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Abstract: Continuous-time tracking filters based on the coordinated turn model are discussed. By a coordinate transfor-
mation, the four-state filter design is reduced to design of two-state filters. An observer approach is applied, including 
pole placement and transfer function analysis. Deterministic steady-state errors for a circular turn are obtained as analyti-
cal expressions in target acceleration, filter bandwidth, and the actual and assumed turn rates. It is seen that no errors are 
obtained if the turn rate is known. If it is unknown, performance could still be better than with independent filters, if the 
assumed turn rate is not too erroneous. Even a first order transfer function can be formulated from which the steady-state 
errors are easily obtained. An interpretation in terms basic two-state filters is given of filters based on the coordinate turn 
model. Furthermore, the Kalman filter for a stochastic coordinated turn model is given in closed form and compared to the 
observers. 

1. INTRODUCTION 

 Circular maneuvering is a basic case for target tracking. 
It is the common way to maneuver for civilian aircraft and is 
relevant also for evasive maneuvers. The tracking error for a 
circle is an important performance measure in practice and a 
bound on this error is a natural part of the requirements. The 
tracking literature on maneuvering targets is extensive and is 
dominated by different stochastic approaches, see [1-3] and 
further references therein. Performance is typically expressed 
as numerical Root-Mean-Square (RMS) errors obtained by 
stochastic Monte-Carlo simulations. Investigations based on 
observers and transfer functions are rare, although this ap-
proach includes requirements in a natural way and gives fur-
ther insights into design and performance, as is well-known 
in control and other signal processing fields. 

 Using transfer and frequency functions, circular steady-
state errors are studied in [4] for independent filters in the 
two Cartesian directions. A continuous-time two-state ob-
server and the discrete-time    update Kalman filter are 
discussed. Radial and angular errors are obtained as analyti-
cal expressions in target acceleration and filter bandwidth. A 
new bandwidth interpretation of the tracking index is ob-
tained, as well as a rule-of-thumb for an upper bound of this 
index. In [5] several topics for the prediction      filter 
are discussed using transfer functions. The circular steady-
state error for independent filters is also given and used in a 
particular optimization setting. 

 If independent filters are used, the coupling between the 
directions during a circle maneuver is neglected and steady-
state errors are obtained. In the coordinated turn model, the 
CT model for short, this coupling is taken into account [1, 3]. 
An example is given in [1, section 11.7] using the interacting 
multiple model (IMM) approach where also the CT model is  
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included. Performance is evaluated in terms of numerical 
RMS errors obtained by simulations in a stochastic frame-
work. 

 In the present paper tracking filter design based on the 
CT model is discussed. The continuous-time case is consid-
ered and an observer approach is applied, including transfer 
functions and pole placement. By a coordinate transforma-
tion, used in multivariable control systems [6], the four-state 
design is simplified to two-state cases. Using frequency 
functions, analytical expressions are obtained for the steady-
state radial and angular errors in terms of target acceleration, 
filter bandwidth, and the actual and assumed turn rates. 
These expressions are useful for design, performance evalua-
tion, and requirement formulations. No steady-state errors 
are obtained if the turn rate is known and the errors for an 
incorrect assumption of the turn rate are easily seen. It turns 
out that the steady-state performance can even be obtained 
from a simple first-order transfer function. An illustrative 
interpretation of CT-model filters is given in terms of basic 
second order filters. Furthermore, the Riccati equation for a 
stochastic CT model is solved in closed form and the associ-
ated Kalman filter is compared to the observer case. 

 Although discrete-time filters are used in practice, the 
continuous-time case is of interest. Methods and results are 
displayed more clearly in continuous-time. No sampling in-
terval needs to be considered and the transfer functions are 
easier to interpret. Furthermore, the CT-model Kalman filter 
(of order four) can be solved in closed form. However, the 
order reduction coordinate transformation and the observer 
approach can be applied to the discrete-time case, of course, 
and so the methods and filter properties discussed have dis-
crete-time counterparts. Comparisons between continuous 
and discrete-time tracking filters are further illustrated in [4]. 

 If the turn rate is unknown, estimation of the turn rate 
parameter can be tried during the maneuver, as in the exam-
ple in [1]. Although this is not addressed, the paper is of in-
terest also for this case. The steady-state errors for an  
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incorrect model turn rate are given, which should give some 
insights into the errors for an incorrect turn rate estimate, and 
so, into the question of what could be gained by turn rate 
estimation. The coordinate transformation method is of in-
terest for the estimation case as well. 

 In the paper deterministic steady-state errors are dis-
cussed. Stochastic errors are obtained from measurement 
inaccuracies, often modeled reasonably well as white noise. 
As the filters are linear and time-invariant, deterministic and 
noise inputs can be treated separately and the output from a 
noise input can be superimposed on the deterministic output. 
The influence of white noise input to linear systems is a 
well-known topic [7]. In the present case this is further sim-
plified as it is reduced to second order filters. In view of this, 
noise questions are not addressed, although some further 
comments are given in section 5. 

 The CT model is introduced in section 2, observers are 
discussed in section 3, and steady-state errors are derived in 
section 4. The Kalman filter is given in section 5, as well as 
some remarks on the Kalman versus observer approaches, 
while observer polynomials and derivation of the Kalman 
filter can be found in Appendix. 

2. THE CT MODEL 

 Circular motion of a target with constant speed in a hori-
zontal plane is illustrated in Fig. (1). A Cartesian coordinate 
system ,  is introduced, where the center of the circle is at 
the origin. Consider the situation where the position is meas-
ured by a sensor stationed at the origin, usually radar for the 
civilian aircraft case. In practice a sensor uses polar coordi-
nates and it is assumed that polar-to-Cartesian conversion 
has been carried out. The measurements of the position ,  

are inputs to a filtering process, which gives estimates ˆ, ˆ  

of the position. If the estimates are erroneous, the estimated 
position is different from the true one, as indicated in Fig. 
(1). 

 

Fig. (1). Circular tracking. 

 Introduce the state vector 
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and the measurement vector 

y = [ y1 y2 ]T             (2) 

 The CT model is [1, 3] 

 
x(t) = Ax(t)           (3a) 

y(t) = Cx(t)           (3b) 

where 
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C =
1 0 0 0

0 0 1 0
           (5) 

and  is the constant turn rate. (3a) is the kinematic equa-

tions for circular motion and  implies a coupling between 
the two directions. The components of y are the measure-
ments of the position coordinates  and . For a circular turn 
of radius R, the measurements at time t are 

 

y1(t) = Rcos t

y2(t) = R sin t
            (6) 

where 
 

 is the actual turn rate. It is assumed that the initial 

position is ( , ) = (R, 0), but for steady-state performance 

the initial position is not significant. The same steady-state 
will be reached if the tracking starts at some other point of 
the circle, and (6) is used for simplicity. 

 The actual turn rate 
 

 should be used for the model pa-

rameter  , that is, the idea is to take 
 

=  in the model. 

However, the actual turn rate is usually unknown, or known 
only within a certain range of accuracy. To take this uncer-
tainty into account, the two notations  and 

 
 are used for 

the assumed and actual turn rate respectively. 

 If the sensor (and by that the origin) is not at the center of 
the maneuver circle, the coordinates of the circle center are 
inputs to the tracking filters as well, and a constant is then 
added to each of the inputs (6). However, as for the filters 
studied here, and as should be the case, tracking filters usu-
ally don’t give steady-state errors for a constant input, that is, 
the constant center of the circle does not contribute to these 
errors. Steady-state errors are then obtained only from the 
circular inputs (6). 

3. CT MODEL OBSERVERS 

General Observer 

 The observer of the CT model (3) is 
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where K is the constant filter gain, obtained by any method 
that will give a required performance. This observer has the 
same structure as the Kalman filter. That is, (7) is actually a 
Kalman filter if the gain is determined from the Riccati equa-
tion based on white noise disturbances added in the usual 
way in the model. However, as usual for observer design, no 
disturbances are assumed in the model. Denote the gain 
components as 

K =

K1 K5

K2 K6

K3 K7

K4 K8

            (8) 

 Laplace transformation gives x̂(s) =G(s)y(s)  where 

G(s) = (sI A + KC) 1K . This transfer function has the 

polynomial structure 
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 These polynomials, obtained after some straightforward 
calculations, are given in Appendix. 

 A basic property of the observer can be obtained imme-
diately. The estimate of the position x1 is 
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 If y1 and y2 are constants, it is seen from the polynomials 
in Appendix (taking s = 0) that in steady-state x̂1 = y1 . Simi-

larly for the other position, x̂3 = y2  in steady-state. Thus, for 

constant inputs the observer gives the correct positions in 
steady-state, and so the constant center of a maneuver circle 
does not contribute to the steady-state errors. 

 For pole placement design, the usual approach is to iden-
tify the characteristic polynomial D(s) with a required poly-
nomial and by that obtain equations for the gain factors Ki. In 
the present case the measurement vector y has two compo-
nents, which gives more complicated equations than with a 
single measurement component, in which case a system of 
linear equations is obtained. Furthermore, there are eight 
gain components, while the system is of order four, which 
means redundancy. Although a direct identification proce-
dure is conceivable, at least by numerical methods, and 
could be simplified by the circular symmetry, a simplifying 
approach is possible, as follows. 

Two-State Observers 

 In control terminology, (3) is a multivariable system as 
there are two measurement components (although no control 
inputs). By a coordinate transformation the design procedure 
can then be reduced to the single measurement case. To this 
end, as discussed in [6], introduce the new state vector 
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 Using that 
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the system equations (3) are transformed to 
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y(t)= CT 1z(t) =
0 1 0 0

0 0 0 1
z(t)       (13b) 

which are in multivariable observable companion form [6]. 
Introduce the notations 

z = [ z1 z2 z3 z4 ]T          (14) 

 As y1 = z2 and y2 = z4, the system equations (13) can be 
written as 
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z3(t)

z4(t)
=

0 0

1 0

z3(t)

z4(t)
+

0
y1(t)

y2(t) = [ 0 1 ]
z3(t)

z4(t)

        (16) 

 Two separate single-input/single-output systems of the 
same two-state structure are obtained, where y1 and y2, be-
sides being measurements, also play the role of inputs. The 
observer of (15) is 

[ ]

+=

+

+=

)(

)(0

)(ˆ

)(ˆ

1

0

)(ˆ

)(ˆ
10)(

)(
0

)(ˆ

)(ˆ

01

00

)(ˆ

)(ˆ

2

1

2

1

2

1

2

1

2

1
1

2

1

2
2

1

2

1

)(

ty

ty

L

L

tz

tz

L

L

tz

tz
ty

L

L

ty
tz

tz

tz

tz

       (17) 

where L1, L2 are gain components to be determined. Laplace 
transformation gives 
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 The corresponding observer of (16) is 

 

ẑ3(t)

ẑ4(t)
=

0 L3

1 L4
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ẑ4 (t)
+
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where L3, L4 are the gain components. 

 Thus, two observers of similar structure are obtained, 
each of which has two states and the measurement compo-
nents as inputs. The advantage of this approach is obvious. 
Pole placement is immediate and for analysis the transfer 
functions (18) and (20) can be used. Clearly, a considerable 
simplification has been achieved by the transformation (11). 

 In the models (15) and (16) the turn rate parameter  
enters only in the input vectors associated with y1 and y2. The 
characteristic polynomials of the observers will then be in-
dependent of  . As is seen from the transfer functions (18) 
and (20), these polynomials depend only on the design pa-
rameters L1, L2 and L3, L4 respectively, and consequently, so 
do the poles. 

Four-State Observer 

 The two-state observers give ẑ , and x̂  can then be ob-

tained by the inverse transformation x̂ = T 1 ẑ . Thus, the 
basic state vector x̂  is obtained from the two-state observers. 
x̂  can also be viewed as obtained directly from a four-state 
observer. Combining (17) and (19) gives 

 
ẑ(t) = A ẑ(t)+ Ly(t)          (21) 

where 

 

A =

0 L1 0 0

1 L2 0 0

0 0 0 L3

0 0 1 L4

; L =

L1 0

L2

0 L3

L4

       (22) 

 This is just another way to write the two-state observers. 
Multiplying (21) by T 

–1, using that  

 A = TAT 1 LCT 1
 

yields the four-state observer 

 
x̂(t) = (A KC )x̂(t)+ K y(t)         (23) 

where 
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 Input/output transfer functions for state-space representa-
tions of linear systems are not changed by coordinate trans-
formations. In particular, the characteristic equation does not 
change. Using (24) in (54) gives 

D(s) = (s2+ L2s + L1 )(s2+ L4s + L3) . That is, the poles of the 

four-state observer are the same as for the two-state observ-
ers. Design of (23) can then be carried out by design of the 
two-state observers. In this way the original observer (7) can 
be designed using (24) as the gain (8). 

 Considering the circular symmetry, and for simplicity, 
there is no reason to design the two-state observers differ-
ently. It is natural to take L1 = L3 and L2 = L4, that is, to 
choose an identical design for the two-state observers. It is 
convenient for design to write the characteristic polynomial 

as 
 
s2+ 2 o s+ o

2 , using second order standard notations. 

Thus, an “identity design” is obtained by taking 

o42

2
o31

2==

==

LL

LL
          (25) 

 To get good dynamical behavior, choice of the damping 
factor is normally restricted to a reasonable interval, for ex-
ample 0.5 <  < 1, where  = 0.7 is commonly used. Thus, in 

practice  is essentially determined. Then the main signifi-

cance of (25) is the possibility to obtain a certain  o, which 
may be thought of as bandwidth. Requirements can often be 
formulated in terms of  o. As will be seen below, this is the 
case for steady-state circular errors. Response time is another 
important performance parameter related to  o, even by sim-

ple rules of thumb in basic cases. Clearly,  o is a convenient 
design parameter by which design to meet requirements can 
be done. 

 By inserting the gain components (24) in the expressions 
(54) - (62) in Appendix, the transfer functions of the ob-
server (23), as defined from x̂(s) =G(s)y(s) , are obtained. 

Using the parameters L1 and L2 the identity design (25) 
yields 

G(s) = 1
s2+ L2 s+L1

T1(s) T5 (s)

T2(s) T6(s)

T3(s) T7(s)

T4(s) T8 (s)

        (26) 

where 

T1(s) = T7 (s) = L2 s + L1          (27) 

T2(s) = T8(s) = (L1
2) s          (28) 

T3(s) = T5 (s) = s          (29) 

T4(s) = T6 (s) = L2 s          (30) 

 The transfer function (26), as well as the gain (24), has a 
symmetric structure. 
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An Interpretation 

 An illustrative interpretation of the CT model observers 
is possible. From (26) the estimate of the position x1 is 

x̂1(s)=
L2s +L1

s2+ L2s + L1
y1(s) s

s2+ L2s + L1
y2(s)

= F1(s)y1(s) F2(s)y2(s )

      (31) 

where the transfer function notations F1 and F2 have been 
introduced. It is composed of two parts: the output from F1 
driven by the input y1, and the output from F2 driven by y2. 
F1 is independent of  . In fact, F1 is the basic second order 
filter obtained for the independent filter case, as discussed in 
[4]. The turn rate  enters into F2, and only at one point as a 
direct transfer function “gain”. 

 It is reasonable for simplicity to start a design of tracking 
filters for circular maneuvers by considering identical inde-
pendent filters of second order, and so obtain the filter F1 in 
both directions. This is even more natural if such filters are 
used for straight-line tracking as is often the case. However, 
steady-state errors will then be obtained for circular maneu-
vers. These errors can be reduced to any required value by 
increasing the filter bandwidth [4], but if the requirement is 
high this could be inappropriate in practice. For example, it 
will increase the stochastic errors obtained from the meas-
urement noise. If a CT model observer is introduced, it has 
the structure (31) for 1x̂  and can be regarded as an attempt to 

improve the basic estimate obtained from y1 and F1, by using 
also the input y2 via the transfer function F2. A correspond-
ing structure is obtained for x̂3 . 

 Thus, the CT model observer can be interpreted as a way 
to complement the basic independent filter in one direction, 
by a particular use of the information about the position in 
the other direction. Whether this will actually be successful 
depends on how well the turn rate is known, as will now be 
discussed. 

4. STEADY-STATE ERRORS 

 As the inputs (6) are sin and cos functions, it is clear that 
filter frequency functions should be useful to gain insights 
into steady-state circular errors for linear time-invariant 
tracking filters. Another useful fact is that the inputs are re-
lated, more exactly 

 
y2 (t) = y1(t) , or by Laplace transfor-

mation 

)(~)( 12 sysys =           (32) 

 Using this input relationship and the transfer function 
(26) yields 
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 Thus, the observer output x̂1 , using both measurements, 

is the same as the output from G1(s) driven only by the input 

y1. Similarly, 3x̂  is obtained from G2(s) via the input y2. Now 

  

G1(i )= G2(i )=
o
2 + i 2 o

o
2 2+ i 2 o

= W

      

(35) 

 That is, the two frequency functions are equal for the 
actual turn rate frequency 

 
. The notation W has been in-

troduced for this frequency function value. As the inputs y1 
and y2 are the cos and sin functions (6), the steady-state out-
puts are 

  

x̂1(t) = R |W |cos( t + )

x̂3(t) = R |W |sin( t+ )
         (36) 

where = R argW . Thus, according to the filter the target 

moves along a circle of radius 
 
R|W|  and has the angular 

separation  from the actual position. Errors are obtained if 
W 1 . As in [4], introduce 

Radial error: er= R(|W| 1)         (37) 

Angular error: e = R = R argW        (38) 

 Both these errors are length displacement errors, er in the 
radial direction and e  along the circle. Beside the magni-
tudes, these errors contribute further illustrative information 
as well: it is seen that the filtering gives a circle outside the 
actual one if the radial error is positive and that the position 
is delayed if the angular error is negative. The total error is 
easily obtained from the separate errors. 

 From (35) it is seen that W=1  if 
 

= , which means 

zero errors (37), (38). That is, if the correct turn rate is used 
in the model, no steady-state errors are obtained. If 

 
there will be errors. For convenience, introduce 

o
=d  ; 

o

~
=h          (39) 

d is the ratio between the model turn rate parameter  and 

the filter parameter  o, while h is the corresponding ratio 

using the actual turn rate ~ . After some calculations 

|W| = 1 +
2h(h d)(1 h(h + d)/2)
1+ h4 + 2h2 (2 2 1)

       

(40) 

 The radial error (37) can now be obtained. A useful ap-
proximation is possible, though. In practice 2  2  1 and d << 

1, h << 1. Then 

)()( 121|| dhhdhhW ++        (41) 

and the radial error becomes 

)()( ~1
~ 2

o

Rer           (42) 
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 It is interesting to compare with the corresponding inde-
pendent filters discussed in [4], in which case the radial error 

is (approximately) 2)~( / o
R . For the CT case (42) there is a 

further factor 
 
1 / . Again it is seen that if the correct turn  

rate 
 

=  is used the error is zero, in contrast to independ-
ent filters. However, for an unknown turn rate, the CT case 
could still be better than independent filters if the assumed 
value is reasonably close to the actual value. In any case, the 
error can be reduced by increasing the filter parameter  o, 
that is, by increasing the filter bandwidth. 

 For the angular error 

argW = arctan
2 h2(h d)

(1 dh)(1 h2)+ 4 2h2

2 h2(h d)

       (43) 

which gives 

ree
o

~
2           (44) 

 This is the same expression as for the independent filters 
in [4]. The angular error is usually much smaller than the 

radial error since 
o/~ is small. That is, the steady-state 

error is mainly in the radial direction. 

 A target turn is often characterized by its acceleration, 
normally expressed in units of g. This can be done by using 
the kinematic relations ~RV = and ar = V 

2/R, where V is the 
target velocity and ar the (radial) acceleration. The radial 
error (42) can then be expressed as 

)~1(
2
o

r
r

a
e          (45) 

 The velocity V and the radius R are not involved explic-
itly; for a given ratio ~/  they influence the error only via 

ar. 

 No errors are obtained for ~
= . This is a fact irrespec-

tive of the particular identical design, that is, irrespective of 
 o and  , as is seen from (35). From this point of view, there 

is no reason for small values of d and h, as assumed to obtain 
the error approximations (42) and (44). However, as the ex-
act turn rate is typically unknown, to keep the errors rea-
sonably small in practice, the filter parameter  o has to be 

considerably higher than the turn rates  and ~ . Thus, in 

practice d << 1 and h << 1 as assumed. 

 It should be noted that (35) can be regarded as obtained 
from the frequency function of the transfer function 

cs

bs
sF

+

+
=)(           (46) 

where 

)(1o dhb
2

=         (47a) 

)( 2o 1 hc
2

=

    

    (47b) 

 In fact, (35) is the frequency function value )~( iF of 

(46) for the actual turn rate frequency ~ . Thus, the steady-
state circular errors can be obtained from the simple transfer 
function (46). 

 A further question of interest is how fast the steady-state 
will be reached. This is determined by the filter response 
time (or equivalently by  o). As discussed in [4], since 

o/~ is small in practice, the steady-state is normally 

reached after a minor part of the maneuver circle. 

5. KALMAN FILTER 

 To obtain a Kalman filter, stochastic disturbances are 
introduced in the usual way in the model (3) 

 
x(t) = Ax(t)+ v(t)        (48a) 

y(t)= Cx(t)+ w(t)        (48b) 

where as usual v(t) and w(t) are zero mean, white noises with 
covariance 

E[ (t) ( ) ] = Q (t )        (49a) 

E[w(t)w( ) ]= R (t )        (49b) 

 Consider the choice 

Q =

0 0 0 0

0 q 0 0

0 0 0 0

0 0 0 q

; R =
r 0

0 r
        (50) 

R implies that the two measurement components are inde-
pendent and has the same accuracy. Q may seem overly sim-
plified, but the 2 x 2 identical block diagonal matrices of Q 
are commonly used as the covariance in two-state continu-
ous-time stochastic models, either to obtain continuous-time 
Kalman filters, or to obtain discrete-time models by sam-
pling and by that discrete-time Kalman filters. The covari-
ance Q is an extension to the four-state case. 

 The CT-model part in the example in [1] is a four-state 
extension of the two-state so called direct discrete-time 
model, which is quite close to the model obtained by sam-
pling the two-state continuous-time model mentioned above. 
In view of this, (48) - (50) can be considered as a stochastic 
continuous-time model, which essentially corresponds to the 
discrete-time CT-model part in [1]. 

 The algebraic Riccati equation for the model (48) - (50) 
is solved in closed form in Appendix, which gives the gain 

=
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where 
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r

q
a ++=

222
)(

44
2         (52) 

 The steady-state Kalman filter is obtained by using this 
gain in the observer (23). The gain has a symmetric structure 
similar to the observer gain (24) for the identity design (25). 
By considering the Kalman filter polynomials in Appendix, 
it is seen that the gain (51) corresponds essentially to an ob-

server gain with 2o=a  and 21 /=  since  is small in 

practice. Consequently, as for  o, the parameter a may be 
thought of as bandwidth. 

 The transfer functions and the steady-state circular errors 
for this Kalman filter are given in Appendix. Expressed in 
radial acceleration, the radial error (86) is 

)~1(2
2a

a
e r
r          (53) 

 This is the same expression as for the observer case (42) 
if

 
a= o 2 . The angular error is slightly different from the 

observer case, but as for this case, this error is usually much 
smaller than the radial error. The radial error is the dominat-
ing part of the total error also for the Kalman filter. 

Further Remarks 

 It should be noted that for the Kalman filter q/r is a de-
sign parameter (in fact the only one), as this ratio determines 
the parameter a and by that the gain. For example, q/r can be 
chosen to keep the steady-state error (53) below a certain 
bound. If r is considered as a model parameter (which is rea-
sonable), then q is the design parameter, which has to be 
chosen to give a required filter (if possible). 

 It can be argued that this is how noise parameters have to 
be conceived when the Kalman filter is used in tracking ap-
plications. As in other fields, certain filter requirements are 
always involved in practice, typically concerning bandwidth, 
response time, and steady-state errors, and the only way to 
fulfill the requirements for a given stochastic model structure 
is by choice of the noise parameters. 

 This view is supported by the fact that white process 
noise cannot be regarded as a reasonable maneuver model. 
Consider for example the (continuous- or discrete-time)    
Kalman tracking filter, in which case the target acceleration 
is assumed to be white process noise [1]. However, as con-
stant or nearly constant acceleration is used for maneuvering, 
it is certainly not white. The only reasonable way to interpret 
the acceleration process noise parameter is as a design pa-
rameter [8]. It should be noted that if coloured process noise 
is introduced instead, performance could deteriorate [9]. 

 Furthermore, it should be noted that requirements are 
actually neglected in the stochastic approach to tracking. 
Consequently, design to meet requirements cannot be done. 
If requirements are taken into account (as should be the case 
of course), a stochastic design process will be quite complex, 
involving extensive stochastic simulations for different noise 
parameter values, in which case the noise parameters are 
used as design parameters anyhow. Clearly, an observer ap-

proach, using pole placement and transfer functions as 
above, is more simple and efficient, and includes require-
ments in a natural way. As pointed out in the introduction, an 
output caused by measurement noise can be superimposed 
on the deterministic output. Analytical expressions for this 
are given in [7]. 

 It should be noted that design is actually a notion that 
refers to activities and methods used to obtain a filter that 
fulfills the requirements. Without requirements there is no 
need for design, in fact any filter would do. In practice some 
requirements are always specified and needed. 

 Further aspects on these issues can be found in [4] and 
[8-10]. 

6. CONCLUSIONS 

 Continuous-time tracking filters based on the coordinated 
turn model are discussed. By a coordinate transformation the 
four-state filter design is transformed to design of two-state 
filters. Using filter frequency functions, the deterministic 
steady-state radial and angular errors for a circular turn are 
obtained as analytical expressions in target acceleration, fil-
ter bandwidth, and the actual and assumed turn rates. It is 
seen that no errors are obtained if the turn rate is known. If it 
is unknown, performance could still be better than with in-
dependent filters if the assumed turn rate is reasonably close 
to the actual value. Even a simple first order transfer func-
tion can be formulated from which the errors are obtained. 
An interpretation of CT-model filters is given in terms of 
basic second order filters. Furthermore, a Kalman filter for 
the coordinated turn model is solved in closed form and 
compared to the observers. It is argued that the noise pa-
rameters in the Kalman filter should be considered as a de-
sign parameters. The paper is observer and transfer function 
based and illustrates the benefits of this approach. 

APPENDIX 

Transfer Function Polynomials 

 Using the gain (8) in the observer (7) gives the following 
polynomials in the transfer function (9). 

D(s) = s4 + (K1 + K7)s3 + (K2 + K8 + K1K7

K3K5 + 2 )s2 +[K1K8 + K2K7 K3K6

K4K5 + (K1 + K7 ) 2 + (K6 K4) ] s

+ K2K8 K4K6 + (K1K7 K3K5) 2

+ (K1K6 + K3K8 K2K5 K4K7)

      (54) 

T1(s) = K1s3 + (K2 + K1K7 K3K5)s2 + (K1K8

+ K2K7 K3K6 K4K5 + K1
2 K4 )s

+ K2K8 K4K6 + (K1K7 K3K5) 2

+ (K1K6 + K3K8 K2K5 K4K7)

      

(55) 

T2 (s) = s[K2s2 + (K2K7 K3K6 K4 )s + K2K8

K4K6 + (K3K8 K4K7) ]
      (56) 

T3(s) = s(K3s2 + K4s + K3
2 + K2 )        (57) 
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T4 (s) = s[K4s2 + (K4K7 K3K8 + K2 )s

+ (K2K7 K3K 6) ]
       (58) 

T5 (s) = s(K5 s2 + K6s + K5
2 K8 )       (59) 

T6 (s) = s [K6s2 + (K1K6 K2K5 K8 )s

+ (K4K5 K1K8 ) ]
      (60) 

T7 (s) = K7 s3 + (K8 + K1K7 K3K5)s2 + (K1K8

+ K2K7 K3K6 K4K5 + K7
2 + K6 )s

+ K2K8 K4K6 + (K1K7 K3K5) 2

+ (K1K6 + K3K8 K2K5 K4K7 )

     

(61) 

T8 (s) = s[K8s2 + (K1K8 K4K5 + K6 )s

+ K2K8 K4K6 + (K1K6 K2K5) ]
      

(62) 

Riccati Equation 

 The algebraic Riccati equation for the model (48), (49) is 

AP + PAT PCTR 1CP +Q = 0        (63) 

Denote P = [pij] and let Q, R be given by (50). Using the fact 
that P is symmetric, the component equations of (63) are 

02)( 12
2
13

2
11

1
=+ pppr         (64) 

0)( 142223131211
1

=++ ppppppr       (65) 

0)( 231433131311
1

=+ ppppppr       (66) 

0)( 122434131411
1

=+ ppppppr       (67) 

02)( 24
2
23

2
12

1
=++ qpppr        (68) 

0)( 342433231312
1

=++ ppppppr       (69) 

0)()( 442234231412
1

=+ ppppppr       (70) 

02)( 34
2
33

2
13

1
=+ pppr

   
     (71) 

0)( 234434331413
1

=+ ppppppr       (72) 

02)( 24
2
34

2
14

1
=+ qpppr        (73) 

 These equations can be solved in the following way. Start 
by the assumptions p11 = p33 and p22 = p44, as is reasonable by 

symmetry. Then, (64) and (71) give p12 = p34, which gives  

p14 = – p23 using (70) (as from (64) p12 > 0). Now (66) gives 

p13 = 0 and it follows from (68) and (73) that p24 = 0. From 

(64) 12
2
11 2 prp =  and using (67) it is found that p14 =  p11/2. 

Then (68) yields a second order equation for p12, which has 
only one solution (as p12 > 0), and finally p44 is obtained via 

(72). Using the parameter 

r

q
a ++=

222
)(

44
2        (74) 

the result of this procedure is 

arpp == 3311  

rapp 2
3412 2

1
==  

02413 == pp          (75) 

rapp
2
1

2314 ==  

)( 22
4422 2

1
+== arapp  

These components satisfy (64) - (73) and it can be shown 
that they give a positive definite P. Thus, although the start-
ing point was an assumption, (75) is in fact the (unique) 
solution to the algebraic Riccati equation (63). The Kalman 
gain K = P C 

T
 R –1 becomes 

==

2

2

3414

3313

2312

1311

20

02

2
11

aa

a

aa

a

pp

pp

pp

pp

r
K       (76) 

Kalman Filter Polynomials 

 Inserting the Kalman gain (76) into the expression (54) 
yields the characteristic polynomial 

2222
2 )()()(

22

a
s

a
asssD ++++=       (77) 

 Due to the particular form of this polynomial, it is easy to 
solve the characteristic equation D(s) = 0. It is a matter of 
solving second order equations and the result is 

][ ))(1(1
2

2

aa
i

a
s +±±=        (78) 

 Using the signs independently yields the four poles. For 

 = 0 double poles are obtained in s = – a (1 ± i) /2, which by 

second order standard notations corresponds to 2/o a=  

and 21 /= . The numerator polynomials (54) - (62) be-

come 
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)()()()(
222

22
2

71 ++++==
a

ass
a

sasTsT      (79) 

][ )()()(
222

22
2

2

82
a

s
a

a
asss

a
sTsT +++==

     
(80) 

)()()(
253 ass

a
sTsT +==        (81) 

2
64 )()()(

2
ass

a
sTsT +==        (82) 

 As for the observer case, several of the transfer function 
polynomials are the same. 

Kalman Filter Steady-State Errors 

 The circular steady-state errors for the Kalman filter are 
obtained in the same way as for the observers. Using the 
input relation (32), the transfer functions corresponding to 
(33) and (34) are 

)()(
~

)(
)(

1
)(
)(ˆ

15
1

1
1 sHsT

s
sT

sDsy

sx
=+=

 

     (83) 

)()(~)(
)(

1
)(

)(ˆ
273

2

3 sHsT
s

sT
sDsy

sx
=+=        (84) 

 From the similarities of the polynomials in (79) and (81), 
it is seen that these two transfer functions have the same fre-
quency function value for the actual turn rate frequency ~ , 
that is 

)~()~( 21 iHiH =         (85) 

 As for the observers, this frequency function value de-
termines the steady-state errors, which, after some calcula-
tions and some approximations based on the assumptions   

<< a, a<<
~ , are found to be 

)~1(
~

2
2
)(

a
Rer         (86) 

rea
e )~2

1
1(

~
2

   
     (87) 
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