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Abstract: Face verification is different from face identification task. Some traditional subspace methods that work well in 

face identification may suffer from severe over-fitting problem when applied for the verification task. Conventional dis-

criminative methods such as linear discriminant analysis (LDA) and its variants are highly sensitive to the training data, 

which hinders them from achieving high verification accuracy. This work proposes an eigenspectrum model that allevi-

ates the over-fitting problems by replacing the unreliable small and zero eigenvalues with the model values. It also enables 

the discriminant evaluation in the whole space to extract the low dimensional features effectively. The proposed approach 

is evaluated and compared with 8 popular subspace based methods for a face verification task. Experimental results on 

three face databases show that the proposed method consistently outperforms others. 
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INTRODUCTION 

 In Biometrics, face recognition has two main applica-

tions, one is verification and the other is identification. Face 

verification is a task to determine whether a person claiming 

a given identity is the true claimant or an imposter. This can 

be done by computing the similarity between the probe sam-

ple and the samples of the claimed person in the gallery. The 

final decision is made based on a threshold. For face identi-

fication, however, the system has to determine the identity of 

a person by computing similarities between the probe and all 

the gallery samples in the database. The identity is deter-

mined based on the highest similarity score. Over the last 

decade numerous algorithms using linear as well as non-

linear techniques for face identification have been proposed 

and considerable good performance has been achieved [1-3]. 

However, these algorithms focus on face identification and 

very few of them are evaluated for face verification task. 

Although there are some attempts to distinguish face verifi-

cation from face identification [4, 5] many works ignore the 

intrinsic difference between face verification and face identi-

fication tasks. 

 In general, similar training algorithms can be used for 

both face verification and identification. However, there are 

some intrinsic differences between the two cases. While an 

identification system could be limited to identify an input as 

one of its known users, a verification system must be able to 

reject the unknown imposters. 

 Consequently, while the training set could include some 

sample images of all test subjects for certain identification 

applications, no sample of test imposters should be included 

in the training set for a verification system. Hence, a learning 

algorithm may suffer more severe over-fitting problem (or  
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poor generalization) for face verification task than for the 

face identification. Furthermore, decisions of a verification 

system depend on the operating points or thresholds while 

those of an identification system depend on the rank of the 

similarity. This leads to quite different evaluation methods 

for the verification system from the identification system. 

Thus, a method that has a high accuracy for the identification 

task may not necessarily achieve a high accuracy for the 

verification task. 

 Both face verification and identification are challenging 

as the human faces may undergo significant variations in 

appearance due to different facial expressions, illumination 

changes and different pose conditions. Subspace based 

methods such as the principal component analysis (PCA) [6], 

Bayesian maximum likelihood (BML) [7-9] and linear dis-

criminant analysis (LDA) [10, 11] have shown promising 

results for the face identification problem. This work ex-

plores some outstanding challenging problems of existing 

subspace based methods caused by the high dimensionality 

of the face image and the finite number of training samples 

in practice and proposes a new approach to alleviate these 

problems for the face verification task. 

 PCA maximizes the variances of the extracted features 

and hence minimizes the reconstruction error and removes 

noise residing in the discarded dimensions. The best repre-

sentation of data may not perform well from classification 

point of view because the total scatter matrix is contributed 

by both the within- and between-class variations. To differ-

entiate face images of one person from those of the others, 

the discrimination of the features is the most important. LDA 

is an efficient way to extract the discriminative features as it 

handles the within- and between-class variations separately. 

However, this method needs the inverse of the within-class 

scatter matrix. This is problematic in many practical face 

recognition tasks because the dimensionality of the face im-

age is usually very high compared to the number of available 

training samples and hence the within-class scatter matrix is 

often singular. 
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 Numerous methods have been proposed to solve this 

problem in the last decade. A popular approach called 

Fisherface (FLDA) [12] applies PCA first for dimensionality 

reduction so as to make the within-class scatter matrix non-

singular before the application of LDA. However, applying 

PCA for dimensionality reduction may lose discriminative 

information [13-15]. Direct-LDA (DLDA) method [16, 17] 

removes null space of the between-class scatter matrix and 

extracts the eigenvectors corresponding to the smallest ei-

genvalues of the within-class scatter matrix. It is an open 

question of how to scale the extracted features as the small-

est eigenvalues are very sensitive to noise. The null space 

approach (NDA) [15, 18] assumes that the null space con-

tains the most discriminative information. Interestingly, this 

appears to be contradicting the popular FLDA that only uses 

the principal space and discards the null space. A common 

problem of all these approaches is that they all lose some 

discriminative information, either in the principal or in the 

null space. 

 In fact, the discriminative information resides in the both 

subspaces. To use both the subspaces, dual-space approach 

(DSL) [14] extracts features separately from the principal 

and its complementary subspaces of the within-class scatter 

matrix. It scales features in the complementary subspace by 

the average eigenvalue of the within-class scatter matrix over 

this subspace. As eigenvalues in this subspace are not well 

estimated [14], their average may not be a good scaling fac-

tor relative to those in the principal subspace. Features ex-

tracted from the two complementary subspaces are properly 

fused by using summed normalized-distance [19]. Open 

questions of these two approaches are how to divide the 

space into the principal and the complementary subspaces 

and how to apportion a given number of features to the two 

subspaces. Furthermore, as the discriminative information 

resides in the both subspaces, it is inefficient and only 

suboptimal to extract features separately from the two sub-

spaces. 

 The above approaches focus on the problem of singular-

ity of the within-class scatter matrix. In fact, the instability 

and noise disturbance of the small eigenvalues cause great 

problems when the inverse of the matrix is applied such as in 

the Mahalanobis distance, in the BML estimation and in the 

whitening process of various LDA approaches. Problems of 

the noise disturbance were addressed in [20] and a unified 

framework of subspace methods (UFS) was proposed. The 

good recognition performance of this framework shown in 

[20] verifies the importance of the noise suppression. How-

ever, this approach applies three stages of subspace 

decompositions sequentially on the face training data and the 

dimensionality reduction occurs at the very first stage. As 

addressed in the literature [13-15], applying PCA for dimen-

sionality reduction may lose discriminative information. An-

other open question of UFS is how to choose the number of 

principal dimensions for the first two stages of subspace 

decompositions before selecting the final number of features 

in the third stage. The experimental results in [20] show that 

the recognition performance is sensitive to these choices at 

different stages. 

 In this work, we propose a three subspace based eigen-

spectrum decomposition methodology which uses two con-

trol points to differentiate the reliable, unreliable and zero 

eigenvalues. An eigenspectrum modeling procedure is pro-

posed that enables us to perform discriminant evaluation in 

the whole space. This eigenspace decomposition is not used 

to limit the discriminant evaluation in one subspace but to 

enable the evaluation in the whole space. The extracted fea-

ture hence contains both the reconstructive and the discrimi-

native information of training samples. The replacement of 

unreliable small and zero eigenvalues by the modeled values 

reduces the sensitivity of discriminative methods to the 

number of training samples, high dimensionality of the face 

images and noises in the data. It provides better generaliza-

tion or less over-fitting as compared to the existing methods 

for face verification tasks. 

 In addition, many subspace methods are evaluated only 

for face identification task. Their performances for face veri-

fication are unknown in the literature. This work experimen-

tally evaluates eight popular subspace based approaches for 

the face verification task and compares them with the pro-

posed method. Experimental results on three face databases 

demonstrate that the proposed method consistently outper-

forms others. In the following section, we present the prob-

lems of feature scaling, the subspace decomposition and ei-

genspectrum modeling. Following the above section, we 

discuss the eigenfeature scaling and extraction in the whole 

space using the proposed eigenmodel. Experimental results 

and discussions that compare our method with others are 

presented before drawing conclusions. 

FEATURE SCALING AND SUBSPACE DECOMPOSI-
TION 

Problems in Feature Scaling and Extraction 

 Given a set of properly normalized h -by-w  face images, 

we can form a training set of column vectors {Xij},  where 

hwn
ijX

=
R  is called image vector, by ordering the pixel 

elements of image j  of person i.  Let the training set contain 

p  persons and iq  sample images for person i.  The number 

of total training samples is l =
i=1

p
qi .  Letting 

i
c  be the 

prior probability of person i,  the within-class scatter matrix 

is defined by 
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T
iijiij
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q
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c
S           (1) 

where Xi =
1

qi
j=1

qi Xij .  The between-class scatter matrix b
S  

and the total (mixture) scatter matrix t
S  are defined by 
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b XXXXcS            (2) 
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where X =
i=1

p
ci Xi .  If all persons have equal prior 

probability, then ci =1 / p.  Let },,{, bwtgS g  represent 

one of the above scatter matrices. If we regard the elements 

of the image vector or the class mean vector as features, 

these preliminary features will be de-correlated by solving 

the eigenvalue problem 

g = gTSg g ,             (4) 

where 
g = [ 1

g , ..., n
g ]  is the eigenvector matrix of Sg ,  and 

g
 is the diagonal matrix of eigenvalues 

g
n

g
,...,1  

corresponding to the eigenvectors. Suppose that the 

eigenvalues are sorted in descending order 1
g , ..., n

g .  

The plot of eigenvalues 
g
k  against the index k  is called 

eigenspectrum of the face training data. It plays a critical role 

in the subspace methods as the eigenvalues are used to scale 

and extract features. 

 If we compute all the eigenvalues 
w = diag( 1

w , ..., n
w )  

and eigenvectors 
w = [ 1

w , ..., n
w ]  of the n -by-n  

dimensional matrix w
S  using (4). The projection matrix 

w = [ 1
w / 1

w , ..., n
w / n

w ]  is so called whitened eigenvector 

matrix of w
S  with 1||=|| w

k
 and k

w = k
w .  This implies 

that if any one of the eigenvalues in (4) of these matrices is 

zero or close to zero then the corresponding eigenvector 
w

i
 

gets an infinite or semi-infinite weighting factor. If we 

discard the eigenvectors corresponding to the zero 

eigenvalues (that appear beyond the rank of w
S ), these 

eigenvectors are equivalently multiplied by zero. This can be 

viewed as an n -dimensional pattern vector ijX  is first 

represented by an n -dimensional eigenfeature vector 

Yij =
wT Xij ,  and then multiplied by a weighting function 

wk
w =

1 / k
w , k rw

0, rw < k n
,            (5) 

as shown in Fig. (1), where 
w
r  is the rank of Sw .  

 Conventional FLDA applies PCA first for dimensional 

reduction (DR) and then LDA is used for discriminant 

analysis [12]. Several questions arise pertinent to the amount 

of basis vectors or principal components to be retained in 

this DR and how they affect the performance from 

discrimination point of view. Detail discussions and 

experimental results can be found in [21]. To facilitate 

analysis one has to consider three important factors: limited 

number of training samples, dimensionality of the data and 

the presence of noise in the data. For image representation 

PCA is optimal and gives the most compact representation. 

Its reconstruction performance improves when more number 

of principal components are used. However, it is well known 

that keeping more components may lead to decreased 

classification performance in FLDA [11] and also for BML 

[22]. In the PCA step of FLDA, if more components are kept 

corresponding to the small eigenvalues (which encode 

noises), LDA process has to cater for noises as well, 

consequently over-fitting problem occurs and classification 

performance decreases [23]. For face verification 

applications, this problem can be more severe as compared 

to face identification because in the former, the probe 

imposter subjects are distinct and unknown during the 

training session. Therefore, the algorithm used for 

verification purpose should be designed to have more 

generalization capability (or less over-fitting problem) as 

compared to face identification algorithms. 

 Two major problems arise which are visible in the graph 

(Fig. 1). Firstly, although the eigenvalues in the region 

( k
w | m1 < k rw ),  where m1 is a control point, are within the 

range space (rank) of w
S  matrix, they are very small and 

noise component may dominate the eigenvalues. 

Furthermore, the finite number of training samples results in 

faster decay of the eigenvalues. When their inverses are used 

for scaling (5), the corresponding eigenvectors get undue 

heavy or semi-infinite weightage in this range, as shown in 

Fig. (1). These small eigenvalues cause misleading scaling in 

the whitening step and thus generalize poorly when exposed 

to entirely new (subject) data - a scenario which is 

commonly encountered in face verification and other pattern 

recognition applications. 

1 n 
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 ww
k

 F
k ww

k

 w
k

  N F

 m
1

 m
2

^

 r
w  

Fig. (1). Weighting functions of (5) and (14) in the face-, noise- and 
null-subspaces based on a typical real eigenspectrum. 

 Secondly, it is apparent from Fig. (1) that the 

eigenvectors n

w
rk

w

k 1}{
= +

 in the null space of w
S  are 

weighted by zero and thus this subspace is excepted from the 

discriminant evaluation. This is unreasonable because 

features in the null space have zero within-class variances 

based on the training data and hence should be more heavily 

weighted. It seems anomalous that the weighting function 
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increases with the decrease of the eigenvalues and then 

suddenly has a big drop from the maximum value to zero as 

shown in Fig. (1). Furthermore, weights determined by the 

inverse of 
w

k
 is, though optimal in terms of the ML 

estimation, dangerous when 
w

k
 is small (m2 < k rw ),  

where m2 is a control point. The small and zero eigenvalues 

are training-set-specific and very sensitive to different 

training sets [24]. Adding new samples to the training set or 

using different training set may easily change some zero 

eigenvalues to nonzero and make some very small 

eigenvalues several times larger. Therefore, these 

eigenvalues of the within-class scatter matrix are unreliable 

and need to be replaced by suitably modeled eigenvalues. 
Before proposing the eigenspectrum model, we first need to 
decompose the range space into reliable, unstable noise 

variation dominating subspace and null spaces. 

SUBSPACE DECOMPOSITION 

 We propose a methedology to estimate two control points 

1
m and 

2
m  which will segregate the reliable eigenvalues 

from the unreliable and near zero ones. As the inverse of the 

eigenvalues are used in the feature scaling (5), the noise 

disturbances and the limited training samples have little 

effect on the initial portion of the eigenspectrum (Fig. 1) but 

may substantially affect the feature stability in the latter 

portion of the range space where the eigenvalues are small or 

close to zero. Hence, the whole eigenspace 
n

R  spanned by 

eigenvectors 
n

k

w

k 1=}{  is decomposed into three subspaces: a 

reliable face variation dominating subspace (or simply face 

space) F = { k
w}k=1

m1 ,  an unreliable noise variation dominating 

subspace (or simply noise space) 2
= 1

}{=
m

mk

w

k
N  and a null 

space Ø
n
mk

w

k
2

=}{=  as illustrated in Fig. (1). 

Estimation of m1 

 The rank of w
S  is 

w
r min(n, l p).  In practice, the 

rank of a scatter matrix usually reaches this maximum values 

unless some training images are linearly dependent. Even in 

this rare case, the rank 
w
r  can be easily determined by 

finding the maximal value of k  that satisfies k
w > ,  where 

 is a very small positive value comparing to 1
w .  As face 

images have similar structure, significant face components 

reside intrinsically in a very low-dimensional (
1
m -

dimensional) subspace. For a robust training, the database 

size should be significantly larger than the face 

dimensionality m1,  although it could be, and usually in 

practice is, much smaller than the image dimensionality n.  
Thus, in many practical face verification training tasks we 

usually have 
 
m1 = rw = n.  As the face component typically 

decays rapidly and stabilizes, eigenvalues in the face 

dominant subspace, which constitute the initial portion of the 

eigenspectrum, are the outliers of the whole spectrum. It is 

well known that median operation works well in separating 

outliers from a data set. To determine the start point of the 

noise dominant region m1 +1,  we first find a point near the 

center of the noise region by 

med
w = median k

w  | k rw{ }.            (6) 

 The distance between 
w

med
 and the smallest nonzero 

eigenvalue is dm1,rw = med
w

rw

w .  As eigenvalues tend toward 

equality in N  and are highly disparate in F,  the distance 

w
rm

d ,1
 that indicates the half range of the eigenvalue 

variation in N  is very small comparing to the highly 

disparate eigenvalues in F.  Therefore, 
w
rm

w

med
d ,1

+  is 

proposed as the upper bound of the unreliable eigenvalues to 

separate the highly disparate subspace F  from the flat 

subspace N.  Although this is a reasonable choice of the 

upper bound of the unreliable eigenvalues, it may not be 

optimal in all cases considering the great variation of image 

size and number of training samples in different applications. 

More generally, the start point of the noise region 1
1
+m  is 

estimated by 

m1+1
w = max k

w  | k
w < ( med

w
+ μ( med

w
rw

w )){ },         (7) 

where μ  is a constant. The optimal value of μ  may be 

slightly larger or smaller than 1 for different applications. To 

avoid exhaustive search for the best parameter value, μ  is 

fixed to be 1 in all experiments of this paper for fair 

comparisons with other approaches. 

Estimation of m2 

 To differentiate the unreliable eigenvalues from the 

larger ones we employ the ratios of the successive eigenval-

ues of the eigenspectrum to decompose the whole ei-

genspace. The phenomenon that the eigenspectrum acceler-

ates its decrease is caused by the limited number of training 

samples and noises present in them. To study this, we define 

eigenratios as 

.1,

1

ww

k

w

kw

k
rk <=

+

           (8) 

 The plot of eigenratios 
w

k
 against index k is called ei-

genratio-spectrum. Fig. (2) shows a typical eigenratio-

spectrum of a real face training database. The limited num-

ber of the training samples causes the increase of the eigen-

ratios. The corresponding eigenvalues are thus unreliable. 

 We examined several different face databases, the eigen-

ratio plots shown in Fig. (2) is a general behavioral pattern 

that all the eigenratios of different databases portray. It is 

apparent from the graph that the eigenratios first decreases 

very rapidly, then stabilizes and finally increases. The in-

crease of the eigenratios should not be the behavior of the 

true variances. Therefore, the start point of the unreliable 

region 1
2
+m  is estimated by 

m2+1
w

= min k
w ,1 k < rw{ }.           (9) 



Face Verification Using Modeled Eigenspectrum The Open Artificial Intelligence Journal, 2008, Volume 2    39 

1

1.009

1.039

1.069

1.099

1.129

1.15

r
w

m
2  

Fig. (2). Eigenratio-spectrum (8) from a real eigenspectrum. 

 A typical such 
2
m  value of a real eigenspectrum is 

shown in Fig. (2). 

EIGENSPECTRUM MODELING 

 If we regard ijX  as samples of a random variable vector 

X,  the eigenvalue 
w

k
 is a variance estimate of X  projected 

on the eigenvector 
w

k
 estimated on the training samples. It 

usually deviates from the true variance of the projected 

random vector X  due to noise and the finite number of 

training samples. Thus, unreliable eigenvalues need to be 

replaced by some model value to alleviate the over-fitting 

problem. As the eigenspectrum typically decays rapidly and 

stabilizes, we can model it by a function of the form f1/  that 

can well fit to the decaying nature of the eigenspectrum. The 

function form f1/  was used in BML approach [7] to fit the 

eigenspectrum in the whole range subspace }1|{
w

w

k
rk  

and then to extrapolate eigenvalues in the null space 

}<|{ nkr
w

w

k
 for computing an average eigenvalue. 

Different from BML approach [7], this work uses function 

form f1/  to fit only the reliable part of eigenspectrum 

}1|{ 1mk
w

k
 and then to extrapolate eigenvalues in the 

noise subspace { k
w | m1 < k m2}.  

 We propose to model the eigenspectrum by 

,1     ,=ˆ
w

w

k
rk

k +
         (10) 

where  and  are two constants. As the eigenspectrum in 

the face space is dominated by the face structural 

component, the parameters of  and  is determined by 

fitting the model to the real eigenspectrum in the reliable 

face space F.  While not limiting ourselves from other 

possible fitting methods, in all experiments of this work, we 

simply determine  and  by letting ww

11
=ˆ  and 

ˆ
m1

w = m1

w ,  which yields 

,
1)(

=

1

1

1

11

w

m

w

w

m

w
m

         (11) 

.=

1

1

1

11

w

m

w

ww

m
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         (12) 

 Since the eigenspectrum decays very fast, we plot the 

square roots 
w

k

w

k
=  and 

w

k

w

k
ˆ=ˆ  for clearer 

illustration (we still call them eigenspectrum for simplicity). 

A typical real eigenspectrum 
w

k
 and its model 

w

k
ˆ  are 

shown in Fig. (1). We see that the model 
w

k
ˆ  fits closely to 

the real 
w

k
 in the face space F  but has slower decay in the 

noise space N.  The faster decay of the real eigenspectrum 
w

k
 in N  due to noise and the limited number of training 

samples is what we want to slow down (Fig. 1). 

EIGENFEATURE SCALING AND EXTRACTION 

 According to LDA criteria, the optimal discriminative 

features should have smallest within-class variations and 

largest between-class variations. As pointed out in [25], 

LDA can be carried out in two operations: first eigen-

decomposition of the with-class scatter matrix, followed by 

the eigenvector scaling or whitening and the second eigen-

decomposition of the transformed between-class variation 

matrix. The biggest hurdle comes in the whitening process 

where the inverses of the eigenvalues of the within-class 

scatter matrix are used to scale the eigenvectors or features. 

Over-fitting problems occur here due to the high 

dimensionality of face image and the limited number of 

training samples. As elaborated before the problems of 

feature scaling and extraction, the existing scaling function 

(5) gives undue heavy weightage to the corresponding 

eigenvectors in the range {k | m1 < k rw},  resulting in poor 

generalization to the new data. Moreover, eigenvectors 

corresponding to the zero eigenvalues are lost and they fail 

to contribute to the discriminant evaluation. Hence, the small 

and zero eigenvalues need to be replaced by the modeled 

eigenvalues. This replacement of eigenvalues alleviates over-

fitting problems and also enables us to perform discriminant 

evaluations in the whole space. 

Eigenfeature Scaling 

 Although there is always noise component in F  as noise 

affects every element of the image vector, its variance is very 

small comparing to the large variance of the face structural 

component in F.  In N,  however, noise component may 

dominate in the variance changes and the finite number of 

training samples results in faster decay of the variances. 

Therefore, the decay of the eigenvalues should be slowed 

down to compensate the effect of noise and the finite number 

of training samples. This can be done by replacing the 

eigenspectrum with the proposed model (10). In the null 

space, we have no information about the variation of the 

eigenvalues and hence all features are treated in a same way. 

The zeros variance in the null space is only an estimate on 
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one set of the training data. Another set of training data may 

easily make them nonzero, especially when larger number of 

training samples are used. Therefore, we should not trust the 

zero variance and derive an infinite or very large feature 

weights in this space. However, based on the available 

training data that result in zero variances in the null space, 

the feature weights in the null space should not be smaller 

than those in the other subspaces. 

 Therefore, we keep the eigenvalues in the face structure 

subspace F  unchanged, replace the unreliable small 

eigenvalues in the noise dominating subspace N  by the 

model ,=ˆ

+k

w

k  and replace the zero eigenvalues in null 

space Ø  by the constant ˆ
rw+1
w .  Thus, the modeled 

eigenspectrum 
w

k

~
 is given by 

.

<,
1

,

<,

=
~

2

21

1

++

+

nkm
r

mkm
k

mk

w

w

k

w

k
        (13) 

 The proposed feature weighting function is then 

.1,2,...=  ,
~

1
=~

nkw
w

k

w

k
          (14) 

 Fig. (1) shows the proposed feature weighting function 
w

k
w
~  calculated by (11), (12), (13) and (14) comparing with 

that 
w

k
w  of (5). Obviously, the new weighting function 

w

k
w
~  

is identical to 
w

k
w  in the face structural dominating subspace 

F,  increases along with k  at a much slower pace than 
w

k
w  

in the noise dominating subspace N  and has maximal 

constant weights instead of zero of 
w

k
w  in the null space Ø.  

 Using this weighting function and the eigenvectors k
w ,  

training data are transformed to 

 
Yij = n

wT Xij ,            (15) 

where 

 n
w = [wk

w
k
w ]k=1

n = [w1
w

1
w , ...,wn

w
n
w ]        (16) 

is a full rank matrix that transforms an image vector to an 

intermediate feature vector. There is no dimension reduction 

in this transformation as ijY
~

 and ijX  have the same 

dimensionality n.  

Eigenfeature Extraction 

 After the above feature transformation and scaling, a new 

between-class scatter matrix is formed by vectors ijY
~

 of the 

transformed training data as 

,)
~

)(
~
(=

~

1=

T
iii

p

i

b YYYYcS          (17) 

where ij
i
q

j
i

i Y
q

Y
~1

=
~

1=
 and 

 

Y =
i=1

p ci
qi

j=1

qi Yij .  

 The transformed features ijY
~

 will be de-correlated for b
S
~

 

by solving the eigenvalue problem as (4). Suppose that the 

eigenvectors in the eigenvector matrix 
 n

b = [ 1
b , ..., n

b ]  are 

sorted in descending order of the corresponding eigenvalues. 

The dimensionality reduction or feature extraction is 

performed here by keeping the eigenvectors with the d  

largest eigenvalues 

 d
b = [ k

b ]k=1
d = [ 1

b , ..., d
b ],           (18) 

where d  is the number of features usually selected by a 

specific application. Thus, the proposed feature scaling and 

extraction matrix U  is given by 

U = n
w

d
b ,            (19) 

which transforms a face image vector X,  
 
X R

n ,  into a 

feature vector F,  
 
F R

d ,  by 

.= XF
T

U           (20) 

 We witness that the three-subspace based eigenspectrum 

decomposition proposed in this work is only used to replace 

the unreliable small and zero eigenvalues by the model 

values. The discriminant evaluation (here the evaluation of 

the eigenvalues of b
S
~

) is performed in the full space  R
n .  

This approach extracts the discriminative features from the 

whole space by searching the most discriminative features in 

the full space. Thus, the proposed method is based on the 

global optimization, different from the local optimization in 

a subspace of approaches FLDA [12], DLDA [16, 17], NDA 

[15, 18] and UFS [20] and different from the two separate 

local optimizations in two subspaces of the dual-space 

approaches in [14, 19]. 

THE PROPOSED ALGORITHM 

 The proposed face verification using modeled 

eigenspectrum (MES) approach is summarized below: 

 At the training stage: 

1. Given a training set of normalized face image vectors 

{Xij},  compute w
S  by (1) and solve the eigenvalue 

problem as (4). 

2. Estimate 
1
m value using (6) and (7). 

3. Estimate 
2
m value using (8) and (9). 

4. Decompose the eigenspace into face-, noise-, and 

null-space uisng 
1
m and 

2
m  values. 

5. Transform the training samples represented by ijX  

into ijY
~

 by (15) with the weighting function (14) 

determined by (8), (9), (11), (12) and (13). 
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6. Compute b
S
~

 by (17) with ijY
~

 and solve the 

eigenvalue problem as (4). 

7. Obtain the final feature scaling and extraction matrix 

by (16), (18) and (19) with a predefined number of 

features d.  

 At the enrollment or registration stage: 

1. Extract d -D feature vector F  from the enrolled n -D 

normalized face image vector X  by (20) using the 

feature scaling and extraction matrix U  obtained in 

the training stage (19). 

2. Store the extracted feature vector and the registration 

ID into the gallery feature vector set. 

 At the verification stage: 

1. Extract d -D feature vector F  from the n -D 

normalized probe face image vector X  by (20) using 

the feature scaling and extraction matrix U  obtained 

in the training stage (19). 

2. Compare or match the probe feature vector with that 

in the gallery feature vector set corresponding to the 

claimed ID. 

In the experiments of this work, cosine distance measure 

between a probe feature vector 
P
F  and a gallery 

feature vector 
G
F  

22

=),(
GP

G

T

P

GP
FF

FF
FFdst         (21) 

is applied in matching two feature vectors, where 
2

•  is the 

norm 2 operator. 

ANALYSIS AND COMPARISONS 

 Subspace methods like FLDA, DLDA, UFS and NDA 

approaches discard a subspace before the discriminant 

evaluation. Therefore, they perform a local optimization 

process and hence their extracted features are suboptimal or 

are the most discriminative only in a subspace. Although 

BML works in the whole space, it does not evaluate the 

discriminant value and hence the whole face image must be 

used as features in the verification process. It performs well 

for the identification problem but as we will see in the 

experiments, it suffers from severe over-fitting problem for 

the verification task. Although the dual-space based 

approaches do not throw away any subspace before the 

discriminant evaluation, it is inefficient or only suboptimal 

to evaluate the discriminant value and extract features 

separately in two subspaces and then to combine them. Other 

open questions of the dual-space based approaches include 

how to divide the space into the two subspaces and how to 

apportion the given number of features to the two subspaces. 

 The proposed algorithm (MES) in this work has two 

important and novel ingredients. First, the three subspace 

based eigenspectrum decomposition differentiates the 

reliable, unreliable and zero eigenvalues. Two reasonable 

decomposition points are determined by the algorithm. This 

eigenspace decomposition is not used to limit the 

discriminant evaluation in one subspace but to enable the 

evaluation in the whole space. Thus, the proposed method is 

based on the global optimization that extracts features by 

searching the most discriminative ones in the whole space. 

Second, the parameters of the eigenspectrum model are 

determined by the reliable portion of the real eigenspectrum 

and the modeled eigenvalues are then used to replace the 

unreliable small and zero real eigenvalues. This reduces the 

sensitivity of the extracted features to the dimensionality of 

face image, the number of training samples and noise 

disturbance. Consequently, the proposed approach alleviates 

the over-fitting problem that often occurs in the training 

process with limited number of high dimensional samples. 

As discussed before, the face verification task may suffer 

from more severe over-fitting problem (or poorer 

generalization) than the face identification task. The 

proposed MES approach facilitates a discriminative and 

stable low-dimensional feature representation of the face 

image, which is verified in the following experiments on the 

face verification task. 

EXPERIMENTS 

 Three popular face databases: AR database, FERET 

database 1 and FERET database 2 are used in the 

experiments. Each database is partitioned into training, 

gallery and probe sets. In all experiments reported in this 

work, images are preprocessed, aligned and normalized 

following the CSU Face Identification Evaluation System 

[26]. Face verification is performed by accepting a claimant 

if the subject's matching score is greater than or equal to a 

threshold and rejecting the claimant if its matching score is 

lower than the threshold. Verification performance is 

evaluated using two measures: false acceptance rate (FAR) 

and the false rejection rate (FRR). FAR is the ratio of the 

number of accepted imposter matchings to the total number 

of imposter matchings. FRR is the ratio of the number of 

rejected genuine matchings to the total number of genuine 

matchings. The plot of FRR against FAR is called the 

receiver operating characteristics (ROC) curve. The system 

performances at various different operating points 

(thresholds) are characterized by the ROC curve. The equal 

error rate EER, defined by EER=FAR=FRR at a specific 

threshold, serves as a single number indicator of a 

verification system's performance. 

 The proposed MES method is tested and compared with 

8 other popular subspace based approaches: PCA [6] with 

Euclidian distance (PCAE), PCA with Mahalanobis distance 

(PCAM), FLDA [12], DLDA [16], BML [8], NDA [18], 

UFS [20] and DSL [14] approaches. The proposed MES 

approach has only one free parameter μ  in (7). To avoid 

exhaustive search for the best parameter value, μ  is fixed to 

be 1 in all experiments of this paper for fair comparisons 

with other approaches. The parameters of UFS are applied 

that result in the best performance through an exhaustive 

search in the experiments of [20]. We conduct the 

experiments starting with the number of features d =10,  
incremented by 2 each time up to p 1,  where p  is the 
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number of training subjects. Experimental results are 

presented in this paper for each approach where the 

minimum EER is obtained. 

Results on AR Database 

 The color images in AR database [27] are converted to 

gray-scale and cropped into the size of 120 170,  same as 

the image size used in [27, 28]. The pictures of most subjects 

were taken in two sessions (separated by two weeks). In our 

experiment, 75 subjects with 14 non-occluded images per 

subject were selected from the AR database. The first 7 

images (numbers 1-7, first session [27]) of 60 subjects are 

used in the training and also serve as gallery images. The 

second 7 images (numbers 14-20, second session [27]) of the 

60 subjects serve as probe genuine images. The remaining 15 

subjects with 14 images per subject are used as probe 

imposters. The total number of genuine matches is 

2,940=6077  and the total number of imposter matches 

is 14 7 15 60 = 88, 200.  For this large image size, we 

first apply PCA to remove the null space of t
S  and then 

apply the MES approach on the 419-dimensional feature 

vectors. Fig. (3) shows the ROC curve that plots the false 

rejection rate (%) against the false acceptance rate (%). 

 

Fig. (3). False rejection rate against the false acceptance rate on the 

AR face database of 420 training and gallery images (60 subjects), 

420 probe genuine images (60 subjects) and 210 probe imposter 

images (15 subjects). The total number of genuine matches is 

7 7 60 = 2,940  and the total number of imposter matches is 

14 7 15 60 = 88,200.  

 The ROC curves of PCAE and PCAM do not appear in 

Fig. (3) because their FRRs and FARs are so high that their 

values are out of the range of Fig. (3). Their EERs are 

numerically recorded in Table 1. We see that BML approach 

does not perform well for the face verification task although 

it is one of the best approaches for the face identification 

task. The problem of BML for face verification was also 

addressed in [29]. Fig. (3) shows that the proposed MES 

method consistently outperforms all other 8 approaches for 

all different operating points (thresholds). 

 

 

Results on FERET Database 1 

 In FERET database, the face image variations include facial 

expression and other details (like glasses or no glasses), 

illumination, pose, and aging [30]. 2388 images comprising 

of 1194 subjects (two images FA/FB per subject) are 

selected from the FERET database. Images are cropped into 

the size of 33 38.  Images of 497 subjects are randomly 

selected for training and the remaining images of 697 

subjects are used for testing. For this database, the subjects 

used for training are different from those used for the testing. 

There is no overlap in subjects between the training and the 

testing data sets. The gallery data set contains 697 subjects 

with 1 image per subject. The remaining 697 images of the 

same subjects as in the gallery serve as both the probe 

genuine images (when matched with gallery images of same 

subjects) and the probe imposters (when matched with 

gallery images of different subjects). The total number of 

genuine matches is 697=1697  and the total number of 

imposter matches is 697 696 = 485,112.  

 

Fig. (4). The ROC curve that plots the false rejection rate (%) 

against the false acceptance rate (%). False rejection rate against the 

false acceptance rate on the FERET database 1 of 994 training 

images (497 subjects), 697 gallery images (697 subjects) and 697 

probe images (697 subjects). The total number of genuine matches 

is 697 1= 697  and the total number of imposter matches is 

697 696 = 485,112.  

 The ROC curves of FLDA and DLDA do not appear in 

Fig. (4) because their FRRs and FARs are too high to be 

included in Fig. (4). Their EERs are numerically recorded in 

Table 1. This experiment shows that FLDA and DLDA 

suffer from severe over-fitting problem. Although BML 

performs better than in the first experiment, it still 

underperforms the traditional PCAE for some operating 

points. Fig. (4) shows again that the proposed MES method 

consistently achieves the lowest FAR and FRR among the 9 

tested approaches for all different operating points. 

Results on FERET Database 2 

 This database is constructed, similar to one data set used 

in [31], by choosing 256 subjects randomly with at least four  
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images per subject form FERET database. However, we use 

the same number of images (four) per subject for all 

subjects. Three images per subject of the first 200 subjects 

are used for training and also serve as gallery images. The 

remaining 200 images of the 200 subjects are used as probe 

genuine images. All 4 images of the remaining 56 subjects 

serve as probe imposter images. The size of the normalized 

image is 130 150,  same as that in [31]. For such a large 

image size, we first apply PCA to remove the null space of 
t
S  and then apply the proposed MES approach on the 599-

dimensional feature vectors. 

 

Fig. (5). False rejection rate against the false acceptance rate on the 

FERET database 2 of 600 training and gallery images (200 

subjects), 200 probe genuine images (200 subjects) and 224 probe 

imposter images (56 subjects). The total number of genuine 

matches is 200 3 = 600  and the total number of imposter matches 

is 4 3 56 200 =134,400.  

 For this database we conducted 4 runs of training and 

testing with distinct probe genuine image set in each run. 

More specifically, the th
i  images ( 1,2,3,4=i ) of all training 

subjects are chosen to form probe genuine set and the 

remaining 3 images per subject serve as the training and 

gallery images. The total number of genuine matches is 

600=3200  and the total number of imposter matches is 

4 3 56 200 =134, 400.  Fig. (5) shows the ROC curves 

of the 4 runs of training and testing. 

 The ROC curves of FLDA and BML do not appear in 

Fig. (5) because their FRRs and FARs are so high that their 

values are out of the range of Fig. (5). Their EERs are 

numerically recorded in Table 1. Although the second lowest 

ROC curve is different from the previous two experiments, 

Fig. (5) shows once more that the proposed MES method 

consistently delivers the most accurate face verification for 

all different operating points. 

 For an accurate record, various ERRs (in %) obtained 

from the above three experiments are numerically recorded 

in Table 1. It clearly demonstrates the superior performance 

of the proposed MES approach to all other approaches tested 

in the experiments on three different face databases. 

Table 1. Equal Error Rate (ERR %) of Various Approaches 

on Three Different Databases 

 

Databases AR FERET1 FERET2 

PCAE 34.2 5.1 13.0 

PCAM 21.9 6.0 15.5 

FDA 13.2 35.0 34.8 

NDA 5.0 4.0 3.6 

DLA 5.2 27.0 10.5 

BML 19.1 7.9 23.8 

UFS 4.3 3.0 2.7 

DSL 5.9 3.8 2.5 

MES 2.6 2.0 2.0 

 

Summary of the Experimental Results 

 We have conducted 3 sets of experiments on 3 different 

face databases that evaluate 9 subspace based approaches for 

the face verification task. Unlike face identification 

experiments where some sample images of all probe subjects 

can be included in the training, in all verification 

experiments of this work, the subjects of the probe imposters 

are excluded in the training. Moreover, in FERET database 

1, the training subjects are different from those in the gallery 

and probe sets. The experimental results verify the difference 

in terms of accuracy between the face verification and the 

face identification. Methods that work well for the face 

identification may not necessarily do the same for the face 

verification task. BML is a good example for this. It is thus 

useful to test the verification performances of various 

approaches that were developed and tested for identification 

task. 

 The experiments show that UFS, NDA and DSL 

approaches perform better than PCAE, PCAM, FLDA, 

DLDA and BML approaches. UFS keeps only a small 

principal subspace with largest eigenvalues for the 

discriminant evaluation. It suppresses more noise and thus 

has less over-fitting problem comparing to the FLDA and 

DLDA that perform the discriminant evaluation in the whole 

range space. The good performance of NDA verifies that the 

null space contains important discriminative information and 

should not be simply discarded in the feature extraction. 

Another property of NDA is that it does not scale the 

features by the eigenvalues. This is one possible reason why 

NDA has better generalization than FLDA, DLDA and 

BML. DSL extract two sets of features, one from a principal 

subspace and the other from its complementary subspace 

including the null space. Its relative good performance 

shows that the discriminative information resides in the both 

subspaces. 

 However, none of the three better approaches, UFS, 

NDA and DSL can consistently achieve the second best 

performance in the three experiments. One reason could be 

that all of them are suboptimal that extract features by the 

discriminant evaluation in a subspace or separately in two 
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subspaces. The proposed MES method shows superior 

verification performances to all the other 8 subspace based 

approaches. In all three experiments on the different face 

databases, the proposed MES method consistently achieves 

the lowest error rates at all different operating points. It is 

important to test a verification system at different operating 

points because there is no optimal threshold for a verification 

system and different applications in practice has different 

requirement of FAR and FRR. The superior verification 

performance of the proposed method is attributed to the 

eigenspectrum modeling that enables a global optimization 

by the discriminant evaluation in the whole space and 

alleviates the over-fitting problem by replacing the unreliable 

or noise sensitive small and zero eigenvalues by the modeled 

values. 

CONCLUSIONS 

 There are some intrinsic differences between the face 

verification and face identification. A method that performs 

well for the identification task may not necessarily achieve a 

high accuracy for the verification task. This paper addresses 

the face verification problem and explores several popular 

subspace based approaches for face verification. Experi-

ments on three face databases compare the verification 

performances of eight well known approaches, PCAE, 

PCAM, FLDA, NDA, DLDA, BML, UFS and DSL. The 

verification performances of some of these approaches are 

indeed quite different from those in the identification 

evaluation reported in the literature. 

 This work shows problems of feature scaling and 

extraction from high dimensional data such as face image 

that are often encountered in computer vision and pattern 

recognition where the within-class scatter matrix degenerates 

due to the very small and zero eigenvalues. To alleviate these 

problems we decompose the eignespace into three subspaces 

and generate an eigenspectrum model for face data. The 

proposed eigenspectrum model alleviates the over-fitting 

problem by replacing the small and zero eigenvalues in the 

noise dominating and null spaces with the model values. It 

also enables a global optimization in the feature extraction 

by performing the discriminant evaluation in the whole 

space. Therefore, the extracted features are the most 

discriminative in the whole space and stable or less sensitive 

to the noise disturbance, the data dimensionality and the 

number of training samples. Extensive experiments on three 

face databases demonstrate that the proposed approach 

consistently outperforms other 8 popular subspace based 

approaches tested in this work. 
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