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Abstract: Linear discriminant analysis (LDA) for dimension reduction has been applied to a wide variety of problems 
such as face recognition. However, it has a major computational difficulty when the number of dimensions is greater than 
the sample size. In this paper, we propose a margin based criterion for linear dimension reduction that addresses the above 
problem associated with LDA. We establish an error bound for our proposed technique by showing its relation to least 
squares regression. In addition, there are well established numerical procedures such as semi-definite programming for 
optimizing the proposed criterion. We demonstrate the efficacy of our proposal and compare it against other competing 
techniques using a number of examples.  
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1. INTRODUCTION 

In classification, many features or attributes often make 
the design of a classifier difficult and degrade its performance. 
This is particularly pronounced when the number of 
examples is small relative to the number of features. This 
fact is due to the curse of dimensionality. It states in simple 
terms that the number of examples required to properly 
compute a classifier grows exponentially with the number of 
features. For example, assuming features are correlated, 
approximating a binary distribution in a n  dimensional 
feature space requires estimating O(2n )  unknown variables 
[1]. In such situations, the problem often becomes intractable. 
This calls for reducing the number of features in constructing 
classifiers. 

There are many dimensionality reduction techniques in 
the literature. The two most popular ones are principal 
components analysis (PCA) and linear discriminant analysis 
(LDA) [2]. Both techniques have been successfully applied 
to a wide variety of practical problems. By projecting data 
onto a linear subspace spanned by principal components, 
PCA achieves dimension reduction with the minimal data 
reconstruction error. On the other hand, without taking into 
account class information PCA cannot compute discriminant 
information required by classifiers. In this pape, we are 
concerned with LDA. 

In LDA, we are given a set of l  examples:  

z = {(xi , yi )}i=1
l
.             (1) 

These examples are independently and identically 
distributed (i.i.d.) from the probability space Z = X !Y .  
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Here probability measure !  is defined but unknown, 

xi !X " #q  are the q -dimensional inputs, and 
yi !Y = ["M ,M ]# $  are scalar labels. According to 
Fisher's criterion, one has to find a projection matrix 
W !"q#d  that maximizes:  

J(W ) =
|W

T
S
b
W |

|W
T
S
w
W |

           (2) 

where S
b

 and S
w

 are so-called between-class and within-
class matrices, and d  denotes the dimensions of the reduced 
space. In practice, the ''small sample size'' (SSS) problem is 
often encountered, when l < q . In this case S

w
 is singular. 

Therefore, the maximization problem can be difficult to solve. 
To address this issue, the term ! I  is added, where !  is a 

small positive number and I  the identity matrix of proper 
size. This results in maximizing  

J(W ) =|W
T
S
b
W | / |W

T
(S

w
+ ! I )W | .          (3) 

It can then be solved without any numerical problems. 
This is a special case of Friedman's regularized discriminant 
analysis with regard to the small sample size problem [3]. In 
[4], it is shown that naive Bayes outperforms LDA under 
broad conditions. In this work, we address this problem in 
the context of dimensionality reduction. 

In this paper, we present a margin based criterion for 
dimensionality reduction that potentially provides a solution 
to the problem implied by the above discussion. In 
particular, we show that   

• our margin based criterion for dimensionality deduction 
is closely related to the average margin criterion [5];  

• our objective does not involve the inverse of Sw and can 
be optimized using algorithms such as semi-definite progra-
mming, thereby avoiding the small sample size problem; and  
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• we establish an error bound for the proposed technique.  
We demonstrate the efficacy of our proposed technique 

using a variety of examples. We note that this work extends 
significantly in terms of theoretical analysis and 
experimental evaluation of our earlier work that appeared in 
the proceedings of the IEEE International Conference on 
Data Mining 2007 [6]. 

The rest of the paper is organized as follows. Section 2 
provides a discussion on related work in discriminant 
analysis and subspace techniques. Section 3 introduces our 
proposal on discriminant analysis that derives linear 
discriminants in two class problems by optimizing a 
weighted additive criterion. Section 4 shows a procedure that 
optimizes our criterion and its correctness. Section 5 
establishes an error bound for the proposed technique by 
showing its relationship to regularized least squares. Section 
6 demonstrates how to extend our criterion to the multi-class 
case. Section 7 presents experimental evaluation of the 
proposed technique against several competing techniques 
using a variety of real data sets. Finally, Section 8 summaries 
our work and points out future research directions. 

2. RELATED WORK 

A number of proposals has been introduced to address 
the computational difficulty associated with LDA when the 
small sample size problem occurs ( S

w
 becomes singular). A 

straightforward method is to use the pseudo-inverse of S
w

+  in 
place of S

w

!1 . While simple, the method does not guarantee 
that Fisher's objective will be optimized by the eigenvector 
matrix of S

w

+
S
b

. Furthermore, computing S
w

+  itself is ill 
posed. Another simple method is to first use PCA to remove 
the null space of S

w
, and then apply LDA to the reduced 

representation. Fisherface is one such example [7]. However, 
this method remains sub-optimal because the null space of 
S
w

 potentially contains discriminant information [8]. 

Another technique, newLDA [8], first transforms the data 
into the null space of S

w
. It then applies PCA to maximize 

the between-class scatter matrix in the transformed space. 
While newLDA mitigates the small sample size problem to 
the extent possible, its performance degrades with decreasing 
dimensions of the null space. A variant of LDA+PCA is 
proposed in [9]. The method first discards the null space of 
S
w
+ S

b
 that is the common null space of both S

w
 and S

b
. 

And as such, discarding this null space does not lose any 
discriminant information. The method then applies 
LDA+PCA to the reduced representation in the transformed 
space. A direct LDA (DLDA) is a method that throws away 
the the null space of S

b
 [10]. If S

w
+ S

b
 replaces S

w
, DLDA 

reduces to PCA+LDA [10]. 
Discriminant analysis based on the average margin is 

proposed in [5]. The technique does not involve inverting 
matrices, thereby avoiding the small sample size problem. 
This technique is closely related to our proposal, as we shall 
see later. 

Recently, a dimension reduction technique, called linear 
feature extraction (LFE) is introduced in [11]. Let x  be an 

instance. We define the near hit or  nh of x  as its nearest 
neighbor that comes from the same class as x . Similarly, we 
define the  near miss or  nm as the nearest neighbor of x  that 
comes from the opposite class. Then the hypothesis margin 
of x  with respect to labeled data L  is defined as [12]  

! (x) =|| x " nm(x) || " || x " nh(x) || .           (4) 

The hypothesis margin is easy to compute and lower 
bounds the sample margin [12]. 

Let h(x) = x ! nh(x)  and m(x) = x ! nm(x) . We define 
two matrices, near hit S

h
 and near miss S

m
, as follows.  

S
h
=

i=1

l

!h(x
i
)h(x

i
)
t            (5) 

and  

S
m
=

i=1

l

!m(x)m(x)
t
.            (6) 

Instead of optimizing the margin (4) by selecting 
features, a technique described in [11] computes a linear 
transform that optimizes the following  

x

max  x
t
(S

m
! S

h
)x            (7) 

(x
t
x)
2
=1  

which is very similar to our criterion (15). To be less 
sensitive to noise, k  near misses and hits are often used in 
practice to optimize the margin for some integer k  [11]. 

We can rewrite S
h

 as follows  

S
h
=

x!{+1}

" (x # m+1 )(x # m+1 )
t
+

x!{#1}

" (x # m#1 )(x # m#1 )
t        (8) 

=
x!{+1,"1}

# xx
t " 2

x!{+1}

# xm+1

t
+

x!{+1}

# m+1m+1

t
+

"2
x!{"1}

# xm"1

t
+

x!{"1}

# m"1m"1

t

 

=
x!{+1,"1}

# xx
t "

l

2
m+1m+1

t "
l

2
m"1m"1

t  

Similarly, S
m

 can be written as  

S
m
=

x!{+1}

" (x # m#1 )(x # m#1 )
t
+

x!{#1}

" (x # m+1 )(x # m+1 )
t        (9) 

=
x!{+1,"1}

# xx
t " lm+1m"1

t " lm+1m"1

t
+
l

2
m+1m+1

t
+
l

2
m"1m"1

t  

Then  

S
m
! S

h
= l(m+1m+1

t
! 2m+1m!1

t
+ m!1m!1

t
)        (10) 

= lS
b
.  

This shows that when near hits and near misses are 
extended to the entire neighborhood, maximizing the margin 
reduces to maximizing the between-class scatter matrix. 
Because it ignores the within-class scatter matrix, it cannot 
be optimal. This lends theoretical support to the practical 
observation that the average neighborhood for near hit and 
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near miss in Relief should be somewhere between 1 and 
l / 2  [11]. 

A metric space dimension reduction technique, called 
discriminant neighborhood embedding (NDE), is introduced 
in [13]. The idea is to find a linear transform such that in the 
transformed space total within class distance is minimized, 
while total between class distance is maximized. Let 
x
j
!NB

w
(x

i
)  if x j  is a within class neighbor of x

i
, and 

x j !NBb (xi )  if x j  is a between class neighbor of x
i
. The 

neighborhood can be computed using k  nearest neighbors. 
Then this objective is accomplished by defining an 
adjacency matrix F , where  

Fij =

1 if xi !NBw (x j ) or x j !NBw (xi );

"1 if xi !NBb (x j ) or x j !NBb (xi );

0 otherwise.

#

$
%%

&
%
%

 

The objective is to find P  such that  

tr(P
t
X(S ! F)X

t
P)  

is minimized, subject to Pt
P = I . Here X  is the data matrix, 

and S  is a diagonal matrix, where Sii = j! Fij  or 

Sii = j! Fji . 

If we use k =1  to compute NB
w

 and NB
b

, we can write 
X(S ! F)  as  

 
M = (mh(x

1
)!mh(x

l
)),  

where mh(x
i
) = nm(x

i
)! nh(x

i
)  represents the difference 

between the near miss nm(x
i
)  and the near hit nh(x

i
)  of x

i
, 

respectively [12]. In this case, the objective becomes 
maximizing tr(Pt

MX
t
P)  over P , subject to Pt

P = I . This 
is in many ways similar to the idea presented in [14] where 
we compute a subspace by pooling local information 
(nm(x

i
)! nh(x

i
))x

i

t , for 
 
i =1,!, l . Here the local 

information is the cross covariance of an instance and the 
difference between its near miss and near hit. If we compute 
NB

w
 and NB

b
 over the entire classes, i.e., k = l / 2  

(assuming each class has the same number of examples), it 
can be shown that  

X(S ! F)X
t
= S

b
.  

The result is similar to LFE Eq. (11). In practice, k  is 
chosen somewhere between 1 and l / 2 . 

Several techniques have recently been proposed to 
improve the Fisher criterion in heteroscedastic data [15, 16]. 
These techniques employ Chernoff distance to capture 
difference in variance between within class matrices. Like 
the Fisher criterion, it involves computing the inverse of 
within class matrices. Thus, it potentially suffers from the 
small sample size problem. In this work, we are mainly 
interested in addressing the small sample size problem facing 
LDA. 

3. A MARGIN CRITERION FOR DISCRIMINANT 
ANALYSIS 

In this section, we first review LDA using Fisher's criter-
ion, and then go on to investigate discriminant analysis using 
a margin based criterion and related optimization techniques. 

3.1. Linear Discriminant Analysis 

In LDA, within-class, between-class, and mixture scatter 
matrices are used to formulate the criteria of class 
separability. Consider a J  class problem, where m

0
 is the 

mean vector of all data, and mj  is the mean vector of j th 
class data. A within-class scatter matrix characterizes the 
scatter of samples around their respective class mean vectors, 
and it is expressed by  

Sw =
j=1

J

!pj
i=1

l
j

!(xij " mj )(xi
j " mj )

T
,         (11) 

where l j  is the size of the data in the j th class and pj  

(
j! p

j
=1 ) represents the proportion of the j th class 

contribution. A between-class scatter matrix characterizes 
the scatter of the class means around the mixture mean m

0
. 

It is expressed by  

Sb =
j=1

J

!pj (mj " m0
)(mj " m0

)
T
.         (12) 

The mixture scatter matrix is the covariance matrix of all 
samples, regardless of their class assignment, and it is given 
by 

S
m
=

i=1

l

!(xi " m0
)(x

i
" m

0
)
T
= S

w
+ S

b
.        (13) 

The Fisher criterion is used to find the projection matrix that 
maximizes the objective (2). In order to determine the matrix 
W  that maximizes J(W ) , one can solve the generalized 
eigenvalue problem: S

b
w
i
= !

i
S
w
w
i
. The eigenvectors cor- 

responding to the largest eigenvalues form the columns of 
W . For a two class problem, it can be written in a simpler 
form: S

w
w = m = m

1
! m

2
, where m

1
 and m

2
 are the means 

of the two classes. 

3.2. Margin Criterion for Linear Dimensionality 
Reduction 

Here we first focus on two class problems. The multi-
class case will be discussed later. The goal of LDA is to find 
a direction w  that simultaneously places two classes afar 
and minimizes within class variations. Fisher's criterion (2) 
achieves this goal. Alternatively, we can achieve this goal by 
maximizing  

J(w) = tr(w
t
(!S

b
" S

w
)w),          (14) 

where tr  denotes the trace operator, and ! > 0  is a constant 
that weighs relative importance of the two terms S

b
 and S

w
 

in determining the outcome of linear discriminants. Large !  
values ignore within class spread, while small !  values 
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penalize discriminants that result in large within class 
variations. 

Notice that tr(S
b
)  measures the overall scatter of class 

means. Therefore, a large tr(S
b
)  implies that the class means 

spread out in a transformed space. On the other hand, a small 

tr(S
w
)  indicates that in the transformed space the spread of 

each class is small. Thus, when maximized, J  indicates that 

data points are close to each other within a class, while they 

are far from each other if they come from different classes. 

To see our proposal Eq. (14) is margin based, notice that 
maximizing tr(S

b
! S

w
)  is equivalent to maximizing 

J =
1

2 i

2

! j

2

! pi pjd(Ci ,Cj ) , where p
i
 denotes the 

probability of class C
i
. The interclass distance d  is defined 

as d(Ci ,Cj ) = d(mi ,mj )! tr(Si )! tr(Sj ) , where m
i  

represents the mean of class C
i
, and S

i
 represents the 

scatter matrix of class C
i
. As noted in [5], d(Ci ,Cj )  

measures the average margin between two classes. 
Therefore, maximizing our objective produces large margin 
linear discriminants. In addition, there is no need to calculate 
the inverse of S

w
, thereby avoiding the small sample size 

problem associated with the Fisher criterion. 

4. COMPUTING LINEAR DISCRIMINANTS WITH 
SEMI-DEFINITE PROGRAMMING 

Suppose that w  optimizes (14). So does cw  for any 
constant c ! 0 . Thus we require that w  have unit length. 
The optimization problem then becomes  

w

max  tr(w
t
(!S

b
" S

w
)w)  

   subject to:       || w ||= 1.  

This is a constraint optimization problem. Since 
tr(w

t
(!S

b
" S

w
)w) = tr((!S

b
" S

w
)ww

t
) = tr((!S

b
" S

w
)X) , 

where X = ww
t , we can rewrite the above constraint 

optimization problem as  

X

max  tr((!S
b
" S

w
)X)  

I • X =1  

X ! 0           (15) 

where I  is the identity matrix and the inner product of 

symmetric matrices is A• B =
i, j

n

! aijbij , and X ! 0  means 

that the symmetric matrix X  is positive semi-definite. 
Indeed, if X  is a solution to the above optimization problem, 
then X ! 0  and I • X =1  implies || w ||= 1 , assuming 
rank( X ) = 1. 

The above problem is a semi-definite program (SDP), 
where the objective is linear with linear matrix inequality 
and affine equality constraints. Because linear matrix 

inequality constraints are convex, SDPs are convex 
optimization problems. The significance of SDP is due to 
several factors. SDP is an elegant generalization of linear 
programming, and inherits its duality theory. For a 
comprehensive overview on SDP, see [17]. 

SDPs arise in many applications, including sparse PCA, 
learning kernel matrices, Euclidean embedding, and others. 
In general, generic methods are rarely used for solving 
SPDs, because their time grows at the rate of O(n3 )  and 
their memory grows in O(n2 ) , where n  is the number of 
rows (or columns) of a semidefinite matrix. When n  is 
greater than a few thousands, SDPs are typically not used. 
However, there are algorithms that have a good theoretical 
foundation to solve SDPs [17]. In addition, semidefinite 
programming is a very useful technique for solving many 
problems. For example, SDP relaxations can be applied to 
clustering problems such that after solving a SDP, final 
clusters can be computed by projecting the data onto the 
space spanned by the first few eigenvectors of the SDP 
solution. For large-scale problems, there is a tremendous 
opportunity for exploiting special structures in problems, as 
those suggested in [18, 19]. 

Assume rank ( X ) = 1. Since X  is symmetric, one can 
show that rank ( X ) = 1 iff X = wwt  for some vector w . 
Therefore, we can recover w  from X  as follows. Select any 
column (say the i th column) of X  such that X(1, i) ! 0 , 
and let  

w = X(:, i) / X(1, i),          (16) 

where X(:, i)  denotes the i th column of the matrix X . 
Thus, our goal here is to ensure the solution X  to the above 
constraint optimization problem has rank at most 1. 

One way to guarantee rank ( X ) = 1 is to use rank ( X ) = 
1 as an additional constraint in the optimization problem. 
However, the constraint rank( X ) = 1 is not convex and the 
resulting problem is difficult to solve. It turns out that the 
above formulation (15) is sufficient to ensure that the rank of 
the optimal solution X  to Eq. (15) is one, i.e., rank ( X ) = 1.  

Theorem 1 Let X  be the solution to the semi-definite 
program (15). Also, let rank(X) = r . Then r = rank(X) =1 .  

Proof. We rewrite !S
b
" S

w
= 2!S

b
" S

m
, where 

S
m
= S

b
+ S

w
. Let null(A)  denote the null space of matrix 

A . Since null(S
m
)! null(S

b
) , there exists a matrix 

P !"q#s  that simultaneously diagonalizes S
b

 and S
m

 [20], 
where s !min{l "1,q}  is the rank of S

m
. 

The matrix P  is given by  

P =Q!
m

"1/2
U,  

where !
m

 and Q  are the eigenvalue and eigenvector 
matrices of S

m
, and U  is the eigenvector matrix of 

!m

"1/2
Q

t
SbQ!m

"1/2 . Thus, the columns of P  are the 
eigenvectors of 2!S

b
" S

m
 and the corresponding 

eigenvalues are 2!"
b
# I . We then have  



Margin Based Dimensionality Reduction and Generalization The Open Artificial Intelligence Journal, 2010, Volume 4   59 

P
t
S
b
P = !

b
, P

t
S
m
P = I .          (17) 

where 
 
!b =diag{"1,!," s} . 

Consider the range of P  over Y !"s#q  with 
rank(Y ) = s . The range W = PY  includes all q ! q  matrices 
with rank = s . Then  

W

maxtr(W
t
(2!S

b
" S

m
)W ) =

Y

maxtr((PY )
t

(2!S
b
" S

m
)PY ) =

Y

maxtr(Y
t
(2!#

b
" I )Y ).

 

It is straightforward to show that the maximum is 
attained by 

 
Y = [e

1
e
2
!e

r
;0] , where e

i
 is a vector whose i th 

component is one and the rest is 0. From this it is clear that 
W = PY  consists of the first r  columns of P , i.e., the 
eigenvectors corresponding to 2!"

i
#1 > 0 . 

Now, since X =WW t , we have X =
i=1

r

! w
i
w
i

t . Thus,  

tr(X) =
i=1

r

!w
i

t
w
i
= r.  

However, the constraint I !X =1  states that tr(X) =1 . It 
follows that r =1 . That is, rank(X) =1 . Therefore, our 
procedure for computing w  from the matrix X  Eq. (16) is 
guaranteed to produce the correct answer. We call our 
algorithm SDP-LDA. 

While the criterion Eq. (14) is different from the Fisher 
criterion Eq. (2), it is very competitive1. Here we use the Iris 
data to show that Eq. (14) is very competitive. In this 
example, all three classes of the Iris data are used, where 
each class has 50 examples. We randomly choose 60% as 
training and the remaining 40% as testing. Since S

w
 is non-

singular, the small sample size does not occur. Since there 
are three classes, we use two linear discriminants computed 
according to the Fisher criterion to project the data. For the 
proposed criterion !S " b " S

w
 Eq. (14) we use one 

discriminant to represent the data in the reduced space. One 
nearest neighbor rule is used to predict the class label in the 
reduced space. The average accuracies over 200 runs are 
0.9634 Eq. (14) and 0.9510 (Fisher), respectively. This 
example shows that Eq. (14) is indeed competitive against 
the Fisher criterion, even with less resources. We will see 
very similar results later in the experimental section. 

5. ERROR BOUND 

We establish an error bound for our learning algorithm in 
two steps. First, we show the relationship between our 
learning algorithm and regularized LDA Eq. (3). Second, we 
show that maximizing Eq. (3) produces the same solution as 
minimizing the regularized least squares  

f = arg
f!H
min

1

l
i=1

l

"(yi # f (xi ))2 + $ || f ||H2 ,        (18) 

                                                
1 In [24], it is incorrectly shown that Eq. (14) is equivalent to the Fisher 
criterion Eq. (2). 

when the hypothesis space H is linear 
HL = { f | f (x) = w

t
x} . Here !  represents the regularization 

constant. In this case, we have || f ||H
2
= w

t
w , and thus  

wopt = arg
w
min

1

l i=1

l

!(yi "wt
xi )

2
+ # wt

w.        (19) 

We then use the bound for wopt  to bound our learning 
algorithm. The following lemma establishes a relationship 
between regularized LDA (3) and our proposal (15).  

Lemma 2 Let regularized LDA be defined by (3). Then 
solving Eq. (15) is a special case of solving regularized LDA 
in two class problems.  

Proof. Rewrite (15) as  

J(w) =
1

2
tr(w

t
(!S

b
" S

w
)w)+#(1" tr(wwt

)),       (20) 

where !  is the Lagrangian multiplier. We then have  

!J

!w
= ("S

b
# S

w
)w #$w.  

Setting the above to zero, we obtain  

(S
w
+! I )w = "S

b
w.          (21) 

Solving the above is equivalent to solving  

(S
w
+! I )w = m

1
" m

2
,          (22) 

since S
b
w  is always in the direction m

1
! m

2
 (scale factor 

for w  has no consequence), where m
i
 ( i =1,2 ) represents 

the mean of class i . Thus, setting !  in Eq. (3) to !  results 
in linear solutions to regularized LDA (3) in two class 
problems. 

The above lemma states that our proposal (15) and 
regularized LDA (3) produce the same linear discriminants 
in two class problems. We now show in the following lemma 
that the solution to (3) is equivalent to the solution to (19).  

Lemma 3 The linear solution to the regularized Fisher's 
criterion (3) is equivalent to the linear solution wopt  to the 
least squares criterion (19), up to a constant, in two class 
problems.  

The proof of the Lemma is given in Appendix A. 
Combining the above two lemmas, we conclude that  

Theorem 4 The linear solution to Eq. (15) is equivalent 
to the linear solution wopt to the least squares criterion (19), 
up to a constant, in two class problems.  

Recall that LDA tries to find a transformation f  such 
that the transformed data has a large between class difference 
and small within class variation. The equivalence between 
Eq. (19) and Eq. (3) can be stated in another way: one 
minimizes the mean squared error with respect to each class 
mean while keeping the mean difference fixed. 

We define f!  as the best function that minimizes the 
mean squared error. That is  
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f! = arg
f
min

Z" (y # f (x))
2
d!.         (23) 

Given the training data z  Eq. (1), the goal of learning is 
to find a function fz  that comes as close as possible to f!   

fopt = arg
f
z

min
Z! ( fz " f# )

2
d#.  

Here !  is unknown and so is f! . Instead, we consider 
empirical error minimization. However, solving empirical 
error minimization often leads to over fitting and the solution 
is unstable if no constraint is placed on fz . Thus, we 
minimize the regularized empirical error Eq. (19). 

The equivalence between our proposal and (19) allows us 
to establish an error bound for (15) in the following theorem, 
due to [21, 22]. First, let  

Lk f (x) =
X! f (x

'
)k(x, x

'
)d"X ,         (24) 

where !
X

 is the marginal probability measure on X  and 
k(x, x

'
)  is a continuous and symmetric, positive semi-

definite function on X ! X . Throughout the paper, we 
assume that there exists a positive constant M  that satisfies  

| f (x)! y |" M           (25) 

almost everywhere. 

Theorem 5 Let z Eq. (1) be randomly drawn according 
to ! , and f!  be defined by Eq. (23). Then for any 
0 < ! <1 , with confidence 1!"  the error bound for the 
solution wopt  of Eq. (19), thus Eq. (15), is given by:  

!(wopt " f# )
2
d#X $ S(% )+ A(% ),         (26) 

where A(! )  (approximation error in this context) and S(! )  
(sample error) are given by  

A(! ) = !1/2 || Lk
"
1

4 f# ||
2  

and  

S(! ) =
32M

2
(! +C

k
)
2

! 2
v
"
(m,# ),  

where v!(m," )  is the unique positive solution of  

m

4
v
3
! ln(

4m

"
)v ! c = 0.          (27) 

Here C
k
,c > 0  depend only on X  and k .  

Decomposition S(! )+ A(! )  represents the bias-variance 
tradeoff. Given a hypothesis space, A(! )  measures the 
''error'' between the optimal function learnable from the 
hypothesis space and the true target f! . S(! )  on the other 
hand bounds the sample error and is essentially derived by 
the law of large numbers. 

We can bound S(! )+ A(! )  by [23] (Corollary 5)  

O((
1

m
)
1/4
)  

by taking  

! = (
log(4 /" )2

m
)
1

4 .          (28) 

This is accomplished primarily through the employment 
of a concentration inequality, while still following the 
essential outline of the approach described in [21]. The error 
bound is not only sharper, but also provides a guide to the 
asymptotic value of the regularization parameter !  Eq. (28). 
It shows that for a fixed ! , !  goes to zero as the number of 
training examples goes to infinity, as expected. For a given 
training data set, high confidence (low ! ) requires large ! . 
Notice that there is no conflict between !  defined in [21] 
and the one in [23]. !  in [21] is optimal within the settings 
discussed in the paper. 

6. MULTI-CLASS DLA 

We have presented a margin based criterion as an 
alternative to Fisher's criterion. We have shown how to 
optimize our criterion with semi-definite programming to 
obtain the optimal linear transform in two class problems, 
where one dimensional projection is adequate. However, 
LDA is generally used to find a subspace with d  dimensions 
for multiple class problems. In this section we extend our 
SDP approach to LDA to the multi-class case. 

We start with A
1
= !S

b
" S

w
, where S

b
 and S

w
 are 

computed as in the two class case. We solve the problem in 
(15)  

X

max  tr(A
1
X)  

          X ! 0  

             I • X =1  
to obtain the solution X

1
= w

1
w
1

t . Once we have obtained the 
solution Xj

= w
j
w

j

t , we inflate Aj  to obtain  

Aj+1 = Aj + Xj ,  

from which we compute Xj+1 = wj+1wj+1

t  for 
 
j =1,!,C !1 , 

where C  represents the number of classes. Here Xj s force 
w

j+1  to be orthogonal to wj s, as desired. To see this, we 
write  

 
wj+1

t
(Aj )wj+1 = wj+1

t
(A

1
+w

1
w
1

t
+!+wjwj

t
)wj+1  

  
 
= wj+1

t
A
1
wj+1 + (wj+1

t
w
1
)
2
+!+ (wj+1

t
wj )

2
.  

Thus, wj+1

t
(Aj )wj+1  is minimized when wj+1  minimizes A

1
 

and is orthogonal to the wj s, since wj
! 0  for all j . Its 

complexity is at most C  times the complexity for two class 
problems. 

It can also be shown that the solution obtained as such is 
the same as the solution obtained by treating the multi-class 
problem as C  binary problems, where the i th two class 
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problem treats the i th class as one class and all remaining 
classes as the second class. Each binary class problem is 
solved first, and after finding all subspaces, PCA is applied 
to find eigenvectors having the largest eigenvalues, which 
are the solution of the original multi-class LDA problem. 

7. EXPERIMENTS 

In this section we compare the proposed technique with 
several competing subspace techniques using a number of 
examples, including multi-class facial and binary data sets. 

7.1. Competing Methods 

The following subspace techniques will be evaluated. All 
procedural parameters are determined through 10-fold cross 
validation. 

SDP-LDA: Our proposed algorithm (15). To solve the 
semi-definite program, we used the general purpose 
optimization software SeDuMi [24].  

PCA+LDA: Apply PCA to remove the null space of S
w

 
first, then maximize [7, 25]  

J(W ) =|W
T
S
b
W | / |W

T
S
w
W | .  

S-LDA: Same as PCA+LDA but maximizing [2, 26]: 
J(W ) =|W

T
S
b
W | / |W

T
S
m
W | .  

newLDA: If S
w

 is full rank then solve regular LDA; else 
in the null space of S

w
, find the eigenvectors of S

b
 with 

largest eigenvalues [8].  

DLDA: Apply PCA to remove the null space of S
b

 first, 
then find the eigenvectors of S

w
 corresponding to the 

smallest eigenvalues [10].  
DNE: The discriminant neighborhood embedding 

algorithm presented in [13]. It finds a linear transform that 
maps within class samples closer together and between class 
data samples away from each other.  

LFE: The linear feature extraction algorithm proposed in 
[11]. Similar to Relief, it finds a linear subspace by 
maximizing the hypothesis margin. Notice that LFE is a two 
class subspace technique. And as such, it is applied to the 
two class problems (Section 7.3). 

C-LDA: The linear dimensionality reduction algorithm 
using the Chernoff criterion [15]. This method is applied to 
the two class data experiments only (Section 7.3), since it 
has some difficulty in computing the inverse of within class 
matrices on the two image data sets.  

It should be noted that PCA+LDA and S-LDA can be 
equivalent when S

w
 and S

m
 span the same subspace. 

However, they are different when S
b

 totally or partially 
spans the null space of S

w
, thus S

w
 and S

m
 span different 

subspaces. For face recognition the latter case turns out to be 
more common. In [8], Chen et al. show that the null space of 
S
w

 contains discriminant information. They also show that 
Scatter-LDA is not ''optimal'' in that it fails to distinguish the 
most discriminant information in the null space of S

w
. Thus 

they propose the newLDA method. However, newLDA fell 

short of making use of any information outside of that null 
space. 

In all the experiments, the data in a reduced space are 
normalized to have zero mean and unit variance along each 
dimension (i.e., Gaussian normalization). First, the mean and 
variance along each dimension are calulated using the 
training data. Then, the training mean and variance are used 
to normalize the test data. 

7.2. Facial Images 

7.2.1. Feret Face Data 

The FERET face data [27] is now a standard facial 
database for testing and evaluating facial classification 
algorithms. Each image has 384 ! 256  pixels. Sample 
images used in the experiments are shown in Fig. (1). The 
images used here involve variations in facial expressions and 
illumination. 

For the FERET data, we extracted 150 images, where 
there are 50 individuals with three images from each. We 
randomly choose two images per person for training, and the 
remaining one for testing. Thus, for the FERET data we have 
100 training and 50 test images. Each image is preprocessed 
to align along the eyes and reduced in size to 150 !130  
pixels. The corresponding preprocessed images are shown in 
Fig. (2). The preprocessed images of 150 !130  pixels are 
first transformed into a space of 149 dimensions spanned by 
the 150 images through PCA. As a result, we are facing the 
challenge of the small sample size problem. 

 
Fig. (1). Feret sample images. 

 
Fig. (2). Normalized Feret sample images. 

Subspaces are calculated from the training data, and the 
one nearest neighbor (NN) classifier is used to obtain 
accuracy after projecting the data onto the subspace. We 
prefer a simple classifier in order to highlight the subspace 
methods. To obtain average performance, each methods 
repeated 10 times. The average accuracy as a function of 
dimensionality is shown in Fig. (3). 

The X -axis represents the dimensionality of the 
subspace. For each technique, the higher the dimension, the 
less discriminant the dimension. For most techniques, the 
accuracy rate increases quickly around the first 10 
dimensions, and then increase slowly with additional 
dimensions. 

SDP-LDA is uniformly better than any other algorithms 
on the Feret data, especially at lower dimensions, 
demonstrating its efficacy. It achieves the highest accuracy 
rate of 0.922 on the Feret data. newLDA performs quite well 
in the experiment, demonstrating that the most discriminant 
information is in the null space of S

w
, for the facial 

recognition tasks. On the other hand, S-LDA does not 
perform well at lower dimensional subspaces. But it 
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eventually performs better than PCA+LDA, when the 
number of dimensions is large enough. All methods achieve 
higher accuracy rates toward higher dimensional subspaces, 
which is not surprising, for it is a 50 class problem. It should 
be noted that the performance of newLDA and S-LDA (its 
tail is not shown in the plot) drops quickly with unnecessary 
dimensions. 
7.2.2. ORL Face Data 

The ORL data set [28] is used in this experiment. The 
size of each image is 92 !112 . We extracted 120 images, 
where there are 40 subjects with three images from each. 
Sample images are shown in Fig. (4). Similar to the Feret 
data, the images of 92 !112  pixels are first transformed into 
a space of 119 dimensions spanned by the 120 images 
through PCA. 

 
Fig. (4). ORL sample images. 

We randomly choose two images per person for training, 
and the remaining one for testing. We have 80 training and 
40 test images. Again, the one nearest neighbor classifier is 
used to obtain accuracy rates after projecting the data onto 
the subspace. To obtain average performance, each method 
is repeated 10 times. The average accuracy as a function of 
dimensionality is shown 5. 

SDP-LDA is again uniformly better than any other 
algorithms on the ORL data. It achieves the highest accuracy 
rate of 0.8875 on ORL. For most techniques, the accuracy 
rate increases quickly around the first 10 dimensions, and 
then increase slowly with additional dimensions. The results 
are similar to what we observe on the Feret data. 

7.3. Binary Data Sets 

In these experiments, we compare the seven competing 
methods on a number of two class classification problems. 
We use 12 data sets from the UCI database and the cat and 

dog data (CatDog). They are all two class classification 
problems. The cat and dog data set is composed of two 
hundred images of cat and dog faces. There are equal 
number of cats and dogs in the data set. Each image is a 
black-and-white 64 ! 64  pixel image, and the images have 
been registered by aligning the eyes. PCA is first applied to 
reduce the number of dimensions from 4096 to 199. 

For each data set, we randomly choose 60% as training 
and the remaining 40% as testing. We train the seven 
methods on the training data and obtain a one-dimensional 
subspace. We then project both training and test data on the 
chosen subspace and use the 1NN classifier to obtain error 
rates. Note that for the two class case, one dimensional 
subspace is sufficient. Again, all procedural parameters for 
all the methods are chosen through 10-fold cross-validation. 
We repeat the experiments 30 times on each data set to 
obtain the average accuracy rates. 

The average accuracy rates over 30 runs are shown in 
Table 1. Both SDP-LDA and S-LDA (Scatter-LDA) come 
out first five times out of the 13 data sets, while each of the 
Chernoff LDA, LFE and DNE methods comes out first once. 
The differences are significant only on three data sets: New 
Thyroid, Sonar, and Cat and Dog (pair-t test with a 95% 
confidence level). Overall, three methods: SDP-LDA, S-
LDA and C-LDA are very similar on the binary data sets. 
Another way to look at these methods is to see how they 
perform across tasks. That is, we want to see how well or 
robust a method can perform when a given task is not in 
favor of this particular method. The following can be used to 
measure robustness. For each method m  we compute the 
ratio b

m
 between its error rate e

m
 and the smallest error rate 

over all methods being compared in a particular example:  

b
m
= e

m
/
1!k!13
minek .  

One can see that b
m

 for the most robust method are centered 
around one with zero spread. 

Fig. (6) plots the distribution of b
m

 for each method over 
the 13 data sets. The box area represents the lower and upper 
quartiles of the distribution that are separated by the median. 

 

Fig. (3). Comparison of SDP-LDA, DLDA, LDA, newLDA, S-
LDA, and DNE on the Feret image data. 

 

Fig. (5). Comparison of SDP-LDA, DLDA, LDA, newLDA, S-
LDA, and DNE on the ORL image data. 
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The outer vertical lines show the entire range of values for 
the distribution. As shown in Fig. (6), the spread of the error 
distribution for SDP-LDA is narrow and close to 1, followed 
by S-LDA and C-LDA. The results on both the image and 
binary data sets clearly demonstrate that SDP-LDA obtained 
the most robust performance over these data sets. 

 
Fig. (6). Error distributions of DLDA, PCA+LDA, newLDA, SDP-
LDA, S-LDA, LFE, DNE and C-LDA on the 13 data sets. 

8. SUMMARY 

This paper presents a margin based criterion for 
dimensionality reduction that potentially provides a solution 
to the small sample size problem, often associated with the 
Fisher criterion. In particular, the paper has shown that (1) 
the proposed criterion (15) for dimensionality deduction is 
closely related to the average margin criterion; (2) the 
criterion does not involve the inverse of S

w
 and can be 

optimized using algorithms such as semi-definite 
programming, thereby avoiding the small sample size 

problem; and (3) an error bound is established for the 
proposed technique. The paper demonstrates the efficacy of 
the proposed technique using a number of real examples, and 
the results show that the proposed technique registered 
competitive performance against several competing methods 
in several examples. 

A. Proof of Lemma 3 

Proof. We rewrite Eq. (19) as  

i=1

l

!(yi "wt
xi )

2
+ # lwt

w = (y " Xt
w)

t
(y " Xt

w)+ # lwt
w      (29) 

= l ! 2(l
1
m
1
! l

2
m
2
)
t
w +w

t
(S

m
+ " lI )w        (30) 

where 
 
X = (x

1
x
2
!x

l
)  and 

 
y = (y

1
y
2
!yl )

t . Here we use the 
fact that Xy = l

1
m
1
! l

2
m
2

. Taking the derivative with respect 
to w  and setting the result to 0, we have  

(S
m
+ ! lI )w = (l

1
m
1
" l

2
m
2
).         (31) 

We show that three equations (S
m
+ ! lI )w = (l

1
m
1
" l

2
m
2
) , 

(S
m
+ ! lI )w = m

1
" m

2
, and (S

w
+ ! lI )w = m

1
" m

2
 have the 

same solution w  up to a constant, given that the overall 
mean is 0. 

First we show that two equations (S
m
+ ! lI )w = m  and 

(S
w
+ ! lI )w = m  have the same solution (same set of 

eigenvectors), where m = m
1
! m

2
 is the mean difference of 

the two classes. 
Clearly solving S

w
w = m  is equivalent to solving [2]  

(S
w
+ ! lI )"1S

b
# =#$          (32) 

Table 1. Classification Accuracy Rates in Subspaces Computed by the 8 Competing Methods Using 1NN Classifier, on the 13 Data 
Sets 

Data Set DLDA PCA+LDA newLDA SDP-LDA S-LDA LFE DNE C-LDA 

BreastCancer 0.6541 0.6445 0.6445 0.6536 0.6659 0.6386 0.6327 0.6609 

Credit 0.7969 0.7488 0.5952 0.8062 0.8162 0.8088 0.8004 0.8013 

Heart Cleve 0.7551 0.7530 0.7530 0.7644 0.7780 0.7581 0.7466 0.7695 

Heart Hun 0.7607 0.7440 0.7077 0.7726 0.7679 0.7526 0.7641 0.7628 

Ionosphere 0.7604 0.7514 0.7514 0.8421 0.8282 0.7379 0.7268 0.8364 

Letters 0.9482 0.9379 0.9379 0.9692 0.9683 0.9530 0.9521 0.9686 

Thyroid 0.8203 0.7936 0.7936 0.8221 0.8233 0.9634 0.9529 0.8267 

Pima 0.6564 0.6831 0.6831 0.6824 0.6897 0.6728 0.6661 0.6883 

Glass 0.9165 0.8588 0.8588 0.9059 0.9182 0.9082 0.9035 0.9153 

Iris 0.8700 0.9362 0.9362 0.9437 0.9437 0.8912 0.8988 0.9450 

Cancer Wis 0.9596 0.9559 0.9559 0.9577 0.9551 0.9557 0.9605 0.9550 

Sonar 0.6774 0.5146 0.5030 0.7122 0.6896 0.6744 0.6659 0.6848 

CatDog 0.6816 0.7152 0.5816 0.8025 0.7741 0.6962 0.6968 0.7741 

Average 0.7890 0.7721 0.7463 0.8180 0.8168 0.8008 0.7975 0.8140 
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where !  and !  are the eigenvector and eigenvalue 
matrices of (S

w
+ ! lI )"1S

b
. Since we have S

w
= S

m
! S

b
, 

following [2] (pp. 454), Eq. (32) can be written as  
(S

m
! S

b
+ " lI )#$ = S

b
#  

(S
m
+ ! lI )"# = S

b
"(I + #)  

(S
m
+ ! lI )"1S

b
# =#$(I + $)"1.         (33) 

This shows that !  is also the eigenvector matrix of 
(S

m
+ ! lI )"1S

b
, and its eigenvalue matrix is !(I + !)"1 . 

Without loss of generality, let us assume that the 
components !

i
 of !  are such that 

 
!
1
"!"!

n
. It can be 

shown that the corresponding components of !(I + !)"1  
preserve the same relationship  

 

!
1

1+!
1

"!"
!

n

1+!
n

.  

That is, the t  eigenvectors of (S
m
+ ! lI )"1S

b
 corresponding 

to the t  largest eigenvalues are the same as the first t  
eigenvectors of matrix (S

w
+ ! lI )"1S

b
. As a special case (two 

class problem), the solutions resulting from (S
m
+ ! lI )w = m  

and (S
w
+ ! lI )w = m  share the same ''eigenvector''. 

Now we show that (S
m
+ ! lI )w = (l

1
m
1
" l

2
m
2
)  and 

(S
m
+ ! lI )w = m

1
" m

2
 produce the same solution as well. 

Consider that the overall mean m
0

 is 0 . From 

lm
0
= l

1
m
1
+ l

2
m
2
= 0 , we have m

1
=
l
2

l
m,m

2
= !

l
1

l
m , and 

l
1
m
1
! l

2
m
2
=
2l
1
l
2

l
m.  Thus  

(S
m
+ ! lI )w = (l

1
m
1
" l

2
m
2
)  

becomes  

(S
m
+ ! lI )w =

2l
1
l
2

l
m.  

With constant c = 2l1l2
l

, the solution of (S
m
+ ! lI )w = cm  is 

still in the same direction along the mean difference m , and 
thus is equivalent to solving (S

w
+ ! lI )"1S

b
# =#$ .     
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