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1. INTRODUCTION 

 Simplifications of the Navier-Stokes equations are 

employed in various fields. In early design stages quick 

computations are often used to give coarse performance 

indications in order to compare design options. In 

optimization problems, compact models are required for 

computational efficiency. In research on new numerical 

techniques, simplified models make numerical results 

easier to interpret. They also are desirable when large 

computing resources are required to establish convergence 

characteristics. A good example is the development of 

stochastic methods, where the Monte Carlo method is 

inevitably used for verification purposes. 

 In this paper an unsteady, nonlinear flow model, the LF-

TSD potential equation, is considered. Despite its simple 

form, it is able to capture nonlinear effects such as shock 

waves and long time lags. The nonlinearity allows for proper 

description of the sub- and supersonic regions typically 

coexisting in transonic flow. On the other hand, rotational, 

viscous and thermal effects are among those not captured. 

This may result in an acceptable loss of accuracy or even 

advantageous loss of complexity, depending on the problem 

at hand. Here, the LF-TSD flow description is applied to a 

prototypical unsteady FSI problem, viz. the one-dimensional 

panel. The low-frequency assumption is adopted, as it has 

proven to be appropriate for this class of problems [1, 2]. 

 Correct treatment of the changing type of PDE within      

the flow domain was a challenge to the CFD community     

until the early 70’s, when Murman and Cole discovered            

a  stable  finite  diffrence  (FD)   scheme   for  the steady Transonic  
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Small Disturbance (TSD) equation [3, 4]. Unsteady 

formulations were the next hurdle. Explicit time-marching 

schemes were found to impose severe restrictions on the time 

step due to stability. Implicit schemes were thus adopted, using 

successive line over-relaxation [5], alternating-direction implicit 

methods [1] and approximate factorization [6] techniques. These 

show increasingly superior convergence rates, but employ 

segregated solution sweeps which require the correct choice of 

relaxation parameters to ensure numerical stability. Additionally, 

the stability of these algorithms is dependent on the discretization 

of the nonlinear terms. Unfortunately, the details of nonlinear 

term discretizations are not always discussed in the literature. 

 In view of these shortcomings, this paper aspires to describe 

and verify a robust discretization of the LF-TSD equation. First, 

the second-order time derivative is retained in the formulation, 

in order to exploit its known stabilizing effect [7]. Next, the 

discretization is based on the conservative form used in [8] 

rather than the more common forms found in [4, 5]. Finally, a 

fully monolithic time-marching approach is used. The latter 

provides convergence over a wide range of conditions, without 

the need to determine appropriate relaxation parameters. This 

can save considerable time when dealing with new problems. 

 This paper is organized as follows. In section 2 the 

derivation of the employed LF-TSD equation is presented. 

Subsequently, in 3 the discretization is described. Numerical 

verification of the presented model is performed in 4, followed 

by conclusions in 5. The appendices contain detailed definitions 

of the scheme coefficients, and a proof that the current 

formulation is discretely conservative in space-time. 

2. ANALYTIC DESCRIPTION 

2.1. Transonic Small Disturbance Equation 

 The starting point for the derivation of the TSD equation 

is the unsteady Full Potential (FP) equation, which can be 
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derived from the Euler equations assuming adiabatic 

irrotational flow [9, 10]: 

tt + 2u xt + 2v yt =  

 (a2 u2 ) xx 2uv xy + (a
2 v2 ) yy ,          (1) 

where the velocity is described by a potential through 

(u, v) = , a  is the local sound speed and subscripts t , x  

and y  denote temporal and spatial derivatives. With the 

assumption of isentropic flow, the energy equation can be 

written: 

t +
u2 + v2

2
+

a2

1
=
u2

2
+

a2

1
.           (2) 

 Considerable simplification of the above system can be 

made by assuming a uniform flow with small disturbances 

superimposed on it. Thin airfoils and panels with small 

displacements (which will be treated in section 4) are typical 

applications for which this assumption is appropriate. In this 

context, assuming only small disturbances has the further 

benefit of eliminating the need for fluid mesh deformation to 

accommodate changes in the solid boundary geometry. The 

disturbance potential, , is defined by 

 
= u (x + ), with x , y 1           (3) 

and  indicating freestream conditions.  is included 

within the brackets and therefore scaled with u . This is 

important for maintaining robustness over a range of 

conditions.
1
 

 It has been observed that low-frequency components of 

the FP equation normally dominate the nonlinear response 

[1]. Thus the following assumption is made: 

 t , = x, y.            (4) 

 By inserting the above into the energy equation and 

ignoring higher-order terms in x  and y , the speed of sound 

a  can be approximated by 

a2 a2 ( 1)u2 x ( 1)u t .  

 Equation 1 is then linearized, retaining only the nonlinear 

term with x xx  from the first right-hand side term as it is 

known to be relatively large near shocks. This implies that 

no account is made of shock components in the vertical 

direction [11]. The first term in (1) is kept as it has a known 

stabilizing effect [7]. 

 Finally, the equation is brought into nondimensional 

form. To this end t  is scaled by l / a  and x , y  and  by 

l , where l  is a characteristic length. The LF-TSD equation 

then becomes 

tt + 2M xt = A xx + yy            (5) 

                                                
1An alternative choice for the potential would be = u x + . When this is 

nondimensionalized, the nonlinear term will scale with M  instead of with 

M 2  which turns out to postpone shock formation in the supersonic regime. 

where M  is the freestream Mach number and A  is a non-

constant coefficient 

A( ) := 1 M 2 ( +1)M 2
x ,           (6) 

making the equation nonlinear. Solving for  determines 

the complete solution. The velocity field (u,v)  is given 

through the definition of the potential in (3). Density, 

temperature and pressure can be found by using isentropic 

relations. The linearized pressure in nondimensional form is 

p :=
p p

a2
1

M t M 2
x .           (7) 

 In the sequel this relation will be employed as a coupling 

mechanism in the FSI problem. 

2.2. Characteristics of the LF-TSD Equation 

 The characteristics of equation (5) have implications for 

the way in which it should be discretized. Indeed, early 

discretizations of the TSD equation failed to take this into 

account, yielding unresolvable instabilities in transonic flow 

[11]. Before outlining the behaviour of the characteristics, 

the coefficient A  from equation (6) is examined. 

 The sign of A  determines the type of the PDE, such that the 

latter changes from elliptic to hyperbolic type in subsonic and 

supersonic regions of the solution respectively. This can be seen 

from the following analysis in a sonic point of the flow: 

0 =
a2 (u2 + v2 )

a2
1 M 2 ( +1)M 2

x = A.  

 For clarity the analysis is performed taking two 

dimensions at a time, as in [5], see also [1, 11]. Equation (5) 

is locally linearized by taking A( )  to be constant. 

a. Characteristic Velocities 

 The velocity of disturbances in streamwise direction can 

be found by substituting the solution = f ( t x)  into (5). 

This gives 

    
2
+ 2M + A( ) f = 0  

dx

dt char
= =M ± M 2

+ A           (8) 

 Causality dictates that information only travels in time in the 

positive sense. Thus, information can only travel along the 

characteristic in one of the two directions (save the sonic case 

dx / dt = 0 ). In contrast to the analysis in [5], information 

travels downstream with a finite velocity due to the presence of 

the tt  term. The receding characteristic has a negative slope in 

locally subsonic flow, i.e. information travels upstream with a 

finite velocity. For supersonic conditions, the characteristic has 

a positive slope and information ceases to travel upstream, 

properly reflecting the physics of the flow. 

b. Characteristic Directions 

 To determine the characteristic directions, the steady state 

solution = g( x y)  is inserted. The TSD equation becomes 
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 (A 2
+1)g = 0  

dy

dx char

= =
±1

A
.            (9) 

 For subsonic flows ( A > 0 ) the gradient becomes 

undefined and information is carried through the domain in 

every direction. For supersonic flows information travels 

along the characteristics solely in positive x -direction. Thus 

characteristics with a positive slope emanate from the bottom 

of the domain and a negative slope from the top of the 

domain. 

2.3. Boundary Conditions 

 In this paper the panel problem is considered, for which 

the flow domain is bounded by a solid surface at the bottom, 

and extends to infinity in the other three directions. Farfield 

conditions will be used to truncate the domain such that 

numerical is found on a finite, rectangular domain  with 

boundary . This boundary is a disjoint union of the 

segments wl  (wall), if  (inflow), lat  (lateral) and 

of  (outflow) as shown in Fig. (1). Boundary conditions 

(bcs) are to be defined on the entirety of . For bcs of the 

form x seg : f ( ) = g(x)  the short notation 

f ( |seg ) = g(x)  is adopted for each of the respective 

boundary segments ‘seg’. 

 

Fig. (1). Flow domain  and its boundaries. 

a. Transpiration Boundary 

 The flow is unable to penetrate the wall. If the contour of 

the body is described by ywl (x) , applying the small 

disturbance assumption (3), the transpiration bc becomes 

(see for instance [7, p. 45]): 

v

u wl

=
dywl
dx y |wl = (1+ x )

dywl
dx

dywl
dx

.        (10) 

b. Subsonic Farfield 

 The farfield boundaries are to be defined sufficiently far 

away from the region of interest such that disturbances are 

sufficiently small. The disturbance component orthogonal to 

the boundary is taken: 

x |if = x |of = y |lat = 0.          (11) 

 This way after discretization,  on the boundary can 

always be related to the internal solution (see section 3.2 for 

details). 

c. Supersonic Farfield 

 Based on the discussion of characteristic directions, the 

inflow condition is simply |if = 0 , while the outflow is 

completely determined by the internal equations. For the 

calculations presented here, y |lat = 0  was used for the 

lateral boundary. This is a reflecting condition, but for the 

supersonic cases considered, the lateral boundary was set far 

enough away so that the reflections could not influence the 

panel region. More sophisticated approaches for lateral 

boundaries can be found in [8] and [12]. 

3. DISCRETIZATION 

 In transonic conditions, different regions in the flow will 

have different domains of dependence. If these domains are 

not treated properly, the resulting solutions may contain non-

physical expansion shocks, or might not be found at all [8]. 

Murman and Cole [13] were the first to select an appropriate 

domain of dependence using a switching operator. The 

discretization presented here is a mass conserving, unsteady 

variation of this original FD scheme. 

3.1. Spatial Disctretization 

 The flow field is approximated at nodes arranged on a 

Cartesian stretched grid h := (xi , yj ) | i {1,...,H} j {1,...,V}{ } . 

Values at these nodes will be denoted i, j := (xi , yj ) . 

 Following [15], the conservation form of the LF-TSD 

equation (5) is used. It is given by 

Ut + Px +Qy = 0           (12) 

with 

U := t 2M x ,  

P := (1 M 2 ) x
+1
2 M 2

x
2 ,  

Q := y .  

 

Fig. (2). The two stencils used: an upwind stencil depicted in solid 

dots and a central stencil in x-marks. The open circles mark the 
half-points. 
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 The values of P  are taken at half-points horizontally and 

Q  at half-points vertically to arrive at a compact stencil, see 

Fig. (2). This is because the derivatives of  can be 

determined to second-order accuracy using the two 

immediate neighbours. Next, the equation can be evaluated 

at every internal node using central differencing for Px  and 

Qy . For example, for the central differencing of Px  the 

discrete derivative is 

Px |i, j
centr.=

Pi+1/2, j Pi 1/2, j
1 / 2 ( xi 1 + xi )

.  

 In supersonic regions an upwinding scheme is used to 

evaluate Px , to reflect the physical domain of dependence. 

This is done by moving the x -derivative stencil one node 

downstream. Based on Murman’s mass conserving approach 

[12] the first-order accurate scheme 

 

Ui, j
n+1

+ 2(1 μi, j )
Pi+1/2, j
n+1 Pi 1/2, j

n+1

xi 1 + xi
+  

+2μi 1, j

Pi 1/2, j
n+1 Pi 3/2, j

n+1

xi 1 + xi
+ 2

Qi, j+1/2
n+1 Qi, j 1/2

n+1

yj 1 + yj
= 0       (13) 

is proposed by Sankar [8], see Fig. (2). The right superscript 

n +1  denotes the next time level. Note here that the 

denominator of the upwind term is not xi 2 + xi 1 . This 

choice has been made to guarantee conservation (see 

appendix A). For mildly stretched grids the loss of accuracy 

is small. The switching operator μ  distinguishes between 

the sub- and supersonic schemes and is defined as 

μi, j = sgn(Ai, j Ai, j )          (14) 

with 

Ai, j = (1 M 2 ) ( +1)M 2
x |i, j  

and sgn( ) := 1  if 0  and 0  otherwise. Note that in 

every internal node the terms Ut  and Qy  are taken into 

consideration. For Px  four different types of nodes can be 

distinguished: 

1. Subsonic point Both μi, j  and μi 1, j  are 0  and Px  is 

discretized by central differencing, reflecting the local 

elliptic type of the equation. 

2. Supersonic point Both μi, j  and μi 1, j  are 1  and Px  

is found through upwind differencing, reflecting the 

fact that information can only travel downstream in 

supersonic flow. 

3. Parabolic point Now μi, j =1  whilst μi 1, j = 0 . The 

discretized equation reduces to Ut +Qy = 0 . Using 

linear analysis, Murman [4] demonstrates that the 

central nor the upwind discretization of Px  is stable in 

a parabolic point. 

4. Shock-point At a shock μi, j = 0  whilst μi 1, j =1 . 

Both the central and upwind Px  contribute in this 

point. Using this operator in the shock point 

guarantees that the weak solution (which is the shock 

discontinuity) is found [4, 11]. 

 An important feature of this scheme is the fact that it is 

conservative. Typically conservative methods produce shocks 

which are stronger and further downstream than those of non-

conservative methods. Spuriously the non-conservative solution 

is often closer to the Navier-Stokes solution, where viscosity is 

the mechanism responsible for a weaker shock located further 

upstream [8]. The conservative scheme is chosen here to ensure 

that the numerical solution approaches the theoretical jump 

conditions [4]. Conservation is demonstrated in appendix A 

using Gauss’ Theorem. 

 The next step is the discretization of  U , P  and Q  at the 

half-points as required by (13). The nonlinear P  is first 

linearized with respect to x ; 

 
Ui, j

n+1 = i, j
n+1 2M x i, j

n+1 ,       (15a) 

Pi+1/2, j
n+1 Pi+1/2, j

n
+ ( x i+1/2, j

n+1
x i+1/2, j

n )
dP

d x i+1/2, j

n

 

Ai+1/2, j
n

x i+1/2, j
n+1

+
+1

2
M 2 i+1, j

n
i, j
n

xi

2

,      (15b) 

Qi, j+1/2
n+1 = y i, j+1/2

n+1 i, j+1
n+1

i, j
n+1

yj
.       (15c) 

 Substituting equations (15) into (13) yields the 

discretized equation for every internal node (x, y) h \ . 

Collecting these equations into a banded matrix, it is 

convenient to use an index k  defined through the bijection 

k : (i, j) k , k = i + ( j 1)H . Now the single PDE (13) can 

be written as the system 

 

0Mk k
n+1

+

l L

l
Ck k+l

n+1
+

m M

m
Kk

n+1
k+m
n+1 = rk

n+1
      (16) 

with L := { 1,0} , M := { H , 2, 1,0,1,H}  and diagonals 

given in appendix B. As the time-marching scheme will be 

implicit, the bar denotes the intermediate solution of the 

potential field, which is iterated until converged. In these 

equations the nonlinear coefficient A  is defined as 

Ai+1/2, j
n+1 := 1 M 2 ( +1)M 2 i+1, j

n+1
i, j
n+1

xi
,        (17) 

and the switching operator μ  as 

μi, j
n+1 := sgn Ai, j

n+1 Ai, j
n+1( )         (18) 

with 
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Ai, j
n+1 := 1 M 2 ( +1)M 2 i+1, j

n+1
i 1, j
n+1

xi 1 + xi
.  

 Note that x  is evaluated in the half-points in (17), but at 

the nodes in (18) using the respective central difference 

schemes. The calculation of A  at the half-points arises from 

the use of the conservative form (12), distinguishing this 

scheme from for instance [4]. The central discretization of μ  

is crucial for the proper functioning of the method. 

3.2. Boundary Conditions 

 What remains is to discretize the equations for the 

boundary nodes 
 
(x, y) h . By introduction of virtual 

points, the fluid bc’s from section 2.3 may be written as 

a. Transpiration Boundary 

i,2
n+1

i,0
n+1

2 y1
=
dywl
dx i

         (19a) 

b. Subsonic Farfield 

2, j
n+1

0, j
n+1

2 x1
= 0  

i,V+1
n+1

i,V 1
n+1

2 yV 1

= 0  

H+1, j
n+1

H 1, j
n+1

2 xH 1

= 0        (19b) 

c. Supersonic Farfield 

1, j
n+1 = 0, j

n+1 = 0         (19c) 

 By constructing the discrete fluid equations according to 

(16) and eliminating the virtual points using eqs. (19) and 

farfield values of μ  where i = 0 , the matrix diagonals can 

be assembled to 

 
M ff n+1

+ C ff n+1
+ K ff,n+1 n+1 = r f,n+1.        (20) 

 Stabilizing techniques such as flux limiters, domain-

sweeping and relaxation are used nor required to guarantee 

stable time integration. This feature distinguishes the present 

scheme from earlier work, such as [1, 2, 5-7]. 

3.3. Time Integration 

 To maximize robustness a first-order backward 

differencing scheme is used for time integration. Considering 

the second-order system 

Mxn+1 + Cxn+1 + Kn xn+1 = rn         (21) 

the solution xn+1  at the next time level n +1 , is computed 

using the configurations from the last two time levels: xn  

and xn 1
. By Taylor series analysis difference operators can 

then be defined as 

Dt :=
1

t
IdN , IdN , N N[ ]  

Dtt :=
1

t 2
IdN , 2IdN ,IdN[ ]  

acting on xn+1; xn; xn 1{ } , yielding the first-order Backward 

Euler differencing scheme [1, Ch. 2] 

xn+1 =
M

t 2
+
C

t
+ K

1

 

          r +
M

t 2
(2xn xn 1 )+

C

t
xn .        (22) 

 First-order accuracy is accepted in this context as 

accuracy requirements are outweighed by robustness in new 

applications. 

4. RESULTS 

4.1. Biconvex Airfoil 

 The transonic flow around a biconvex airfoil is a known 

test case for transonic flows. It features sharp leading and 

trailing edges and a supersonic pocket that is terminated by a 

shock. The circular-arc airfoil shape is approximated by 

ywl = 2taf (1 x)x on x [0,1]         (23) 

with taf  the airfoil thickness. 

 The solution of the problem on a grid with 

(x, y) [ 5;15] [0;20] , x =1/ 64  and 10%  exponential 

stretching away from the airfoil, is visualized in Fig. (2). The 

outflow boundary has been placed further away to avoid 

errors induced by shock reflections, though Table 1 shows 

that the positions of in- and outflow boundaries have only a 

minor effect on the solution. The pressure distribution over 

the airfoil is given in Fig. (2). Note that the compact stencil 

of Fig. (2) results in a limited smearing out of the shock over 

three mesh points. 

 Spatial convergence is studied by looking at , the 
2

-

norm of the error with respect to the reference solution 

( x =1/ 256 ) at equilibrium. Equilibrium is defined as 

 
1 10 8

. The shock position converges to 

xsh = 0.737 . Spatial convergence is linear as expected 

because of the first-order spatial discretization, see Fig. (4). 

4.2. Linear Stability of a Flexible Panel 

 In the next two test cases, the performance of the 

discretization in a fluid-structure interaction setting is 

demonstrated. The panel problem, as considered here, 

consists of a one-dimensional panel clamped at both ends 

and submersed in the two-dimensional fluid described above, 

see Fig. (5). 

 The panel displacement w  is described by the beam 

equation [14]; 

wtt +
2wxxxx = (p )          (24) 

given the ratio of time-scales , ratio of masses  and some 

pressure forcing : 
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(a) Flow around a biconvex airfoil with isobars. The white contour 

indicates the position of the supersonic pocket. The airfoil contour 

is given to scale by the dashed black line. Due to the linearization 

of boundary conditions the computational domain is rectangular. 

The airfoil geometry is merely superimposed in this figure to give 
an indication of the local input of the structure to the TSD solution. 

 

(b) Airfoil surface pressure distribution. 

Fig. (3). Steady state solution for a biconvex airfoil with a thickness 

of 8.4%  at M = 0.84 . 

 

Fig. (4). Spatial convergence for the biconvex airfoil test case. 

Table 1. Shock position xsh as a function of proximity of in- 

and outflow boundaries, min x and max x resp. with 

10-6  and a lateral boundary placed at max 

y=20. 

 

 min x   max x   xsh  

 -20   5   0.7379  

-20   10   0.7371  

-20   15   0.7370  

-20   20   0.7370  

-15   20   0.7370  

-10   20   0.7370  

-5   20   0.7374  

 

=
la 1

( sh)1/2 l2 (EI ) 1/2
,  

=
l

sh
,  

=
pforcing p

a2
,  

where  denotes freestream variables and structural 

parameters are clarified in Fig. (5). The fluid is coupled to 

structural response through the transpiration boundary 

condition by the material derivative: 

M y = wt + M wx .          (25) 

 

Fig. (5). Panel schematic with structural density 
s
, Young’s 

modulus E and sectional stiffness I. 

 The panel is divided into ne  finite elements with nodes 

coinciding with fluid mesh points and third order Hermitian 

polynomials defined over them. These shape functions are 

chosen to ensure the C1
 continuity required in the weak 

form of (24). The pressure p  is obtained from (7). 

 For the linear, deterministic panel stability problem 

analytical and numerical results [15] are available. Two 

phenomena can be distinguished: divergence, which is a 

static instability occurring at subsonic speeds; and flutter, a 

generally supersonic dynamic instability. The analysis 

presented here closely follows Verhoosel et al. [15], 

including the parameters used there, see Table 2. 

Computations were performed on the domain 

(x, y) [ 2;3] [0;3]  with constant grid spacing. 
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Table 2. Physical parameters for the linear divergence and 

flutter tests. 

 

   Divergence   Flutter  

 2    4.204 10 5
   2.027 10 4

  

   3.348 10 1
   7.513 10 2

  

 

a. Divergence 

 An estimate for the divergence Mach number can be 

obtained by 

Kx = 0,  

which only has a nontrivial solution when the matrix is 

singular. Thus, finding the divergence solution is identical to 

increasing the Mach number until the smallest magnitude 

eigenvalue becomes zero. The divergence Mach number is 

defined as the smallest Mach number at which equality 

holds. Kornecki et al. [16] proposes the semi-analytical 

solution 

M div 177 2 / .          (26) 

 For the conditions considered, equation (26) yields 

M div 0.1491 , a value of 0.149  was found in [15]. 

Numerical experiments yield the comfortably accurate 

M div 0.1486  for ne =128 . The mode shape and 

convergence behaviour are given in Fig. (6) and good 

correspondence is found with [15]. The error M  is defined 

as the relative difference in M div  with respect to the 

reference solution ne =128 . 

b. Flutter 

 To find the flutter instability boundary a harmonic 

solution ( x =
i N
vie

μit ) is substituted into the linearized 

form of (21), yielding the quadratic eigenvalue problem 

μi
2M + μiC(M )+ K(M ) vi = 0  

with N  eigenvalues 
 
μi  and eigenvectors vi . The 

system is unstable when i : Re[μi ] > 0  and the flutter Mach 

number is the smallest M  at which this occurs. 

 The flutter Mach number converges to 2.268  for 

ne =128 , which corresponds nicely with the result from [17] 

for these parameters; M fl = 2.27 . The mode shape and 

convergence behaviour are plotted in Fig. (7). Again, the 

Mach number and convergence behavior compare accurately 

with the results in [15]. 

4.3. Limit Cycle Oscillation of a Flexible Panel 

 As a third case the full unsteady, nonlinear, coupled 

model is considered: the transonic Lco. An LCO is a periodic 

motion  described  by  a  closed   trajectory  in   phase   space 

(see texts on dynamical systems such  as [18]). In  supersonic 

 

(a) Divergence mode shape. 

 

(b) Spatial convergence. 

 

Fig. (6). Simulation summary for the linear divergence test case. 

flow transient shock formation can prevent a flutter mode 

from growing unboundedly. In this case the response 

becomes periodic. For a typical LCO, Fig. (8)  gives  snapshots  
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(a) Flutter mode shape. 

 

(b) Spatial Convergence. 

 

Fig. (7). Simulation summary for the linear flutter test case. 

of the solution at different stages in one period. It is 

necessary to use time integration to find this solution, 

thereby making no a priori assumptions on the solution, 

because two large subsonic pockets disappear and reappear 

during one period. This solution can thus not be found by 

linearizing shock motion. The parameters used here are 

M =1.20 , 2 = 4.449 10 4  and = 5.070 10 2
. 

 

Fig. (8). Consecutive snapshots of the periodic LCO motion with 

isobars. White contours delimit subsonic bubbles, panel 
displacement is given in black. 

 This simulation did not require tuning of any relaxation 

parameters. Fig. (9) shows the convergence study performed 

for this case in the space-time energy norm defined by 

w U :=
0

T

0

1 1

2
2 (wxx )

2dxdt

1/2

 

     
n=0

T

0

1 1

2
2 (ŵxx )

2dx t

1/2

        (27) 

with ŵ  the finite element approximation of the panel 

displacement. The relative error U  in this norm is taken 

with respect to the reference solution ne = 256 . The 

expected linear convergence in space and time is found, as 

both the spatial discretization and the time-marching scheme 

are first-order accurate. 

5. CONCLUSIONS 

 The LF-TSD fluid equation is presented as a model that 

owes its popularity to its simplicity. This allows for 

relatively fast computations and easier interpretation of 

results where viscosity and vorticity effects are not 

dominant. A robust discretization scheme that resolves 

robustness issues encountered in [5, 6], is proposed. 

Conservation of the discretization is proven. The monolithic 

fluid-structure-interaction approach presented here does not 

rely on the definition of relaxation parameters. A series of 
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numerical tests have displayed the performance of the 

discretization as well as the richness of the solution set of 

this relatively simple flow model. 

(a) 

 

(b) 

 

Fig. (9). Convergence plots in x  and t  for the LCO case. 

APPENDIX A 

Conservation 

 Here mass conservation is proven for the LF-TSD 

equation. Starting point is the divergence theorem, with 

:= { / t, / x, / y}  and n = {nt ,nx ,ny}
T

:  

]0;T [
{U,P,Q}dtdxdy =  

 

 

]0;T [

{0,T }

{U,P,Q}T ndA.         (28) 

 This integral can be approximated by dividing the 

domain ]0;T [  into rectangular prism volumes with sides  

passing through the half-points defined in the paper. The 

discrete form of the divergence theorem then becomes:  

n=1

N

i=1

H

j=1

V

(Ut + Px +Qy ) i, j
n

t xi y j =  

i=1

H

j=1

V

Ui, j
n

n=0

N
xi y j +  

n=1

N

j=1

V

Pi, j
n

i=1

H
t y j +  

n=1

N

i=1

H

Qi, j
n

j=1

V
t xi .          (29) 

 Integration is performed over xi := 1/2( xi 1 + xi )  

and y j := 1/2( yj 1 + yj ) . For the factor Ut + Px +Qy i, j

n
 

the conservative form of the discrete LF-TSD equation (20) 

with (22) is substituted. Now write  

i, j :
n=1

N

Ut i, j

n
t xi y j

= Ui, j
1 Ui, j

0
+

+Ui, j
2 Ui, j

1
+

+Ui, j
3 Ui, j

2
+ ...+

+Ui, j
N Ui, j

N 1 xi y j

= Ui, j
N Ui, j

0 xi y j

       (30) 

n, j :
i=1

H

Px i, j
n t xi y j

= (1 μ1, j )(P3/2, j
n P1/2, j

n ) +

+ μ0, j (P1/2, j
n P 1/2, j

n ) +

+ (1 μ2, j )(P5/2, j
n P3/2, j

n ) +

+ μ1, j (P3/2, j
n P1/2, j

n ) +

+ (1 μ3, j )(P7/2, j
n P5/2, j

n ) +

+ μ2, j (P5/2, j
n P3/2, j

n ) + ...+

+ (1 μH , j )(PH+1/2, j
n PH 1/2, j

n ) +

+μH 1, j (PH 1/2, j
n PH 3/2, j

n ) t y j

= (1 μH , j )PH+1/2, j
n

+ μH , jPH 1/2, j
n ) +

(1 μ0, j )P1/2, j
n μ0, jP 1/2, j

n t y j

      (31) 

and  

n, i :
j=1

V

Qy i, j
n t xi y j

= (Qi,3/2
n Qi,1/2

n ) +

+ (Qi,5/2
n Qi,3/2

n ) +

+ (Qi,7/2
n Qi,5/2

n ) + ...+

+(Qi,V+1/2
n Qi,V 1/2

n ) t xi

= Qi,V+1/2
n Qi,1/2

n t xi

       (32) 
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where quantities U , P , and Q  lying outside the discrete 

domain h  can be evaluated using the boundary conditions. 

Summing equation (30)-(32) over the remaining indices 

yields the required (29), conservation of the LF-TSD 

discretization in both space and time has thus been proven. 

APPENDIX B 

Matrix Diagonals 

 The diagonals in equations 16 are defined by:  

 
0Mk = 1  

 
1Ck =

4M

xi 1 + xi
 

 
0Ck =

4M

xi 1 + xi
 

H Kk
n+1 =

2

yj 1( yj + yj 1 )
 

2Kk
n+1 = 2μi 1, j

n+1 Ai 3/2, j
n+1

xi 2 ( xi 1 + xi )
 

1Kk
n+1 = 2(1 μi, j

n+1 )
Ai 1/2, j
n+1

xi 1( xi 1 + xi )
+  

  2μi 1, j
n+1 Ai 1/2, j

n+1

xi 1( xi 1 + xi )
+  

  2μi 1, j
n+1 Ai 3/2, j

n+1

xi 2 ( xi 1 + xi )
 

0Kk
n+1 =

m M \{0}

m
Kk

n+1
 

1Kk
n+1 = 2(1 μi, j

n+1 )
Ai+1/2, j
n+1

xi ( xi 1 + xi )
 

H Kk
n+1 =

2

yj ( yj + yj 1 )
         (33) 

rk
n+1 =

( +1)M 2

xi 1 + xi
 

(1 μi, j
n+1 ) i+1, j

n+1
i, j
n+1

xi

2

i, j
n+1

i 1, j
n+1

xi 1

2

+  

μi 1, j
n+1 i, j

n+1
i 1, j
n+1

xi 1

2

i 1, j
n+1

i 2, j
n+1

xi 2

2

.        (34) 
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