

shown in Fig. (4a-c), respectively, along with the results (d) 

for fused quartz as a reference sample. The pattern of TiNi is 

the most complex, while that of quartz is the simplest. 

Although highly transparent quartz does not generate 

harmonic waves, the other alloys show higher harmonics up 

to the fifth order. 

 Next we compared the amplitude of the spectrum peaks 

of the harmonic orders of harmonic waves in Fig. (3) as a 

function of the degree of harmonics. The normalized 

amplitude for the three dissipative alloys decreases 

parabolically with the order number (Fig. 5). Since the 

frequency of the harmonic waves does not have a fixed 

value, the order number dependence on frequency for these 

alloys is presented in Fig. (6). The relation between the 

frequency f (MHz) and order number n of the harmonic 

waves is expressed by the linear formula, 

f = a (n –1) + c,            (4) 

c  2             (5) 

where a and c are the frequency-order number coefficient 

and constant, respectively. The frequency variation depends 

on the type of dissipative alloy. The coefficient values are 

4.4, 4.8, and 5.4 MHz for Zn-3Al, M2052, and TiNi, 

respectively. 

3.3. Elastic Parameter 

 In the previous section, with a view to exploring the 

generation of harmonic waves, the acoustic characteristics of 

harmonic waves were investigated. Since harmonic-wave 

generation strongly depends on the type of alloys used as the 

propagation media, we investigated the elastic parameter 

responsible for generation. From the generation mechanism 

of harmonics [15, 16, 19], we may assume that
 
the parameter 

must be a three-dimensional volume-non-preserving elastic 

function, associated with strain formation. From the elastic  
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deformability viewpoint, we selected Poisson’ s ratio. The 

directional property of Poisson’ s ratio is designated by the 

quotient of lateral to longitudinal strain for all possible 

orientations of the coordinate system relative to the 

crystallographic axes. 

Fig. (3). Power spectra of reflected shear waves for TiNi using different resonators with frequencies of (a) 1 MHz, (b) 2 MHz, (c) 3 MHz, 
(d) 4 MHz and (e) 5 MHz. Inset: reflected waves. 
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ij = 
Sij
Sii

(i,j =1, 2, 3),            (6) 

where Sij stands for the elastic compliance constants. 

 The relation between the harmonic-frequency-order 

number coefficient a and Poisson’ s ratio for these alloys is 

shown in Fig. (7). The error allowance was within ±3%. The 

coefficient increases as Poisson’ s ratio increases. Thus, it is 

clear that the generation of harmonics is connected to their 

elastic deformability accompanied by three-dimensional 

strain.
 

4. DISCUSSION 

 The power spectra of the reflected shear waves for TiNi, 

M2052, and Zn-3Al alloys (Fig. 4), together with the 

wavelength dependency of the dynamic viscosity (Fig. 2) 

indicate that the use of metallic alloys with higher viscosity 

is beneficial for generating high-order harmonic shear 

waves. As can be seen from Fig. (3), there is a possibility 

that high-order harmonic waves are generated when a finite 

amplitude ultrasonic wave propagates adiabatically through a 

non-Hookean solid such as TiNi [24], because the distortion 

of an ultrasonic waveform through an alloy is the result of  

 

 

Fig. (4). Power spectra of reflected shear waves; (a) TiNi, (b) M2052, (c) Sn-3Al and (d) fused quartz. Inset: reflected waves. 
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Fig. (5). Relative amplitude of harmonic waves vs harmonic order 
number. 

 

Fig. (6). Order number dependence of shear harmonic frequency of 

TiNi, M2052, Zn-3Al, and Sn-37Pb. 

solid nonlinearity [25]. Indeed, the higher viscosity glassy 

alloys have sawtooth-like waveforms [26].
 
Nyquist diagrams 

of the alloys are characterized by large areas of the third and 

forth quadrant in the loop, suggesting an improvement of the 

phase delay, that is, the increment of the imaginary parts in 

the complex waves [27].
 
The distortion arises from two 

sources [19]: the anharmonic lattice and the movement of 

dislocation accompanied by nonlinear effects. The generat-

ion of high-order harmonics in this study would be due to the 

former because of the negligible pressure effect of the 

ultrasonic method. 

 In Fig. (7), we evaluated Poisson’ s ratio for the 

generation of higher harmonics. Since Poisson’ s ratio can be 

also expressed using Vl and Vs, 

=
1

2
(1

1

(
Vl
Vs
)2 1

),            (7) 

we must look for alloys with higher Vl or lower Vs to 

generate harmonics with higher frequency. Strictly speaking, 

the determination of nonlinear (anharmonic) parameters has 

led to the calculations of combinations of third-order elastic 

constants [28] and certain generalized Grüneisen parameters 

[29]. The generalized Grüneisen parameters measure the 

strain dependence of the lattice vibrational frequencies. 

 

Fig. (7). Dependence of the harmonic coefficient a (= df /dn ) on 

Poisson’ s ratio of metallic alloys, M2052, TiNi, and Zn-3Al. 

 Thus, the effective generation of harmonic waves 

requires alloys with high elastic deformability and high 

transparency for shear waves. From Eq. (7), this condition is 

satisfied by high dissipative metallic alloys with higher Vl 

and lower Vs. In general, inorganic ceramics have higher Vl 

and Vs, and organic polymers possess lower Vl and Vs. 

Therefore, glassy alloys with higher Vl, lower Vs, and higher 

Poisson’ s ratio [30]
 
would be good candidates for generation 

of high-order harmonic shear waves. 

 In this interesting field, further study is needed; attention 

will be placed on the generation mechanism of high-order 

harmonic shear waves associated with waveform 

deformation in highly dissipative propagation media, using 

computer simulation. 

5. CONCLUSIONS 

 The generation of ultrasonic harmonic shear waves of 

orders higher than the second order has not yet been reported 

for solids. Following a concept based on the hypothesis of 

harmonic-wave generation, we first selected special alloys 

(M2052, TiNi, and Sn-3Al) with a nonlinear (anharmonic) 

lattice for the formation of ultrasonic shear strain wave by 

investigating the dynamic viscosity of 22 types of ceramics, 

metals, and polymers. For shear waves with a frequency of 2 

MHz propagating through these alloys and reflecting from 

the far side of the alloy back to the resonator, these alloys 

generated high-order harmonic waves up to the fifth-order of 

the fundamental frequency. The frequency f increases 

linearly with the order number n (f= a (n–1) + c). The 

harmonic- frequency-order number coefficient a increases 

with Poisson’ s ratio increases, suggesting an increase in the 

elastic deformability for the formation of shear strain waves. 



High-Order Harmonic-Wave Generation of Ultrasonic Shear Waves The Open Acoustics Journal, 2012, Volume 5    7 

The effective generation of harmonic waves requires 

dissipative materials with both high dynamic viscosity and 

high transparency for shear waves. This finding will shed 

light on new fields, acoustic devices, and generation 

mechanism. 
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