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Abstract: The International Union of Pure and Applied Chemistry (IUPAC) was formed in 1919 by chemists from indus-

try and academia [1]. Over nearly nine decades the Union has succeeded in fostering worldwide communications in the 

chemical sciences and in uniting chemistry - academic, industrial and government - in a common language. As one of the 

results of the Union, IUPAC names nowadays serve as a commonly agreed text representation of chemical structures in 

patents, publications and databases. In public databases of chemical compounds, like PubChem with more than 12 million 

entries, chemical structures are identified by default using their IUPAC names [2]. We report a very fast linguistic method 

to extract the implicit information contained in IUPAC names to statistically predict pharmacologically relevant proper-

ties. This provides an efficient annotation tool that can be used to assess the likelihood of a given compound as a drug 

candidate and renders the entire chemical literature a searchable database for virtual screening experiments and data  

mining. 

INTRODUCTION 

 The International Union of Pure and Applied Chemistry 
(IUPAC) was formed in 1919 by chemists from industry 
and academia [1]. Over nearly nine decades the Union has 
succeeded in fostering worldwide communications in the 
chemical sciences and in uniting chemistry - academic, 
industrial and government - in a common language. As one 
of the results of the Union, IUPAC names nowadays serve 
as a commonly agreed text representation of chemical 
structures in patents, publications and databases. In public 
databases of chemical compounds, like PubChem with 
more than 12 million entries, chemical structures are iden-
tified by default using their IUPAC names [2]. We report a 
very fast linguistic method to extract the implicit informa-
tion contained in IUPAC names to statistically predict 
pharmacologically relevant properties. This provides an 
efficient annotation tool that can be used to assess the like-
lihood of a given compound as a drug candidate and ren-
ders the entire chemical literature a searchable database for 
virtual screening experiments and data mining. 

 The recently developed LINGO method provides an 
efficient way to extract the implicit information contained 
in SMILES representations of chemical structures [3]. Ap-
plications to virtual screening of large databases and mo-
lecular similarity searching have been reported [4,5]. 
Analogous to SMILES, IUPAC names are strings of char-
acters describing a chemical structure by using a set of 
standard rules to provide a unique molecular representa-
tion. LINGO profiles are the complete set of fixed length  
 
 

*Address correspondence to these authors at the Origenis GmbH, Am 
Klopferspitz 19a, 82152 Martinsried, Germany;  

E-mail: michael.thormann@origenis.de 
Departament de Química Orgànica, Universitat de Barcelona, Martí  

i Franquès 1, 08028 Barcelona, Spain; E-mail: mpons@ub.edu 

overlapping strings of characters derived from fragmenta-
tion of the textual representation of chemical structures. 
Each of the fixed length strings is called a LINGO. LINGO 
generation is illustrated in Fig. (1). 

 IUPAC naming rules were developed as a standard 
procedure to assign a unique identifier to a chemical com-
pound based on its structure [1]. These rules have the ef-
fect of encapsulating and describing the structure of the 
compound in an extremely compact format, its name. In 
practice, every compound has a preferred IUPAC name 
and may have alternatives. Both contain the same descrip-
tive information which therefore allow the development of 
property prediction models that directly relate names and 
properties. 

 The conceptual connection between name, structure 
and property spaces is presented in Fig. (2). The quantita-
tive structure property relationship is commonly termed 
QSPR. Here we show the direct, structure-free connection 
of name and property spaces and decided to term this quan-
titative name property relationship QNPR. 

 The analysis of text strings to predict complex proper-
ties is a well established practice in bioinformatics, where, 
for example, protein function can be statistically predicted 
from the analysis of DNA sequences. LINGO based analy-
sis is related to alignment free sequence comparisons [6]. 

 The application of the LINGO method to IUPAC 
names allows the computation of molecular properties such 
as logP, the logarithm of the partition coefficient between 
n-octanol and water, or logS, the logarithm of the intrinsic 
aqueous solubility. A set of experimentally measured val-
ues and the corresponding IUPAC names is used to train 
the model and to derive property and LINGO specific 
weights by statistical means.  
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Fig. (1). LINGO profile generation. The set of four-character LINGOs are shown in boldface, superimposed to the original name string to 

illustrate the LINGO generation process. 

 Fig. (3a) shows the accurate prediction of experimental 
logP (the logarithm of n-octanol/water partition coeffi-
cient) values using 4-character LINGOs derived from  
IUPAC names of 11,477 compounds present in the 
PHYSPROP database [7]. The model has a correlation 
coefficient of R

2
=0.95 (RRMS=0.38) for the training set 

and of Q
2
=0.84 (QRMS=0.75) for 10-fold cross-validation. 

 Many important properties can be derived accurately 
from 3D molecular structures. In order to test how much of 
the information contained in these 3D molecular structures 
is also accessible at IUPAC name space level, we com-
puted a variety of molecular properties based on 3D struc-
tures [8-10] and used this information as training set for 
IUPAC-LINGO-QNPR models. We selected different 
types of surface areas, physicochemical measurable prop- 
 

 

 

 

 

 

 

 
 
Fig. (2). Relationship between Name, Structure and Property 

spaces. While conventional methods in chemoinformatics use 

structure space as central element of chemical information, 

LINGO based methods provide direct access to such information 

at the name space level without invoking structure space. 
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erties such as solubility or partition coefficients of biphasic 
systems, and complex biopharmacological properties re-
lated to cell permeability or the interaction to specific re-
ceptors. The quality of the structure-based predictions de-
pends on the complexity of the underlying models and of 
the experimental data in which these are based. In order to 
proof the principle of applicability of QNPR, we used Qik-
Prop to generate a large, diverse property data set. 

 IUPAC-LINGO-QNPR can thus be used with experi-
mentally derived data or computed data derived from 
higher level, often more time-consuming prediction meth-
ods. Using the output of such programs as training set it is 
possible to develop LINGO-QNPR models that approxi-
mate the predictions of 3D-structure based methods di-
rectly from IUPAC names. The upper limit of the predic-
tion capability of the LINGO-QNPR models will be obvi-
ously that of the parent models. It will, however, benefit 
from the much higher speed of the text based LINGO 
methods. 

 We extracted the IUPAC names and generated 3D 
structures for 445,085 molecules from PubChem (see 
Methods section), calculated 28 molecular properties with 
QikProp, and used them as pseudoexperimental values to 
construct IUPAC-LINGO-QNPR models. 20,000 IUPAC 
names with their 3D-structure derived properties were ran-
domly selected from the PubChem database to train the 
IUPAC-LINGO-QNPR models. The resulting QNPR mod-
els were tested using 425,085 IUPAC names not used for 
the generation of the models. Fig. (3b-d) shows plots cor-
relating the IUPAC-name based QNPR values and 3D-
structure derived reference values for three of the calcu-
lated properties: surface accessible surface area (SASA), 
free energy of solvation in water ( Gsolv), and logarithm 
of the blood-brain barrier partition coefficient.  

 It turns out that most molecular properties can be calcu-
lated accurately and directly from their IUPAC names us-
ing LINGO-QNPR models. Many of these are holistic 
properties related to molecular size, all kinds of surface 
areas, partition coefficients, free energies of solvation in 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). a) Correlation between logP values calculated using IUPAC names and experimental ones. b-d) Correlation between calculated 

properties using IUPAC names and values obtained from the 3D structure, b) surface accessible surface area (SASA, R
2
=0.99, RMS=22) , c) 

free energy of solvation in water ( Gsolv, R
2
=0.97, RMS=0.4), d) logarithm of the blood-brain barrier partition coefficient (logBB, R

2
=0.95, 

RMS=0.3). 
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different solvents or cell permeabilities. Interestingly, other 
properties for which a detailed description of the molecular 
graph would seem necessary, such as the number of hydro-
gen bond donors or acceptors or the number of rotatable 
bonds, are also well described. Indeed, most QNPR models 
have correlation coefficients R >.90 for the 20,000 com-
pounds in the training set, and 18 models have cross-
validated correlation coefficients Q >0.85 for >400,000 
compounds in the test data set. Correlation plots and statis-
tical parameters for the 28 properties studied are given as 
supplementary material. Not surprisingly, properties 
strongly dependent on the 3D structure and spatial electron 
distribution, such as dipole moments, electron affinities 
and ionization potentials, cannot be described well by 
LINGO-QNPR methods. 

 LINGO tools are orders of magnitude faster than the 
3D structure based methods. QNPR property computations 
can be carried out at a speed of 120,000 molecules per sec-
ond on a single CPU.  

 LINGO-QNPR models can be easily visualised and 
interpreted. The specific weights of IUPAC-LINGOs that 
are used to compute the molecular property can be back-
projected character-wise onto the IUPAC name. In Fig. 
(4b) individual characters from IUPAC names were col-
our-coded according to their property- and LINGO-specific 
weights obtained from the QNPR statistics. The weight of 
each LINGO was evenly distributed over its four corre-
sponding characters (Fig. 4a). This procedure is com-
pletely automated and does not involve any chemical 
judgement. Reassuringly, a chemist can readily recognize 
that parts of the name have qualitatively expected contribu-
tion to different properties. For example, logP (a measure 
of polarity) correspond to parts of the name that denote the 
existence of polar or apolar groups. Likewise, the comple-
mentarity of the contributions to polar and non-polar frac-
tions of the solvent accessible surface area becomes obvi-
ous in the IUPAC-LINGO-QNPR generated colour coding 

shown in Fig. (4b). However, using only chemical intuition 
and the IUPAC name it would not be possible for a scien-
tist to perform quantitative property predictions. The visu-
alisation capability of QNPR models is a great advantage 
to identify interactively parts of the molecule whose modi-
fication would have a strong effect on the predicted prop-
erty. 

 As IUPAC names are used in all kind of scientific lit-
erature sources related to chemistry. IUPAC-LINGO-
QNPR enables the direct access to these information 
sources and allows the assignment of property vectors to 
chemical entities without invoking chemical structure rec-
ognition and processing. IUPAC-LINGO-QNPR models 
allow a quick and accurate prediction of many important 
molecular properties direct out of articles, patents, com-
pound databases and any kind of written reports.  

 Using LINGO-QNPR-based compound similarity, the 
different information sources can be extremely fast and 
automatically connected for a novel kind of knowledge 
base concept and are, thus, perfectly suited for chemical 
ontology applications [11]. We are actively pursuing this 
promising research line. 

EXPERIMENTAL SECTION 

 LINGO-QNPR. Similar to quantitative structure prop-
erty relationships (QSPR), the general equation used for 
quantitative name property relationships (QNPR) predict-
ing molecular properties from a LINGO profile containing 
m different LINGOs is  

 

LP ( ) = w0, + ni,
i=1

m

wi,
       (1) 

where LP ( ) is the LINGO-QNPR estimated value of 
property  for molecule  , w0,  is the offset, wi,  is the 
weight of LINGO i in the LINGO-QNPR model of prop-
erty  and ni,  is the number of occurrences of LINGO i in 
the IUPAC name of molecule . Weights are obtained by 

 

 

 

 

 

 

 

 

 

Fig. (4). a) Quantitative prediction of logP for a selected compound illustrating the IUPAC-LINGO-QNPR contributions. b) Qualitative 

visualisation of the predicted, backprojected molecular properties onto IUPAC names using the property-specific LINGO weights (top: com-

puted n-octanol/water partition coefficient logP, mid: hydrophilic surface area FISA, bottom: carbon pi surface area PISA). Numbers denote 

IUPAC name-based predictions, numbers in brackets denote 3D-structure derived predictions.  
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Partial Least Squares (PLS) using a training set. Weights of 
LINGOs not present in the training set are set to zero. 
LINGO-QNPR can be used with any rule based descriptive 
naming system.  

 PLS analysis was performed by using the statistical 
package pls.pcr (version 0.2.4) in version 1.9.0 of R [12], a 
system for statistical computation and graphics, on a Linux 
PC. Latent variable PLS was performed using the kernel-
PLS method with ten-fold cross-validation as implemented 
in pls.pcr.  

 Experimental values of logP were obtained from a 2004 
release of PhysProp database containing 25,734 com-
pounds. After removing compounds containing salts and 
elements other than C, N, S, O, H, P and halides, a total 
number of 12,831 compounds, having experimental logP 
values, were selected for the data set. LogP values varied 
from –5.08 to 11.29, with an average value of 2.03. IUPAC 
names were assigned using AutoNom 2000 [13] and com-
pounds for which AutoNom failed were removed yielding 
a final set of 11,477 compounds.  

 The PubChem database (at May 31st 2005) was di-
rectly downloaded in 2D SDF format via FTP from the 
PubChem web page. Molecular structures including salts 
and the corresponding counter-ions were removed. Mole-
cules containing elements other than C, N, S, O, H, P and 
halides, with a molecular weight higher than 750 Daltons, 
or with its IUPAC name not included, were also removed. 
The remaining database contained 445,085 compounds. 
The corresponding energy-optimized 3D conformations of 
the neutral forms with explicit hydrogen atoms, were gen-
erated using Moloc [14]. Finally, QikProp was used to cal-
culate the properties for each molecule. 

 In order to prove that IUPAC-LINGO-QNPR models 
are indeed predictive, only 20,000 randomly selected IU-
PAC names were used for the training set while more than 
425,000 IUPAC names were used as the test set. It should 
be noted that both name sets were generated using the 
same IUPAC name generator Lexichem [15] which intro-
duces a sort of canonization and determines the model do-
main in the strict sense.  
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