
10 The Open Applied Informatics Journal, 2010, 4, 10-14

 1874-1363/10 2010 Bentham Open

Open Access

Counting of a Degenerate Word in Random Sequences

Wei-Mou Zheng
*,1,2

 and Ke-Song Liu
2

1
Beijing Genomics Institute, Shenzhen (BGI-SZ), Shenzhen 518083, China

2
Institute of Theoretical Physics, Academia Sinica, Beijing 100190, China

Abstract: Overlap of words complicates the problem of word counting. The technique of the imbedded Markov chain

(IMC) uses an enlarged state space to recover the Markovian property for the word counting problem. A degenerate word

represents multiple non-degenerate words. An efficient way to decompose a degenerate word according to its overlapping

pattern for implementing IMC is proposed.

Keywords: Imbedded Markov chain; degenerate motifs; word counting; DNA motifs.

1. INTRODUCTION

 A very common task in biological sequence analysis is to
identify motifs or signals in a particular sequence set. The
transcription regulatory site discovery is an example. The
methods of motif discovery depend on the ways for
representing motifs. A popular way to characterize a motif is
to use a position-specific weight matrix (PSWM). Motif
matrix or PSWM measures the propensity of each base at
each position of the motif. Alignment and motif matrix
updating based techniques then find multiple local
alignments among input sequences to discover motifs [1-9].

 Another way for representing motifs is to use the
consensus sequence. The motif is written as a string of
IUPAC characters. Motifs are identified as over- and under-
represented oligomers. Consensus sequences can be
identified by combinatorial or enumerative methods, which
count all possible words of a certain length in an input
sequence set and then use statistics to evaluate over- or
under-represented words [10, 11].

 Statistical studies on the distribution of the word
locations along a sequence and word frequencies have been
an active field of research [12-16]. Despite the existence of
known results, due to the lack of easy implementary
algorithms, methods for exact computation of count statistics
have been not so popular.

 A commonly used description of binding site motifs is by
means of degenerate consensus strings. For example, HindII
binds to site GT(A/G)(C/T)AC [17]. An IUPAC symbol
or character other than the four letters {A,C,G and T}
provides a means to indicate alternative choices. Such
situations are often met, e.g. GAL4 binding site CGGN

11CCG
[18], the C2H 2 zinc finger of protein domain motif [19] and
pattern hunter seed design [20]. However, the problem of
exactly counting degenerate words in random sequences has
been rarely discussed [21].

*Address correspondence to this author at the Beijing Genomics Institute,

Shenzhen (BGI-SZ), Shenzhen 518083, China; E-mail: zheng@itp.ac.cn

 There exists a powerful combinatorial method, the

Goulden-Jackson cluster method [22] as well as many other

mathematical results for dealing with exact word counting

problems. However, they are not easily suitable for direct

numerical calculation. Recently, an efficient exact motif

discovery has been propoed based on a compound Poisson

approximation [23]. A fast approach for exact Markovian

probability functions for motif occurrences using a DFA

(deterministic finite-state automata)-only approach was

discussed in ref. [24]. An approach for exact computation of

statistics for word occurrences in random sequences is the

so-called imbedded Markov chain (IMC) technique [12, 14,

25, 26]. Using IMC, we have proposed an efficient algorithm

to exactly calculate first, second moments of word counts

and the probability for a word to occur at least once in

random texts generated by a Markov chain [27]. Asymptotic

approximations for word count statistics have been also

derived. Here, after explaining the concepts of IMC, we

extend the IMC to deal with counting of a degenerate word.

2. IMBEDDED MARKOV CHAIN FOR WORD

COUNTING

 The overlap among words introduces correlation. This
complicates the word counting problem even for sequences
which are generated independently at each position (M0-
model). The IMC scheme enlarges the state space to ‘digest’
the correlation caused by word overlap. Let us explain the
IMC scheme with a simple example of counting a single
binary word X = HHTHH in alphabet {T,H} (head and tail for
coin tossing). Word X can overlap with itself, sharing
common substring H or HH. Appending THH or HTHH to an
occurrence of X will get another occurrence of X .

 For simplicity, let us consider a sequence written in T
and H, where each letter occurs independently of its position
with the probabilities p0 and p1 , respectively. The Markov
chain imbedded on this original M0 chain is realized by
designing the ending states for sequences as the first six
strings in the second column of Table 1. Every sequence is
assigned to one and only one state by successively
comparing the strings one by one with the suffixes of the
sequence. When the first coincidence between a string and a

Counting of a Degenerate Word in Random Sequences The Open Applied Informatics Journal, 2010, Volume 4 11

suffix is found the state of the sequence is marked by the
string. For example, the state of HHTHHH is HH (or 3 in
index), while that of HHTHHT is HHT (or 2). Every state by
appending one more letter T or H transits to another state as
its unique poststate. For state 0 < k < 5 there is a trivial
poststate k 1 since five states are created by taking
prefixes of HHTHH and ordering by lengths. The states, their
indices, and the two poststates of each states are all listed in
Table 1. By representing the states as nodes, a Markov graph
representing state transitions may be drawn. This directed
graph is given by the 6 6 binary matrix t whose entries
tij =1 if j is the poststate of i , and tij = 0 otherwise. A
sequence viewed with these ending states is an IMC.

Table 1. The Ending States, their Indices and Poststates of X

= HHTHH. H-Poststates and T-Poststates Indicates

Poststates by Appending H and T, Respectively

 Index String H-Poststate T-Poststate

0 HHTHH HH HHT

1 HHTH HHTHH T

2 HHT HHTH T

3 HH HH HHT

4 H HH T

5 T H T

4 TH HH HT

5 HT TH TT

5 TT TH TT

For M2-model, state 4 should be replaced by 4 , and 5 by 5 and 5 . Correspondingly,

the poststate of 1 or 2 by appending T is 5 (HT).

 Let us introduce P(n, l,k) , the probability for an l long
sequence which has the ending state k and n occurrences of
X . The IMC implies the following recursion relations

P(n, l, j) =
i

μ jtijP(n, l 1, i), if j /= 0, (1)

P(n, l,0) =
i

μ0ti0P(n 1, l 1, i), (2)

where μ j denotes the probability for the last letter of the
string for state j , e.g. μ0 = p1 . The initialization of P is
simply P(0,1, 4) = p1 , P(0,1,5) = p0 and P(n,1,k) = 0
otherwise. In principle, all statistical quantities can be
derived from the recursion relations.

 It is easy to generalize the procedure to deal with the
problem of counting multiple words, say X1 = HHTHH and

 X2 = HHTT . The union of the ending states from X1 and
those from X2 , ranked according to the lengths of strings,
forms the set of joint ending states. Count n becomes pair
n1 and n2 for X1 and X2 , respectively. The binary
transition matrix t and recursion relations can be also
derived.

 By adding extra states of single letters the above scheme
work for a alphabet larger than two. Random sequences are
usually described by a homogenous Markov chain model of
order m (Mm). For M1-model, we need only to interpret
μi by replacing pi with the corresponding conditional

probabilities of M1. For a general Mm -model, all the strings
of length m should be included as IMC states. In a view
consistent with M0, state strings shorter than m should be
prefixed and split into more strings of length m as substates,
but matrix t is still the same. For the example of counting
X in an M2-sequence, as shown at the bottom of Table 1,
the modification is

 4 H 4 TH , 5T 5 HT , 5 TT .

 The modification for recursion relations is also quite
straightforward. We shall consider only M0, and discuss
Mm again in last section.

3. LEAST DEVELOPED SET FOR A DEGENERATE
WORD

 Let us take DNA sequences as example. The fundamental
nucleotides are A, C, G and T. An IUPAC symbol or
character other than these four letters implies more choices,
e.g., Y = {C,T} , B = {C,G,T} , and N = {A,C,G,T} . The
number of fundamental letters represented by an IUPAC
symbol x is the degeneracy dx of x . The degeneracy of a
string is the product of degeneracy of each letter in the
string. A letter or string whose degeneracy is greater than
one is called degenerate, and otherwise non-degenerate. If
the letters represented by letter x are all represented by
another distinct letter y , we say y contains x , and express
this as

y x or

x y ; in this case x and y ‘match’ each

other. Thus, C Y B N . Similarly, we may extend the
definitions to strings. If two strings I and J of the same
length satisfy I J we call I a realization of J , and say
that I and J ‘match’ each other. We shall use I also to
indicate the set of all its realizations. The process going from
J to I is ‘developing’ of J . When no confusion is caused,
a realization may include the case of identity. String Z is a
realization of two strings I and J if Z I and at the same
time Z J .

 The overlap among words complicates the problem of
word counting. String I overlaps J if and only if there
exist a proper suffix of I and a proper prefix of J with the
same length which are identical. The relation of overlapping
is asymmetric between two different strings. For example,

 I = AACCG overlaps J = ACCGG , but J does not overlap
I . For a single string, self-overlap can occur. A non-
degenerate string

S = s1s2…sn overlaps with its d -shift if

s1s2…sn d = sd+1sd+2…sn , which forces periodicity with
period d for S ; specifically si = s j if i = j (mod d).

 A degenerate string

R = r1r2…rn represents multiple non-

degenerate strings of the same length. A direct use of all the
non-degenerate words it represents is generally inefficient
and unnecessary. It is our main task to find the least
developed set of R which includes all the necessary overlap
patterns of R ‘s realizations. The overlap of degenerate
strings is defined in the sense of match. That is, strings X
and Y overlap if there exist their respective realizations X
and Y which overlap in the sense of identity.
(Correspondingly, the periodicity of a degenerate string is
also in the sense of match.) When degenerate string R
overlaps with its d -shift there exists

t1t2…tn d as a

realization of

r1r2…rn d and

rd+1rd+2…rn . Whenever these

two substrings of R are not identical, string

R<d = r1…rd t1…tn d of length n may be created as a
realization of R . (Since only the transitions to the target

12 The Open Applied Informatics Journal, 2010, Volume 4 Zheng and Liu

word are involved in the word counting we ignore realization

R>d = t1…tn d rn d+1…rn , which is resulted from a left shift.
Realization R>d is relevant to suffixes of the target word
instead of prefixes.) When R<d is identical to R , no new
string other than R is created; this can be ignored.
Generally, string R<d is of a lower degeneracy than R . In
this way R is split into R<d and its complement. String R<d
overlaps R (under d -shift). All the distinct members of R<d
with 1 < d < n other than R form the ‘primary set’ R

(1)
 of

R .

 Replacing any letter x of a string X by a letter which
contains x preserves the property of overlap of X . Thus, if
two realizations of degenerate string R overlap, R must be
self-overlapping (under the same d -shift). Any overlapping
realization of R (under a right shift) must be also a
realization of some string in the primary set R

(1)
 since R

(1)
 is

created with all possible right d -shifts. It is seen then that a
realization of any two strings taken from R

(1)
 overlaps at

least one string of R
(1)

. Such realizations form the secondary
set R

(2)
 of R . Realization of a string from R

(2)
 and another

string from R
(1)

 gives a string of the tertiary set R
(3)

,
realization of strings from R

(3)
 and R

(1)
 forms R

(4)
, and so

on and so forth until no new strings are found. Any
realization of two strings taken from R

(2)
 is included in R

(3)

or R
(4)

, hence can be ignored. In this way all overlapping
patterns of R are obtained. At the same time R is split into
finer and finer partition.

 After appending R to the whole set obtained above, and
removing identical strings, the set, which may be called the
raw set, might be redundant. To establish an exclusive
partition of R according to its overlapping patterns, we
should carefully interpret the meaning of degenerate strings.
Recall that in the construction of R<d we should actually
interpret R as the complement of R<d . We sort the strings of
the raw set in ascending order of degeneracy of strings and
then in that of letters at successive positions. The strings
with the lowest degeneracy are of the highest ranks, and are
exclusive to each other. (Otherwise the ‘intersection’ of any
two non-exclusive strings would give a realization of even
lower degeneracy, and leads to a contradiction.) For
exclusiveness, any higher rank strings which are contained in
a lower rank string should be removed from the latter. This
can be done efficiently as follows. Assume that the size of
the raw set is m with R being the m -th member. We
establish an m m binary matrix I of inferiority: Iij =1 if
the i -th string contains the j -th, and Iij = 0 otherwise. It is
always true that Iij = 0 for i < j . We then replace Iii by the
degeneracy of string i . Staring with i =1 , successively at
each i , whenever a nondiagonal Iij =1 is met, we subtract
the already updated I jj from Iii . Finally, the diagonal
entries give the real degeneracy of strings. After removing
the strings with vanishing degeneracy, the remainders form
the ordered least developed set R of R . The order implies
the exclusiveness; at the same time the partition of R is
complete. That is, any non-degenerate realization X of R
belongs to one and only one string in the ordered list. String
X is compared with the list from the top one by one. When
the first time it is found that a string contains X , then X
belongs to that string of the list.

 Once the least developed set is obtained, we have to
append all distinct prefixes of all the strings in the set to

form the full set of the IMC states. In doing this the order of
strings of the developed set should not distorted, and longer
prefixes are always of a higher rank than shorter ones. In
fact, there is an extra complexity related to degeneracy.
Directly taking a prefix of R (with length k , 1 k < n), we
may form the least developed set of the prefixes as before for
R . On the other hand, we can take prefixes of the same
length k from the least developed set R of R . Often the
two sets of prefixes are identical, but the size of the former
can be larger. It is the former that should be appended in any
case. An example will be given later. Finally, we append the
single letter states which so far do not exist in the set of
states. This ends the construction of IMC states. When a
sequence is assigned an ending state by comparing its
suffixes to state strings successively from top, a caution
related to degeneracy is that the string of the assigned state
should contain or coincide with a suffix of the sequence; this
is stronger than just match, and will be explained with an
example.

3.1. Examples

Example 1 Degenerate word R = AGRRRAG

 For simplicity, we consider alphabet of {A,G} . (Adding
C and T is rather trivial.) For R = AGRRRAG, overlap occurs
at d = 2 , 3. The raw set is also the least developed set of R ;
it consists of R<2 , R<3 and R . The IMC states created from
R are the 19 states listed in the first row of Table 2. Their
poststates by appending A and G are listed in second and
third rows, respectively. Appending G to AGRRR leads to
AGRRRG. Although RRRG matches AGAG, the latter does not
contain the former, so AGRRRG does not belong to state
AGAG. Finally, AGRRRG is identified as state G. The
effective degeneracies of AGAGRAG, AGRAGAG and
AGRRRAG are respectively 2, 2 and 4; their sum is 8, the
total degeneracy of R .

 Here, both AGAGA and AGRRA are not prefixes of R.
They belong to the least developed set of AGRRR and have to
be added to the set of IMC states. (For R = AGRRR, R<2 =
AGAGR, R<3 = AGRAG, R<4 = AGRRA. The realization of
AGAGR and AGRRA further gives AGAGA. This ends the
construction of the raw developed set of AGRRR, which turns
to be non-redundant. The effective degeneracies of the five
ordered members are respectively 1, 1, 2, 3 and 1.).

Example 2 Degenerate word R = AGRRRGA

 For AGRRRGA, overlap occurs at d = 2 , 3, 4.

 R
(1) = {AGAGRGA,AGRAGGA,AGRRAGA} ,

 R
(2) = AGAGAGA , and

 R = {AGAGAGA,AGAGRGA,AGRAGGA,AGRRAGA,AGRRRGA}.
The total 23 states of the IMC, which simply consist of R,
all the prefixes of R and an extra single letter state G, and
their poststates are listed in Table 3.

4. CONCLUDING REMARKS

 The technique of IMC treats words, either overlapping or
non-overlapping, in the same simple and straightforward
way. A degenerate word represents multiple non-degenerate
words. A main task in implementing IMC for a degenerate
word is to decompose the word into different overlapping
patterns. In the final analysis, overlap is a concept in the

Counting of a Degenerate Word in Random Sequences The Open Applied Informatics Journal, 2010, Volume 4 13

sense of identity. An overlap of a degenerate word in the
sense of matching unfold the degeneracy, and split the word
into two exclusive sets: one supporting the overlap and one
not supporting. Overlap among words is an asymmetric
relation. Correspondingly, left and right shift of a degenerate
word to itself usually have different meaning.

 By viewing the nodes of IMC Markov graph for M0-model
as compound nodes, the same Markov graph works for an
Mm -model. Thus, the framework for Mm -model is almost
the same as that for M0-model. Consider Example 1 of
subsection 3.1 for M3-model. It is necessary to further expand
states according to non-degenerate triples. Since the effective
degeneracy of an M0 IMC state string is generally smaller than
its apparent degeneracy the string admits only a few ending
triples. It is easy to assign any triple an M0 IMC state
({AGA,AGR,AG,A,G}). (Starting from single letter M0
states A and G, and then appending A, G twice according to
matrix t can also obtain this triple assignment.) Appending a
letter A or G, we may trace the admissible triples for each M0
IMC state. By developing the suffix of length m of any state
string, say state AGRRRA, its admissible triples can be also
determined. In this case, AGRRRA is developed as: AGRAAA,
AGRAGA, AGRGAA, AGRGGA; their associated states are
respectively AGRRRA, AGRAGA, AGRRRA, AGRRRA. Thus, the
triples of AGRRRA are AAA, GAA and GGA. We see that an
Mm model inherits the M0 IMC states, but at the same time
every M0 state is endowed with several m -tuples for labeling
substates and applying right transition rates. The recursion
relations can then be extended to Mm .

 Finally, we make a brief remark further on the IMC. For
the above problem of counting a word of length K , a trivial
M1 model is to consider an enlarged alphabet {A,C,G,T}

K
.

All these 4K K -tuples may be called fine-grained states for
the M1. Correspondingly, the IMC states are coarse-grained.
A projection operator may be introduced to connect the
former with the latter. The IMC satisfies XT = X t , or
simply T = t , where X is an arbitrary fine state, while
T and t the transition matrices for fine and coarse states,
respectively [28]. The least developed set for a degenerate

word provides the minimal set of coarse-grained states which
preserves the Markovian property. Missing of any states in
the least developed set, say AGAGA and AGRRA in Example
1 of Section 3.1, will break the constraint T = t . Adding
states by splitting a degenerate state will preserve the
Markovian property, but reduce the efficiency. (The set of
coarse-grained states after adding or removing states can still
be complete and exclusive in the sense of assigning any
sequence an ending state.)

 The size of the least developed set for a degenerate word
is strongly dependent on the specific pattern of the word. As
an example, for the case of the so-called structured motif like

 CGGN
11CCG , the size of the set of self-overlapping

realizations may be determined by the method of generating
function. The simplest example is ATGN

k
CCG. There is no

overlap between the two 3-mers ATG, CCG, and themselves.
The generating function is

a3E (1+ n + n2 +…)a3
1

1 n
b3

x6

1 x
E

x3

1 x
,

E(y)
1

1 y
,

 (3)

where a3 stands for ATG, b3 for CCG, n for N, and a full-
length string is of the form a

3nia3…n ja3nhb3 with

i, j,…,h {0,1,2,…} . (The function E without the factorial
coefficients is close to the ordinary exponential function.)
The size equals the coefficient of the term xl , where l is the
width of the degenerate string, i.e., 6 + k . Similarly, the
generating function for GGGN

k
GGG is

a3 + a4 +…()E (n + n2 +…)(a3 + a4 +…)
x3

1 x
E

x4

(1 x)2
,

and that for CGCN
k
ATG is

(a3 + a5 +…)E
1

1 n

a3

1 a2
1

1 n
b3

x6

(1 x)(1 x2)
E

x3

(1 x)(1 x2)
.

Table 2. The IMC States of R = AGRRRAG

IMC state AGAGRAG AGRAGAG AGRRRAG, AGAGRA AGRAGA AGRRRA, AGAGA AGAGR

A-poststate AGRAGA AGAGA AGA AGRRA AGRA A AGAGRA AGAGRA

G-poststate AGR AGAGR AGR AGAGRAG AGRAGAG AGRRRAG AGAG AGRR

IMC state AGRAG AGRRA AGRRR, AGAG AGRA AGRR, AGA AGR, AG, A, G

A-poststate AGRAGA AGRRRA AGRRRA AGAGA AGRRA AGRRA AGRA AGRA AGA A A

G-poststate AGR AG G AGAGR AGRAG AGRRR AGAG AGRR AGR AG G

Table 3. The IMC States of R = AGRRRGA

IMC state AGAGAGA AGAGRGA AGRAGGA AGRRAGA AGRRRGA, AGAGAG AGAGRG AGRAGG AGRRAG

A-poststate AGRA A AGRRA AGRA A AGAGAGA AGAGRGA AGRAGGA AGRRAGA

G-poststate AGAGAG AGRRAG AGRAG AGAG AG AGAGR AGRRR AGRR AGR

IMC state AGRRRG, AGAGA AGAGR AGRAG AGRRA AGRRR, AGAG AGRA AGRR, AGA AGR, AG, A, G

A-poststate AGRRRGA AGRA AGRA AGA A A AGAGA AGRRA AGRRA AGRA AGRA AGA A A

G-poststate G AGAGAG AGAGRG AGRAGG AGRRAG AGRRRG AGAGR AGRAG AGRRR AGAG AGRR AGR AG G

14 The Open Applied Informatics Journal, 2010, Volume 4 Zheng and Liu

 Generally, one should consider the self-overlap of the
head string and the overlap of the head string with the tail.
For example, the generating function for CGGN

k
GGC is

a3E (1+ n + n2 +…)a3 (1+ n + n2 +…)b3 + b + b2
x4

1 x
E

x3

1 x
.

 Our procedure to create the least developed set of IMC
states for the word counting problem is valid for a general
form of degenerate word, which includes the structured
motif like CGGN

11CCG as a special case. We have discussed
only single degenerate word. The extension to multiple
degenerate words does not raise any significant difficulty.

ACKNOWLEDGEMENT

 This work is supported by the National Natural Science
Foundation of China and the National Basic Research
Program of China (2007CB814800).

REFERENCES

[1] G. D. Stormo, and G. W. Hartzell,3rd, “Identifying protein-binding
sites from unaligned DNA fragments”, Proc. Natl. Acad. Sci. USA.,

vol. 86, pp.1183-1187, 1989.
[2] C. E. Lawrence, S. F. Altschul, M. S. Boguski, J. S. Liu, A. F.

Neuwald, and J. C. Wootton, “Detecting subtle sequence signals: A
Gibbs sampling strategy for multiple alignment”, Science, vol. 262,

pp.208-214, 1993.
[3] T. L. Bailey, and C. Elkan, “Fitting a mixture model by expectation

maximization to discover motifs in biopolymers”, In Proc. Second
Int. Conf. Intel. Sys. Mol. Biol., Menlo Park, CA: AAAI Press,

2004, pp.28-36.
[4] S. T. Jensen, X. S. Liu, Q. Zhou, and J. S. Liu, “Computational

discovery of gene regulatory binding motifs: a bayesian
perspective”, Stat. Sci., vol. 19, pp.188-204, 2004.

[5] G. Pavesi, P. Mereghetti, G. Mauri, and G. Pesole, “Weeder Web:
discovery of transcription factor binding sites in a set of sequences

from co-regulated genes”, Nucleic Acids Res., vol. 32, pp. W199-
W203, 2004.

[6] W. M. Zheng, “Genomic signal enhancement by clustering”,
Commun. Theor. Phys., vol. 39, pp.631-634, 2003.

[7] W. M. Zheng, “Relation between weight matrix and substitution
matrix: motif search by similarity”, Bioinformatics, vol. 21, pp.

938-943, 2005.
[8] P. G. S. da Fonseca, C. Gautier, K. S. Guimarães, and M.-F. Sagot,

“Efficient representation and P-value computation for high-order
Markov motif”, Bioinformatics, vol. 24, pp. i160-i166, 2008.

[9] A. A. Sharov and M. S. H. Ko, “Exhaustive search for over-
represented DNA sequence motifs with CisFinder”, DNA Res., vol.

16, pp.261-273, 2009.

[10] J. Van Helden, B. Andre, and J. Collado-Vides, “Extracting

regulatory sites from the upstream region of yeast genes by
computational analysis of oligonucleotide frequencies”, J. Mol.

Biol., vol. 281, pp. 827-842, 1998.
[11] S. Sinha, and M. Tompa, “Discovery of novel transcription factor

binding sites by statistical overrepresentation”, Nucleic Acids Res.,
vol. 30, pp. 5549-5560, 2002.

[12] J. Kleffe, and U. Langbecker, “Exact computation of pattern
probabilities in random sequences generated by Markov chains”,

Comput. Appl. Biosci., vol. 6, pp. 347-353, 1990.
[13] J. Kleffe, and M. Borodovsky, “First and second moment of count

of words in random texts generated by Markov chains”, Comput.
Appl. Biosci., vol. 8, pp. 433-441, 1992.

[14] J. C. Fu, and M. V. Koutras, “Distribution theory of runs: a Markov
chain approach”, J. Am. Stat. Assoc., vol. 89, pp.1050-1058, 1994.

[15] S. Robin, and J. J. Daudin, “Exact distribution of word occurrences
in a random sequence of letters”, J. Appl. Probab., vol. 36, pp. 179-

193, 1999.
[16] G. Reinert, S. Schbath, and M. S. Waterman, “Probabistic and

statistical properties of words: an overview”, J. Comput. Biol., vol.
7, pp. 1-46, 2000.

[17] P. D’haeseleer, “What are DNA sequence motifs?”, Nat.
Biotechnol., vol. 24, pp. 423-425, 2006.

[18] J. Van Helden, A. F. Rios, and J. Collado-Vides, “Discovering
regulatory elements in non-coding sequences by analysis of spaced

dyads”, Nucleic Acids Res., vol. 28, pp. 1808-1818, 2000.
[19] C. O. Pabo, E. Peisach, and R. A. Grant, “Design and selection of

novel Cys2His2 zinc finger proteins”, Annu. Rev. Biochem., vol.
70, pp. 313-340, 2001.

[20] B. Ma, J. Tromp, and M. Li, “PatternHunter --- faster and more
sensitive homology search”, Bioinformatics, vol. 18, pp. 440-445,

2002.
[21] J. Zhang, X. Chen, and M. Li, “Computing exact p -value for

structured motif”, Lect. Notes Comput. Sci., vol. 4580, pp. 162-172,
2007.

[22] I. Goulden and D. M. Jackson, Combinatorial Enumeration, New
York: John Wiley, 1983.

[23] T. Marschall, and S. Rahmann, “Efficient exact motif discovery”,
Bioinformatics, vol. 25, pp. i356-i364, 2009.

[24] P. Ribeca, and E. Raineri, “Faster exact Markovian probability
functions for motif occurrences: a DFA-only approach”,

Bioinformatics, vol. 24, pp. 2839-2848, 2008.
[25] G. Nuel, “Effective p-value computations using Finite Markov

Chain Imbedding (FMCI): application to local score and to pattern
statistics”, Algorithms Mol. Biol. (BMC), vol. 1, pp. 5:1-5:14, 2006.

[26] J. Zhang, B. Jiang, M. Li, J. Tromp, X. Zhang, and M. Q. Zhang,
“Computing exact P-values for DNA motifs”, Bioinformatics”, vol.

23, pp. 531-537, 2007.
[27] G. Shan, and W. M. Zheng, “Counting of oligomers in sequences

generated by Markov chains for DNA motif discovery”, J.
Bioinform. Comput. Biol., vol. 7, pp. 39-54, 2009.

[28] G. Kotsalis, and M. Dahleh, “Model reduction of irreducible
Markov chains”, Proceedings of 42nd IEEE Conference on Decision

and Control, 2003, vol. 6, pp. 5727-5728,

Received: November 8, 2009 Revised: January 12, 2010 Accepted: February 16, 2010

© Zheng and Liu; Licensee Bentham Open.

This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http: //creativecommons.org/licenses/by-nc/

3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

