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Abstract: This paper presents a novel distributed genetic algorithm (GA) architecture for the design of vector quantizers. 

The design is based on a multi-core architecture, where each island of the GA is associated with a hardware accelerator 

and a softcore processor for independent genetic evolutions. An on-chip RAM with a mutex circuit is adopted for the mi-

gration of genetic strings among different islands. This allows a simple and flexible migration for the implementation of 

hardware distributed GA. Experimental results shows that the proposed architecture has significantly lower computational 

time as compared with its software counterparts running on multicore processors with multithreading for GA-based opti-

mization. 
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1. INTRODUCTION 

 Genetic algorithms (GAs) [1] are a class of gen-

eral-purpose search algorithms for solving optimization 

problems by simulating natural evolution over populations of 

candidate solutions. The algorithms have been found to be 

effective for solving problems in engineering, science and 

business. However, when they are applied to complex prob-

lems, the computational complexity may become very high. 

 One way for reducing the computational time is to em-

ploy the distributed GA algorithm [2-4]. There are multiple 

populations in a distributed GA. Each population evolves 

independently most of the time. Different populations may 

exchange genetic strings occasionally. With smaller popula-

tion size, the distributed GA may be able to converge at 

faster rate while finding good solutions. To find near optimal 

solutions, however, large population size may still be de-

sired. This will still result in long computation time. 

 The objective of this paper is to present a VLSI architec-

ture for distributed GA. The architecture is able to accelerate 

the GA even for large population size. The application con-

sidered in this paper is vector quantization (VQ) [5]. When 

applied for VQ codeword training, the GA requires large 

storage size and long training time. Therefore, the VQ design 

is a good example for verifying the effectiveness of the pro-

posed GA architecture. 

 In the proposed architecture, each island of the GA is 

associated with a hardware accelerator and a processor for 

independent genetic evolutions. An on-chip RAM with     

a mutex circuit is adopted for the migration of genetic strings  
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among different islands. This allows a simple and flexible 

migration for the implementation of hardware distributed 

GA. 

 Although some existing hardware architectures [6, 7] can 

be used for the design of the hardware accelerator for genetic 

evolution in each island, these architectures have the follow-

ing drawbacks. First of all, large storage size is required for 

processing the genetic strings. Usually two set of population 

memories are used for the regeneration process. One mem-

ory contains the parent strings; the other stores the child 

strings after the regeneration. In addition, there is overhead 

for switching one memory to another at the beginning of a 

new generation. The second drawback is that the regenera-

tion process is based on the fitness function. The selection of 

parents therefore may need large chip area for hardware im-

plementation. In addition, the mutation and crossover opera-

tions also result in high area cost when concurrent process-

ing over all the genetic strings is desired. 

 The proposed hardware accelerator is able to eliminate 

the drawbacks stated above. The steady-state GA [8, 9] is 

used for the accelerator so that regeneration, mutation and 

crossover operations can be simplified. The accelerator con-

sists of population memory unit, mutation and crossover 

unit, fitness evaluation unit, and survival test and update 

unit. It contains only one population memory for reducing 

the area cost. Both the mutation and crossover operations are 

performed concurrently for accelerating the GA. In addition, 

a pipeline architecture with direct memory access (DMA) 

operation is adopted for the fitness function evaluation. A 

hardware sorting structure is adopted for survival test. 

 The proposed architecture has been implemented on field 

programmable gate array (FPGA) devices [10] so that the 

processors in the architecture can be implemented by soft-

core CPUs [11]. Using the reconfigurable hardware, we are 
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then able to construct a system on programmable chip 

(SOPC) system for the genetic VQ design. As compared 

with its software counterparts running on multicore proces-

sors with multithreading, numerical results reveal that the 

proposed FPGA-based GA architecture attains higher per-

formance with significantly lower training time for VQ de-

sign. These fact demonstrate the effectiveness of our design. 

2. STEADY-STATE GA FOR VQ DESIGN 

 Before presenting the architecture, we first briefly review 

the steady-state GA [8] for VQ design. The goal of a VQ for 

data clustering is to partition a large data 

set },...,{ 1 t
xx= into N non-overlapping clusters 

N
CC ,...,

1
, where N >> t. The partitioning process is based 

on a set of codewords },...{ 1 Nyy , where the codewords 

and the vectors in  are of the same dimension w. Given a 

vector x , the x will be assigned to the cluster 
i

C  

when 

i=a(x)=arg min
1 j N

d(x,y j) ,          (1) 

where ),( vud  denotes a distance measure between two 

vectors u and v. In this paper, the squared distance is adopted 

as the distance measure. When applied for data reduction 

applications such as data compression, a vector x will be 

represented by the codeword 
i

y  when )(xi = . One 

cost function for the data reduction is the average distortion 

for representing x by i
y , as shown below 

D =
1

wt
d(xi , y (xi ) )

i=1

t
.          (2) 

 Given a data set , the objective of the VQ design is to 

find a set of codewords },...{ 1 Nyy  minimizing D in 

eq.(2). 

 In the steady-state GA for VQ design, there are P genetic 

strings for the genetic operations. Each string r represents a 

set of N codewords {y1, ...yN }r . Note that these strings are 

strings of vectors, not strings of binary numbers. 

 There is no concept of generation in steady-state GA. Let 

population S be the set of P genetic strings, which are called 

the parent strings. Initially, the P strings in S are randomly 

generated. Two strings (denoted by 
1
r  and 

2
r ) in S will be 

selected for mutation and crossover for creating a new child 

string (denoted by c). The fitness value of the child string is 

then evaluated and compared with the fitness value of all the 

parent strings in S. If the new string is inferior to all the par-

ent strings in S, no parent string will be removed. Otherwise, 

the parent string with lowest fitness value is replaced by the 

child string. 

 Note that because each string for the VQ design is actu-

ally a codebook, the memory access time for string retrieval 

may be long. Consequently, the retrieval process for 
1
r  and 

2
r  may be time-consuming. To reduce the memory access 

time, in the algorithm, the previous 
1
r  becomes the new 

2
r  

and then the new 
1
r  is chosen randomly from S. This selec-

tion scheme reduces the memory access time by half. 

 As the process of selection, crossover, mutation, and sur-

vival/replacement continues, the overall fitness of population 

will increase and the survival rate of new off-spring will di-

minish. At some point, the offspring survival rate will drop 

to zero. At this point, evolution has probably ceased and the 

algorithm may be terminated. The steady-state GA algorithm 

is more effective for the hardware design. Only one popula-

tion memory is required. In addition, crossover and mutation 

operations only operate on 
1
r  and 

2
r  instead of all strings 

in the population memory. 

 In the distributed steady-state GA, there are M islands. 

Each island i is associated with a separated population 
i

S . 

Genetic strings in each 
i

S  are evolved independently using 

steady-state GA until the offspring survival rate of 
i

S  drops 

to zero. A migration process is then activated by importing K 

genetic strings from island j, ij , and exporting K strings 

to island k, where j and k are randomly selected. After the 

migration, another new evolution based on steady-state GA 

is re-started. An iteration of the distributed steady-state GA 

consists of a migration process and a steady-state GA evolu-

tion. After each iteration, the best genetic string with highest 

fitness value is recorded. The iterations of the distributed GA 

is halted when identical best genetic string are found for L 

consecutive iterations. The entire distributed steady-state GA 

is completed when all the iterations of all the M islands are 

halted. 

3. THE PROPOSED ARCHITECTURE 

3.1. Architecture for Steady-State GA 

 We start with the architecture for steady-state GA, which 

is depicted in Fig. (1). It contains population memory, cross-

over & mutation unit, fitness evaluation unit, survival test & 

update unit, and Avalon bus interface. Both the population 

memory and crossover & mutation unit contain random 

number generators (RNGs). In this architecture, the 

population memory unit is devoted for storing the genetic 

strings. Moreover, the random selection of parent strings for 

subsequent crossover and mutation operations is also in-

cluded here. This selection is based on the RNG inside the 

population memory unit. All the crossover and mutation op-

erations are performed concurrently in the crossover & mu-

tation unit for producing a new child string c. The fitness 

value of the resulting string is then evaluated by the fitness 

evaluation unit. 

 Based on the fitness value, the goal of the survival test & 

update unit is to determine whether the child string c will 

survive. If it is the case, the parent string in the population 

memory unit with the worst fitness value will be replaced by 
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the child string. Each unit in Fig. (1) will be described in 

detailed as shown below. 

Population Memory Unit 

 The population memory contains a 2-pot RAM and a 

RNG unit. The 2-port RAM contains S, the set of P genetic 

strings. In our design, the implementation of the RAM is 

based on the embedded memory, which is provided by some 

FPGA devices such as Altera Stratix II. The goal of RNG 

unit in the population memory unit is to select randomly a 

string 
1
r  for the subsequent crossover and mutation opera-

tions. In our design, the cellular automata (CA) is adopted 

for the VLSI implementation of random number generator 

[12] due to its simplicity and regularity of the design. 

Mutation and Crossover Unit 

 Fig. (2) shows the basic structure of the mutation and 

crossover unit, which contains three shift registers for storing 

the strings 
1
r , 

2
r  and c, respectively. A number of RNGs, 

comparators, multiplexers and counters are then used for 

crossover and mutation. The major advantage of this archi-

tecture is that the crossover and mutation can be performed 

concurrently with low area cost. 

 As shown in Fig. (2), SHIFT REGISTER 1 and SHIFT 

REGISTER 2 contain strings 
1
r  and 

2
r , respectively. Note 

that the architecture does not randomly select new 
1
r  and 

2
r  from the population memory. In fact, only new 

1
r  is 

chosen from population memory. The new 
2

r  is actually 

the previous 
1
r . The memory access time and routing over-

head can then be significantly reduced. Based on the algo-

rithm, in the architecture, The SHIFT REGISTER 1 obtains 

1
r  from the population memory unit. The SHIFT REGIS-

TER 2 obtains 
2

r  from SHIFT REGISTER 1. 

 The crossover operations are accomplished by concur-

rently shifting the strings in SHIFT REGISTER 1 and 

SHIFT REGISTER 2 to MUX 1. Each shift register will shift 

one codeword at a time. As shown in Fig. (2), MUX 1 is a 

switch selecting the codewords of either 
1
r  or 

2
r , and 

route them to SHIFT REGISTER 3, which contains the re-

sulting child string c. The control line of MUX 1 is con-

nected to a comparator, which compares the value of RNG 1 

to that of a counter. The counter records the number of shifts 

made by the shift registers. The value of RNG 1 serves as a 

threshold here. When the counter value is less than the 

threshold, codewords of SHIFT REGISTER 1 (i.e., 
1
r ) goes 

to SHIFT REGISTER 3. Otherwise, codewords of 
2

r  will 

be selected. Consequently, the value of RNG 1 determines 

the crossover point. The value will be randomly generated 

prior to the shifting operations. 

 We also observe from Fig. (2) that the output codeword 

of MUX 1 will pass through the mutation unit before arriv-

ing the SHIFT REGISTER 3. Fig. (3) shows the architecture 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). The proposed hardware architecture of steady-state GA. 
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of the mutation unit. As shown in the figure, all w compo-

nents of the output codeword mutate concurrently. The mu-

tation circuit for each component i consists of 2 RNGs 

(termed RNG ia and RNG ib), one register (termed register 

i), one comparator (termed comparator i), one multiplexer 

(termed mux i). 

 The probability for mutation 
b

P  is stored in a separate 

register, and is broadcasted to all the mutation circuits. In the 

mutation circuit for each component i, the value of RNG ia 

is first compared with the Pb . The component i will be mu-

tated when the value of RNG ia is less than Pb . The mu-

tated value is then determined by RNG ib. 

Fitness Evaluation Unit 

 The goal of the fitness evaluation unit is to compute the 

average distortion of the mutated child string stored in 

SHIFT REGISTER 3 using eq.(2). Fig. (4) shows the archi-

tecture of the fitness evaluation unit, which is an N-stage 

pipeline, where N is the number of codewords. The pipeline 

fetch one training vector x per clock from the input. 

 The i-th stage, i = 1, ..., N  of the pipeline compute the 

squared distance between the training vector at that stage and 

the i-th codeword of the child string stored in the SHIFT 

REGISTER 3 of the mutation and crossover unit shown in 

Fig. (2). The squared distance is then compared with the cur-

rent minimum distance up to the i-th stage. If distance is 

smaller than the current minimum, then the i-th codeword 

becomes the new current optimal codeword, and the corre-

sponding distance becomes the new current minimum dis-

tance. After the computation at the N-th stage is completed, 

the current optimal codeword and current minimum distance 

are the actual optimal codeword and the actual minimum 

distance, respectively. 

Survival Test and Update Unit 

 This unit contains a hardware sorting circuit [13], which 

sorts the N parent strings in a descending order according to 

their fitness values. After the fitness evaluation operation is 

completed, the fitness value of the child string is used as the 

input to the sorting circuit. When the distortion of the string 

is larger than the parent string with lowest fitness value, the 

child string is not survival, and no updating operation is 

necessary. Otherwise, the parent string with highest distor-

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (2). The architecture of crossover and mutation unit. 
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tion is replaced by the child string. The sorting circuit is then 

activated to determine the new parent string with the highest 

distortion. 

3.2. Architecture of Each Island 

 The architecture of each island of the proposed distrib-

uted GA architecture is depicted in Fig. (5). From the figure, 

it can be observed that each island is associated with one 

hardware accelerator, one direct memory access (DMA) 

controller, and one softcore NIOS II processor. The 

hardware accelerator is adopted for speeding up the steady 

state GA computation associated with each island. The 

architecture of the accelerator is shown in Fig. (1). 

 Recall that training vectors are required for fitness 

evaluation. The set of training vectors are stored in the main 

memory. The DMA controller shown in Fig. (5) is used for 

delivering the training vectors from the main memory to the 

input of the fitness evaluation unit shown in Fig. (4). 

 The softcore processor in Fig. (5) is used for coordinating 

the distributed steady-state GA operations in each island. 

The softcore processors in different islands will operate in-

dependently. Each processor triggers the hardware accelera-

tor and DMA controller for regeneration, crossover and mu-

tation, fitness evaluation and survival test and update opera-

tions of its own island. The processor then checks for the 

offspring survival rate. When the survival rate drops to zero, 

it will then record the best string in the population, and acti-

vates the migration process for genetic strings. The migra-

tion process consists of exchanging the K genetic strings 

between the island and an on-chip RAM outside the island. 

After the migration process, the accelerator and DMA con-

troller will then be activated again for another evolution. The 

softcore processor will also determine when should the itera-

tions be terminated. A software flowchart for the softcore 

processor associated with each island is shown in Fig. (6). 

3.3. Architecture of the Distributed Steady-State GA 

 Fig. (7) depicts the architecture of the distributed 

steady-state GA. There are M islands, and each island has its 

own circuit. Therefore, there are M modules for genetic evo-

lution in Fig. (7), where each module corresponds to one 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). The architecture of mutation unit. 
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island. It has the architecture as shown in Fig. (5). Because 

each module has a softcore processor, the architecture in Fig. 

(7) can be viewed as an M-core circuit. It can also be ob-

served from Fig. (7) that all the modules share the same main 

memory, which contains the set of training vectors for fitness 

evaluation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The architecture of each island of the proposed distributed 
GA architecture. 

 

 One major difficulty for the hardware implementation of 

distributed GA algorithm is the string migration. Each island 

may randomly select a target island for string exchange. 

When the number of islands is large, the circuit for migration 

can be complicated. To simplify the string migration process, 

in addition to the M modules, the distributed GA architecture 

also contains a memory for the string migration. The mem-

ory, termed string migration cache, is shared by all the mod-

ules. 

 Based on the string migration cache, it is not necessary to 

design a circuit for selecting the target module for migration 

for each module. To perform the migration, each module 

competes for the exclusive access to the string migration 

memory. The winner exchanges K genetic strings with the 

cache. When the winner accomplishes its migration process, 

it releases the memory. At this point, another module may 

acquire the memory for the string migration. 

 The migration process based on the string migration 

memory does not actually perform the string exchange be-

tween two islands. In fact, an island winning the memory 

obtains the new string from its previous winner. However, 

the island does not donate its strings to its previous winner. 

The island will give its strings to the next winner. Therefore, 

in our architecture, there is no string exchange. Instead, the 

strings migrate from one winner to the next. The first winner 

will obtain new strings which are randomly generated in the 

memory. This scheme may have comparable performance to 

the string exchange scheme with significantly less hardware 

implementation complexity. 

 To protect the string migration memory from data cor-

ruption that can occur if more than one modules attempts to 

use the memory at the same time, a hardware mutex core is 

also used, as shown in the Fig. (7). The mutex allows coop-

erating modules to agree that one of them should be allowed 

mutually exclusive access to the string migration memory. 

 Note that, without the hardware mutex, the function for 

data corruption protection normally requires two separate 

"test" and "set" instructions between which, the processor in 

another module could also test for availability and succeed. 

This situation may leave two processors both thinking they 

successfully acquired mutually exclusive access to the string 

migration memory when clearly they did not. The atomic 

operation provided by the hardware mutex is essential for 

our string migration scheme. 

4. EXPERIMENTAL RESULTS 

 This section presents some physical performance meas-

urements of the proposed FPGA implementation. The target 

FPGA device for the hardware design is Altera Stratix II 

2S60 [14], which contains 288 DSP blocks and 24176 adap-

tive logic modules (ALMs) [15]. The Altera Quartus II with 

 

 

 

 

Fig. (4). The architecture of the fitness evaluation unit. 
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SOPC builder is used as the platform for our design. The 

vector dimension of codewords is 22=w . There are 32 

codewords (i.e., N = 32) in the VQ. The mutation probability 

is 
b

P  = 0.03125. The number of islands for the distributed 

GA is 3 (i.e., M = 3).  

 Table 1 shows the area cost of the architecture of 

steady-state GA, the architecture of each island, and the ar-

chitecture of distributed GA. The population size is P = 16 

for each island. As revealed in the table, the steady-state GA 

architecture consumes only 3096 ALMs. The population 

memory of the architecture is implemented by the embedded 

memory of the FPGA. The consumption of the population 

memory bits for the steady-state GA circuit is 16384 bits. 

Moreover, the circuit also uses 128 digital signal processing 

(DSP) 9-bit elements of the FPGA device for the implemen-

tation of squared distance computation in the fitness evalua-

tion unit. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). The flowchart for the softcore processor. 
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 The NIOS softcore CPU [11] and DMA controller also 

consume hardware resources. Therefore, it can be found 

from Table 1 that the area cost of the island architecture is 

higher than that of the steady-state GA architecture. How-

ever, the island architecture uses 7162 ALMs, which is only 

30% of the ALMs of the target FPGA device. The distrib-

uted GA system contains 3 island architectures, mutex cir-

cuit and SDRAM controller. Hence, the ALMs consumed by 

the entire distributed GA system is slightly higher than triple 

of that consumed by each island. 

 Fig. (8) shows the distribution of average distortion of 

the distributed GA with M = 3. The distribution is obtained 

by 200 independent executions of the distributed GA. The 

number of genetic strings of each island is P = 16. There are 

three islands. Therefore, the total number of genetic strings 

is 48. The training set contains 65536 vectors drawn from 

the image “Lena.” The distribution of basic steady-state GA 

(i.e., M = 1) is also included in the figure for comparison 

purpose. The number of genetic strings is 48 for the 

steady-state GA. The two GAs therefore are compared on the 

basis of the same number of total genetic strings. From the 

figure, we see that both GAs have similar distributions. 

Therefore, the employment of the distributed GA does not 

degrade the performance for the VQ design. 

 The CPU time of various distributed GA implementa-

tions are compared in Table 2. The distributed GAs are im-

plemented with M = 3. We also set P = 16 for each island. 

The software implementations are developed on the 2.6GHz 

multicore workstation HP-ML570. As shown in Table 2, 

both single threading and multi-threading schemes are 

adopted for the software implementation. The evolution of 

the 3 islands are executed sequentially by a single thread in 

the single threading implementation. By contrast, for the 

multi-threading implementation, the evolution of each island 

is processed by an independent thread. Different threads are 

executed by separate cores so that evolution of all the islands 

are processed in parallel. The number of training vectors is 

65536 from the image “Lena”. 

 It can be observed the Table 2 that the CPU time of the 

proposed architecture is significantly lower than that of its 

distributed GA software counterparts. In fact, the speedup of 

the proposed architecture over its single threading and 

multi-threading software counterparts are 65 and 30, respec-

tively. The speedup is defined as the execution time 

(2.6-GHZ Pentium IV CPU) of the software implementation 

divided by the execution time (50-MHz NIOS softcore CPU) 

of the SOPC system using the proposed GA architecture as 

the custom user logic. Based on (Fig. 8 and Table 2), we 

conclude that the proposed architecture is able to accelerate 

the genetic optimization process without sacrificing its per-

formance. 

 Table 3 shows the area costs, average distortion and 

execution time of the proposed SOPC system for various 

population size P for each island. The distortion and execu-

tion time are obtained by averaging those of 200 independent 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (7). The architecture of the distributed steady-state GA. 

Table 1. The Area Cost of the Architecture of Steady-State GA, the Architecture of Each Island, and the Architecture of Distrib-

uted GA 

 

 Steady-State GA 

Circuit 

Architecture 

of Each Island 

Architecture 

of Distributed GA 

ALMs 3096(13%) 7162(30%) 24139(99%) 

Block memory bits 16384(3%) 613120(24%) 643968(25%) 

DSP block 9-bit elements 128(44%) 136(47%) 288(100%) 
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executions. It can be observed from Table 3 that the area cost 

of the entire system becomes only slightly higher as P in-

creases. The average execution time grows linearly with P. 

In addition, the average distortion can be effectively reduced 

as P becomes larger. 

 To further investigate the effectiveness of the proposed 

architecture, Fig. (9) shows the speedup of the proposed 

architecture over its multi-threading software counterpart for 

various numbers of training vectors from the 4 training im-

ages “Baboo”, “Hill”, “Bridge” and “Girl”. The population 

size is P = 16 for each island. It can be observed from Fig. 

(9) that the speedup increases with the training set size. This 

is because the training set is used for the fitness evaluation in 

the GA. The training set is often stored in the main memory, 

and therefore requires long memory access time. In addition, 

the inverse of the average distortion D in eq.(2) is used as the 

fitness function. The computational complexity therefore is 

high. In our architecture, the DMA and pipeline techniques 

are used for reducing the memory access time and the com-

putational time for fitness evaluation. Therefore, our design 

has high speedup over the software implementation when the 

training set size is large. In particular, when the training set 

contains 65536 vectors, the execution time of our SOPC 

system is 3952.6 ms; whereas, the execution time of soft-

ware system is 85017.5 ms. The speedup is 22. These facts 

demonstrates the effectiveness of our design. 

 

 

 

 

 

 

Fig. (8). The distribution of average distortion of the distributed GA. 

 

Table 2. The CPU Time of Various Distributed GA Implementations 

 

 Average Distortion Average Execution Time 

Software distributed GA 

(single-thread) 
54.06 85208.7ms 

Software distributed GA 

(multi-thread) 
54.24 38555.9ms 

Hardware distributed GA 54.11 1293.8ms 

 

Table 3. The area Costs, Average Distortion and Execution Time of the Proposed SOPC System for Various Population Size P for 

Each Island 

 

 

P 

Entire System 

Embedded Memory Bits 

Entire System 

ALMs 

Average 

Distortion 

Average 

Execution Time 

4 619392(23%) 22145(92%) 58.24 869.5ms 

8 627584(24%) 22829(94%) 57.41 991.2ms 

12 635776(24%) 23493(97%) 55.53 1153.7ms 

16 643968(25%) 24139(99%) 54.11 1293.8ms 
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CONCLUDING REMARKS 

 The proposed architecture has been found to be effective 

for the hardware implementation of distributed GA. The em-

ployment of steady-state GA for the evolution within each 

island is able to simplify the complexity for the design of 

hardware accelerator. By assigning each island an inde-

pendent core and hardware accelerator for genetic evolution, 

the proposed architecture is able to accelerate the genetic 

optimization process without sacrificing its performance. 

The population size can be increased to lower the average 

distortion without the consumption of large hardware re-

sources. The speedup of the architecture over its software 

counterpart also increases with the training set size. The 

proposed architecture is therefore an effective alternative for 

genetic optimization applications requiring realtime compu-

tation without sacrificing its performance. 
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Fig. (9). The speedup of the proposed architecture over its multi-threading software counter-part for various numbers of training vectors from 
four training images. 


