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Abstract: Overlap of words complicates the problem of word counting. The technique of the imbedded Markov chain 

(IMC) uses an enlarged state space to recover the Markovian property for the word counting problem. A degenerate word 

represents multiple non-degenerate words. An efficient way to decompose a degenerate word according to its overlapping 

pattern for implementing IMC is proposed. 
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1. INTRODUCTION 

 A very common task in biological sequence analysis is to 
identify motifs or signals in a particular sequence set. The 
transcription regulatory site discovery is an example. The 
methods of motif discovery depend on the ways for 
representing motifs. A popular way to characterize a motif is 
to use a position-specific weight matrix (PSWM). Motif 
matrix or PSWM measures the propensity of each base at 
each position of the motif. Alignment and motif matrix 
updating based techniques then find multiple local 
alignments among input sequences to discover motifs [1-9]. 

 Another way for representing motifs is to use the 
consensus sequence. The motif is written as a string of 
IUPAC characters. Motifs are identified as over- and under-
represented oligomers. Consensus sequences can be 
identified by combinatorial or enumerative methods, which 
count all possible words of a certain length in an input 
sequence set and then use statistics to evaluate over- or 
under-represented words [10, 11].  

 Statistical studies on the distribution of the word 
locations along a sequence and word frequencies have been 
an active field of research [12-16]. Despite the existence of 
known results, due to the lack of easy implementary 
algorithms, methods for exact computation of count statistics 
have been not so popular. 

 A commonly used description of binding site motifs is by 
means of degenerate consensus strings. For example, HindII 
binds to site  GT(A/G)(C/T)AC  [17]. An IUPAC symbol 
or character other than the four letters  {A,C,G  and  T}  
provides a means to indicate alternative choices. Such 
situations are often met, e.g. GAL4 binding site  CGGN

11CCG  
[18], the C2H 2  zinc finger of protein domain motif [19] and 
pattern hunter seed design [20]. However, the problem of 
exactly counting degenerate words in random sequences has 
been rarely discussed [21].  
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 There exists a powerful combinatorial method, the 

Goulden-Jackson cluster method [22] as well as many other 

mathematical results     for dealing with exact word counting 

problems. However, they  are  not  easily suitable for direct 

numerical calculation. Recently, an efficient exact motif 

discovery has been propoed based on a compound Poisson 

approximation [23]. A fast approach for exact Markovian 

probability functions for motif occurrences using a DFA 

(deterministic finite-state automata)-only approach was 

discussed in ref. [24]. An approach for exact computation of 

statistics for word occurrences in random sequences is the 

so-called imbedded Markov chain (IMC) technique [12, 14, 

25, 26]. Using IMC, we have proposed an efficient algorithm 

to exactly calculate first, second moments of word counts 

and the probability for a word to occur at least once in 

random texts generated by a Markov chain [27]. Asymptotic 

approximations for word count statistics have been also 

derived. Here, after explaining the concepts of IMC, we 

extend the IMC to deal with counting of a degenerate word. 

2. IMBEDDED MARKOV CHAIN FOR WORD 

COUNTING 

 The overlap among words introduces correlation. This 
complicates the word counting problem even for sequences 
which are generated independently at each position (M0-
model). The IMC scheme enlarges the state space to ‘digest’ 
the correlation caused by word overlap. Let us explain the 
IMC scheme with a simple example of counting a single 
binary word X = HHTHH in alphabet {T,H} (head and tail for 
coin tossing). Word X  can overlap with itself, sharing 
common substring H or HH. Appending THH or HTHH to an 
occurrence of X  will get another occurrence of X . 

 For simplicity, let us consider a sequence written in T 
and H, where each letter occurs independently of its position 
with the probabilities p0  and p1 , respectively. The Markov 
chain imbedded on this original M0 chain is realized by 
designing the ending states for sequences as the first six 
strings in the second column of Table 1. Every sequence is 
assigned to one and only one state by successively 
comparing the strings one by one with the suffixes of the 
sequence. When the first coincidence between a string and a 
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suffix is found the state of the sequence is marked by the 
string. For example, the state of HHTHHH is HH (or 3 in 
index), while that of HHTHHT is HHT (or 2). Every state by 
appending one more letter T or H transits to another state as 
its unique poststate. For state 0 < k < 5  there is a trivial 
poststate k 1  since five states are created by taking 
prefixes of HHTHH and ordering by lengths. The states, their 
indices, and the two poststates of each states are all listed in 
Table 1. By representing the states as nodes, a Markov graph 
representing state transitions may be drawn. This directed 
graph is given by the 6 6  binary matrix t  whose entries 
tij =1  if j  is the poststate of i , and tij = 0  otherwise. A 
sequence viewed with these ending states is an IMC. 

Table 1. The Ending States, their Indices and Poststates of X 

= HHTHH. H-Poststates and T-Poststates Indicates 

Poststates by Appending H and T, Respectively 

 

 Index  String  H-Poststate  T-Poststate 

0  HHTHH  HH  HHT 

1  HHTH   HHTHH  T 

2  HHT   HHTH   T 

3  HH   HH   HHT 

4  H  HH   T 

5  T  H   T 

4   TH   HH   HT  

5   HT   TH   TT  

5   TT   TH   TT  

For M2-model, state 4 should be replaced by 4 , and 5 by 5  and 5 . Correspondingly, 

the poststate of 1 or 2 by appending T is 5  ( HT). 

 

 Let us introduce P(n, l,k) , the probability for an l  long 
sequence which has the ending state k  and n  occurrences of 
X . The IMC implies the following recursion relations 

P(n, l, j) =
i

μ jtijP(n, l 1, i), if j /= 0,          (1) 

P(n, l,0) =
i

μ0ti0P(n 1, l 1, i),           (2) 

where μ j  denotes the probability for the last letter of the 
string for state j , e.g. μ0 = p1 . The initialization of P  is 
simply P(0,1, 4) = p1 , P(0,1,5) = p0  and P(n,1,k) = 0  
otherwise. In principle, all statistical quantities can be 
derived from the recursion relations. 

 It is easy to generalize the procedure to deal with the 
problem of counting multiple words, say  X1 = HHTHH  and 

 X2 = HHTT . The union of the ending states from X1  and 
those from X2 , ranked according to the lengths of strings, 
forms the set of joint ending states. Count n  becomes pair 
n1  and n2  for X1  and X2 , respectively. The binary 
transition matrix t  and recursion relations can be also 
derived. 

 By adding extra states of single letters the above scheme 
work for a alphabet larger than two. Random sequences are 
usually described by a homogenous Markov chain model of 
order m  (Mm ). For M1-model, we need only to interpret 
μi  by replacing pi  with the corresponding conditional 

probabilities of M1. For a general Mm -model, all the strings 
of length m  should be included as IMC states. In a view 
consistent with M0, state strings shorter than m  should be 
prefixed and split into more strings of length m  as substates, 
but matrix t  is still the same. For the example of counting 
X  in an M2-sequence, as shown at the bottom of Table 1, 
the modification is 

 4 H 4 TH , 5T 5 HT , 5 TT .  

 The modification for recursion relations is also quite 
straightforward. We shall consider only M0, and discuss 
Mm  again in last section. 

3. LEAST DEVELOPED SET FOR A DEGENERATE 
WORD 

 Let us take DNA sequences as example. The fundamental 
nucleotides are A, C, G and T. An IUPAC symbol or 
character other than these four letters implies more choices, 
e.g.,  Y = {C,T} ,  B = {C,G,T} , and  N = {A,C,G,T} . The 
number of fundamental letters represented by an IUPAC 
symbol x  is the degeneracy dx  of x . The degeneracy of a 
string is the product of degeneracy of each letter in the 
string. A letter or string whose degeneracy is greater than 
one is called degenerate, and otherwise non-degenerate. If 
the letters represented by letter x  are all represented by 
another distinct letter y , we say y  contains x , and express 
this as 

 
y x  or 

 
x y ; in this case x  and y  ‘match’ each 

other. Thus,   C Y B N . Similarly, we may extend the 
definitions to strings. If two strings I  and J  of the same 
length satisfy  I J  we call I  a realization of J , and say 
that I  and J  ‘match’ each other. We shall use I  also to 
indicate the set of all its realizations. The process going from 
J  to I  is ‘developing’ of J . When no confusion is caused, 
a realization may include the case of identity. String Z  is a 
realization of two strings I  and J  if  Z I  and at the same 
time  Z J . 

 The overlap among words complicates the problem of 
word counting. String I  overlaps J  if and only if there 
exist a proper suffix of I  and a proper prefix of J  with the 
same length which are identical. The relation of overlapping 
is asymmetric between two different strings. For example, 

 I = AACCG  overlaps  J = ACCGG , but J  does not overlap 
I . For a single string, self-overlap can occur. A non-
degenerate string 

 
S = s1s2…sn  overlaps with its d -shift if 

 
s1s2…sn d = sd+1sd+2…sn , which forces periodicity with 
period d  for S ; specifically si = s j  if i = j  (mod d ). 

 A degenerate string 
 
R = r1r2…rn  represents multiple non-

degenerate strings of the same length. A direct use of all the 
non-degenerate words it represents is generally inefficient 
and unnecessary. It is our main task to find the least 
developed set of R  which includes all the necessary overlap 
patterns of R ‘s realizations. The overlap of degenerate 
strings is defined in the sense of match. That is, strings X  
and Y  overlap if there exist their respective realizations X  
and Y  which overlap in the sense of identity. 
(Correspondingly, the periodicity of a degenerate string is 
also in the sense of match.) When degenerate string R  
overlaps with its d -shift there exists 

 
t1t2…tn d  as a 

realization of 
 
r1r2…rn d  and 

 
rd+1rd+2…rn . Whenever these 

two substrings of R  are not identical, string 

 
R<d = r1…rd t1…tn d  of length n  may be created as a 
realization of R . (Since only the transitions to the target 
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word are involved in the word counting we ignore realization 

 
R>d = t1…tn d rn d+1…rn , which is resulted from a left shift. 
Realization R>d  is relevant to suffixes of the target word 
instead of prefixes.) When R<d  is identical to R , no new 
string other than R  is created; this can be ignored. 
Generally, string R<d  is of a lower degeneracy than R . In 
this way R  is split into R<d  and its complement. String R<d  
overlaps R  (under d -shift). All the distinct members of R<d  
with 1 < d < n  other than R  form the ‘primary set’ R

(1)
 of 

R . 

 Replacing any letter x  of a string X  by a letter which 
contains x  preserves the property of overlap of X . Thus, if 
two realizations of degenerate string R  overlap, R  must be 
self-overlapping (under the same d -shift). Any overlapping 
realization of R  (under a right shift) must be also a 
realization of some string in the primary set R

(1)
 since R

(1)
 is 

created with all possible right d -shifts. It is seen then that a 
realization of any two strings taken from R

(1)
 overlaps at 

least one string of R
(1)

. Such realizations form the secondary 
set R

(2)
 of R . Realization of a string from R

(2)
 and another 

string from R
(1)

 gives a string of the tertiary set R
(3)

, 
realization of strings from R

(3)
 and R

(1)
 forms R

(4)
, and so 

on and so forth until no new strings are found. Any 
realization of two strings taken from R

(2)
 is included in R

(3)
 

or R
(4)

, hence can be ignored. In this way all overlapping 
patterns of R  are obtained. At the same time R  is split into 
finer and finer partition. 

 After appending R  to the whole set obtained above, and 
removing identical strings, the set, which may be called the 
raw set, might be redundant. To establish an exclusive 
partition of R  according to its overlapping patterns, we 
should carefully interpret the meaning of degenerate strings. 
Recall that in the construction of R<d  we should actually 
interpret R  as the complement of R<d . We sort the strings of 
the raw set in ascending order of degeneracy of strings and 
then in that of letters at successive positions. The strings 
with the lowest degeneracy are of the highest ranks, and are 
exclusive to each other. (Otherwise the ‘intersection’ of any 
two non-exclusive strings would give a realization of even 
lower degeneracy, and leads to a contradiction.) For 
exclusiveness, any higher rank strings which are contained in 
a lower rank string should be removed from the latter. This 
can be done efficiently as follows. Assume that the size of 
the raw set is m  with R  being the m -th member. We 
establish an m m  binary matrix I  of inferiority: Iij =1  if 
the i -th string contains the j -th, and Iij = 0  otherwise. It is 
always true that Iij = 0  for i < j . We then replace Iii  by the 
degeneracy of string i . Staring with i =1 , successively at 
each i , whenever a nondiagonal Iij =1  is met, we subtract 
the already updated I jj  from Iii . Finally, the diagonal 
entries give the real degeneracy of strings. After removing 
the strings with vanishing degeneracy, the remainders form 
the ordered least developed set R of R . The order implies 
the exclusiveness; at the same time the partition of R  is 
complete. That is, any non-degenerate realization X  of R  
belongs to one and only one string in the ordered list. String 
X  is compared with the list from the top one by one. When 
the first time it is found that a string contains X , then X  
belongs to that string of the list. 

 Once the least developed set is obtained, we have to 
append all distinct prefixes of all the strings in the set to 

form the full set of the IMC states. In doing this the order of 
strings of the developed set should not distorted, and longer 
prefixes are always of a higher rank than shorter ones. In 
fact, there is an extra complexity related to degeneracy. 
Directly taking a prefix of R  (with length k , 1 k < n ), we 
may form the least developed set of the prefixes as before for 
R . On the other hand, we can take prefixes of the same 
length k  from the least developed set R of R . Often the 
two sets of prefixes are identical, but the size of the former 
can be larger. It is the former that should be appended in any 
case. An example will be given later. Finally, we append the 
single letter states which so far do not exist in the set of 
states. This ends the construction of IMC states. When a 
sequence is assigned an ending state by comparing its 
suffixes to state strings successively from top, a caution 
related to degeneracy is that the string of the assigned state 
should contain or coincide with a suffix of the sequence; this 
is stronger than just match, and will be explained with an 
example. 

3.1. Examples 

Example 1 Degenerate word R = AGRRRAG 

 For simplicity, we consider alphabet of  {A,G} . (Adding 
C and T is rather trivial.) For R =  AGRRRAG, overlap occurs 
at d = 2 , 3. The raw set is also the least developed set of R ; 
it consists of R<2 , R<3  and R . The IMC states created from 
R are the 19 states listed in the first row of Table 2. Their 
poststates by appending A and G are listed in second and 
third rows, respectively. Appending G to AGRRR leads to 
AGRRRG. Although RRRG matches AGAG, the latter does not 
contain the former, so AGRRRG does not belong to state 
AGAG. Finally, AGRRRG is identified as state G. The 
effective degeneracies of AGAGRAG, AGRAGAG and 
AGRRRAG are respectively 2, 2 and 4; their sum is 8, the 
total degeneracy of R . 

 Here, both AGAGA and AGRRA are not prefixes of R. 
They belong to the least developed set of AGRRR and have to 
be added to the set of IMC states. (For R =  AGRRR, R<2 =  
AGAGR, R<3 =  AGRAG, R<4 =  AGRRA. The realization of 
AGAGR and AGRRA further gives AGAGA. This ends the 
construction of the raw developed set of AGRRR, which turns 
to be non-redundant. The effective degeneracies of the five 
ordered members are respectively 1, 1, 2, 3 and 1.). 

Example 2 Degenerate word R = AGRRRGA 

 For AGRRRGA, overlap occurs at d = 2 , 3, 4.  

  R
(1) = {AGAGRGA,AGRAGGA,AGRRAGA} , 

  R
(2) = AGAGAGA , and  

  R = {AGAGAGA,AGAGRGA,AGRAGGA,AGRRAGA,AGRRRGA}.
The total 23 states of the IMC, which simply consist of R, 
all the prefixes of R and an extra single letter state G, and 
their poststates are listed in Table 3. 

4. CONCLUDING REMARKS 

 The technique of IMC treats words, either overlapping or 
non-overlapping, in the same simple and straightforward 
way. A degenerate word represents multiple non-degenerate 
words. A main task in implementing IMC for a degenerate 
word is to decompose the word into different overlapping 
patterns. In the final analysis, overlap is a concept in the 
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sense of identity. An overlap of a degenerate word in the 
sense of matching unfold the degeneracy, and split the word 
into two exclusive sets: one supporting the overlap and one 
not supporting. Overlap among words is an asymmetric 
relation. Correspondingly, left and right shift of a degenerate 
word to itself usually have different meaning. 

 By viewing the nodes of IMC Markov graph for M0-model 
as compound nodes, the same Markov graph works for an 
Mm -model. Thus, the framework for Mm -model is almost 
the same as that for M0-model. Consider Example 1 of 
subsection 3.1 for M3-model. It is necessary to further expand 
states according to non-degenerate triples. Since the effective 
degeneracy of an M0 IMC state string is generally smaller than 
its apparent degeneracy the string admits only a few ending 
triples. It is easy to assign any triple an M0 IMC state 
( {AGA,AGR,AG,A,G} ). (Starting from single letter M0 
states A and G, and then appending A, G twice according to 
matrix t  can also obtain this triple assignment.) Appending a 
letter A or G, we may trace the admissible triples for each M0 
IMC state. By developing the suffix of length m  of any state 
string, say state AGRRRA, its admissible triples can be also 
determined. In this case, AGRRRA is developed as: AGRAAA, 
AGRAGA, AGRGAA, AGRGGA; their associated states are 
respectively AGRRRA, AGRAGA, AGRRRA, AGRRRA. Thus, the 
triples of AGRRRA are AAA, GAA and GGA. We see that an 
Mm  model inherits the M0 IMC states, but at the same time 
every M0 state is endowed with several m -tuples for labeling 
substates and applying right transition rates. The recursion 
relations can then be extended to Mm . 

 Finally, we make a brief remark further on the IMC. For 
the above problem of counting a word of length K , a trivial 
M1 model is to consider an enlarged alphabet  {A,C,G,T}

K
. 

All these 4K  K -tuples may be called fine-grained states for 
the M1. Correspondingly, the IMC states are coarse-grained. 
A projection operator  may be introduced to connect the 
former with the latter. The IMC satisfies XT = X t , or 
simply T = t , where X  is an arbitrary fine state, while 
T  and t  the transition matrices for fine and coarse states, 
respectively [28]. The least developed set for a degenerate 

word provides the minimal set of coarse-grained states which 
preserves the Markovian property. Missing of any states in 
the least developed set, say AGAGA and AGRRA in Example 
1 of Section 3.1, will break the constraint T = t . Adding 
states by splitting a degenerate state will preserve the 
Markovian property, but reduce the efficiency. (The set of 
coarse-grained states after adding or removing states can still 
be complete and exclusive in the sense of assigning any 
sequence an ending state.) 

 The size of the least developed set for a degenerate word 
is strongly dependent on the specific pattern of the word. As 
an example, for the case of the so-called structured motif like 

  CGGN
11CCG , the size of the set of self-overlapping 

realizations may be determined by the method of generating 
function. The simplest example is ATGN

k
CCG. There is no 

overlap between the two 3-mers ATG, CCG, and themselves. 
The generating function is 

 

a3E (1+ n + n2 +…)a3
1

1 n
b3

x6

1 x
E

x3

1 x
,

E(y)
1

1 y
,

        (3) 

where a3  stands for ATG, b3  for CCG, n  for N, and a full-
length string is of the form  a

3nia3…n ja3nhb3  with 

 
i, j,…,h {0,1,2,…} . (The function E  without the factorial 
coefficients is close to the ordinary exponential function.) 
The size equals the coefficient of the term xl , where l  is the 
width of the degenerate string, i.e., 6 + k . Similarly, the 
generating function for GGGN

k
GGG is 

 

a3 + a4 +…( )E (n + n2 +…)(a3 + a4 +…)
x3

1 x
E

x4

(1 x)2
,  

and that for CGCN
k
ATG is 

 

(a3 + a5 +…)E
1

1 n

a3

1 a2
1

1 n
b3

x6

(1 x)(1 x2 )
E

x3

(1 x)(1 x2 )
.  

Table 2. The IMC States of R = AGRRRAG 
 

IMC state   AGAGRAG       AGRAGAG AGRRRAG,     AGAGRA AGRAGA     AGRRRA, AGAGA   AGAGR 

A-poststate  AGRAGA       AGAGA AGA     AGRRA                   AGRA     A                   AGAGRA   AGAGRA 

G-poststate  AGR        AGAGR AGR     AGAGRAG AGRAGAG     AGRRRAG AGAG   AGRR 

 

IMC state  AGRAG AGRRA AGRRR, AGAG AGRA AGRR, AGA AGR, AG, A, G 

A-poststate  AGRAGA AGRRRA AGRRRA AGAGA AGRRA AGRRA AGRA AGRA AGA A A 

G-poststate  AGR AG G AGAGR AGRAG AGRRR AGAG AGRR AGR AG G 

 
Table 3. The IMC States of R = AGRRRGA 
 

IMC state  AGAGAGA AGAGRGA   AGRAGGA AGRRAGA      AGRRRGA, AGAGAG AGAGRG AGRAGG AGRRAG  

A-poststate AGRA A    AGRRA  AGRA      A  AGAGAGA AGAGRGA AGRAGGA AGRRAGA  

G-poststate AGAGAG AGRRAG    AGRAG  AGAG      AG  AGAGR AGRRR AGRR  AGR 

 

IMC state  AGRRRG,   AGAGA  AGAGR  AGRAG  AGRRA  AGRRR,  AGAG    AGRA  AGRR,  AGA    AGR,   AG,   A,   G  

A-poststate AGRRRGA AGRA   AGRA   AGA    A      A      AGAGA  AGRRA  AGRRA  AGRA  AGRA  AGA  A   A  

G-poststate G       AGAGAG AGAGRG AGRAGG AGRRAG AGRRRG AGAGR  AGRAG  AGRRR  AGAG  AGRR  AGR  AG  G 
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 Generally, one should consider the self-overlap of the 
head string and the overlap of the head string with the tail. 
For example, the generating function for CGGN

k
GGC is 

 

a3E (1+ n + n2 +…)a3 (1+ n + n2 +…)b3 + b + b2
x4

1 x
E

x3

1 x
.  

 Our procedure to create the least developed set of IMC 
states for the word counting problem is valid for a general 
form of degenerate word, which includes the structured 
motif like   CGGN

11CCG  as a special case. We have discussed 
only single degenerate word. The extension to multiple 
degenerate words does not raise any significant difficulty. 
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