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Abstract: Background: The increasing number of techniques introduced to describe organisms and taxa produce 

multivariate datasets, often composed of relatively independent descriptors. Handling several descriptors can be laborious 

and often unnecessary when their information is not congruent to that of other datasets used in the same study. On the 

other hand, different levels of correlation between single descriptors to a whole dataset may suggest useful scientific hints. 

The DADI (Distance-based Analysis for (optimal) Descriptor Identification) algorithm is proposed to allow a rapid and 

complete analysis among descriptors coming from two different datasets with the same number of objects. DADI was 

employed to select FTIR (Fourier Transform Infrared Spectroscopy) spectral wavelengths according to their correlation 

with the 26S rDNA sequences of strains belonging to a yeast genus. 

Results: This procedure allowed to define a set of optimal wavelengths with an overall increase of the correlation between 

FTIR and 26S data. 

Conclusions: DADI can identify the FTIR wavenumbers best fitting to the chosen reference defining the descriptors to be 

used in FTIR and possibly in other metabolomic analyses. 
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BACKGROUND 

 Complex datasets, consisting of several descriptors, as 
DNA banding patterns, microarray intensity values, DNA 
sequencing or quantitative data from spectral analyses 
obtained with metabolomic techniques [1-5], are used to 
describe organisms and taxa in great detail. In general, all 
modern high through-output strategies provide increasingly 
more complex sets of data in shorter times, posing the 
problem of interpreting the biological meaning and the 
statistical significance of the dataset as a whole and of its 
single descriptors, when they can be handled independently. 

 The study of the relations among different single 
descriptors of the same dataset, also referred to as “R mode 
analysis”, is normally carried out with association 
coefficients, among which the various correlation indexes 
are the most popular [6, 7]. The same indexes can be used to 
describe the correlation between a whole dataset and single 
descriptors (or groups of descriptors) of another dataset. 

 Biological studies focused on different approaches and 
techniques to characterize a given group of organisms are 
typical examples of the situation studied in this article. 

 A typical, but not exhaustive, example of this problem is 
represented by the analysis of FTIR spectra in order to 
extract the wave numbers (descriptors), whose information 
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fit better with other taxonomic descriptions of the same 
microbial strains. This study has been traditionally carried 
out by empirical attempts or on the basis of case by case 
considerations. 

 Aim of this work is to develop an algorithm able to 
identify the most congruent descriptors of one matrix to a 
reference dataset, regardless of their data format. 

MATERIALS AND METHODOLOGY 

Implementation 

 The difference in data format and descriptor numbers of 
the datasets obtained from different experiments impedes a 
direct comparison of the single descriptors, however, 
distance matrices produced with a whatever number of 
descriptors will always have the same dimension allowing 
the comparison. 

 A basic assumption of the proposed algorithm is that one 
of the two datasets (M’, hereinafter referred to as reference 
matrix) is taken as a whole, in order to individuate the single 
descriptors of the M” matrix (referred to as test matrix) 
whose signals fits better with the among objects distances of 
the M’ matrix. Which of the two matrices should be 
considered the reference should be carried out on a case by 
case basis, considering that in many instances the role of the 
two matrices is reversible. 

 Once the reference matrix has been designed, the 
algorithm acts as follows: 

1. A distance matrix (D’) is calculated from M’. 
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2. A distance matrix (D1) is calculated using the first 
descriptor of the M” matrix. 

3. The correlation value C1 between D’ and D1 is 
calculated. 

 Steps 2. And 3. are reiterated for all descriptors of the M” 
matrix. 

 All the Ci values are plotted against the series of 
descriptors, obtaining a graph like that showed in Fig. (2). In 
order to build a matrix with only the M” descriptors more 
coherent to M’ a threshold value (T) of correlation can be 
defined such that all descriptors of the new optimized matrix 
(M*) satisfy the condition Ci T. 

 This algorithm has been written in R language 
(http://cran.r-project.org/, 2010) and named DADI as 
acronym of Distance-based Analysis for optimal Descriptor 

Identification. The package allows for a number of choices 
to match different experimental and analytical situations, as 
elucidated in the brief list below and as depicted in Fig. (1). 

1. Importation Functions. Input data can be imported 
as rectangular matrices, distance matrices or DNA 
alignment 

2. Distance Functions. Distances can be calculated with 
the dist function (according to the six methods 
available in “R”, see Table 1b) or with correlation 
based distances calculated as described below, where 
(T) is the transpose of the rectangular matrix and corr 
stands for correlation, producing a correlation square 
matrix among objects: 

dcor1= 1-((1+corr(T))/2) 

dcor2= 1-|corr(T)| 

 

Fig. (1). Flow chart of the main functions implemented in DADI.  

1. Functions are reported in italic. 

2. In the description of correlation functions the term on the left in the reference, that in the right is the test. E.g. DNA alignment vs matrix 

means that the DNA alignment serves as reference and the matrix as test. 
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dcor3= 1-(corr(T)) for all corr(T) 0; if corr(T)<0 then 
dcor3=1 

 Distances from DNA alignment are calculated 
according to the dist.dna function from the APE R - 
package (http://ape.mpl.ird.fr/, 2010/) 

Table 1a. Nomenclature of the Available Algorithms 

According to their Fields of Application 

 

Test Input (Numerical Matrix) 
Reference  

Input  Simple  

Algorithms 

Sliding Windows  

Algorithms 

Matrix  ma.maca ama.maca 

Distance  dis.maca adis.maca 

DNA Alignment  da.maca ada.maca 

 

3. Correlation Searching Functions. These functions 
calculate the correlation among single or grouped 
descriptors of the test matrix vs the reference matrix. 
A summary of the results and a plot (Fig. 2) are 
returned. Three basic correlation searching functions 
are available as shown in Table 1a: ma.maca (a 
reference matrix vs a test matrix), da.maca (a DNA 
alignment vs a test matrix) and dis.maca (a distance 
matrix vs a test matrix). In these functions the whole 
range of descriptors is subdivided in equal portions of 
sf (sf stands for sampling frequency) size, in order to 
group together all descriptors in each sf range. The 
value sf can range from 1 to the number of descriptors 
of the test matrix. The number of spectral portions 
(SP) sampled is then SP= n/sf where n indicates the 
number of descriptors of the test matrix. 

 A different sampling of descriptors is available in the 
“extended functions “, distinguished by an “a” in 

 

Fig. (2). Comparison of the effects caused by different distance and correlation algorithms (Debaryomyces species). 

Plots in panel a and b were obtained with the Euclidean distance algorithm, c and d with the dcor1 function described in the material and 

methods section. In panels a and c the correlation was calculated with the Spearman algorithm, in b and d with the Pearson’s. Other 

parameters were: function ada. maca, grid=30, sf=20. 
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front of the name of the corresponding basic 
functions, thus producing ama.maca, adis.maca and 
ada.maca (Table 1a). In these functions a “sliding-
window“ sampling is used: the first group of 
descriptors range from 1 to sf, the second from 2 to 
sf+1 and so on. With the extended functions, the 
number of portion sampled does not decrease 
dramatically with the increase of sf and in general 
PS= n+1-sf. 

 With all the above described functions the correlation 
can be carried out according to the Pearson, 
Spearman and Kendal coefficients, already available 
with the cor function included in the base distribution 
of “R”. 

 The sort=T command in the correlation functions 
produces a correlation graph with correlation data 
sorted in ascending order. 

4. Optimization Functions. Aim of the two 
optimization functions is to produce an optimized test 
matrix obtained by eliminating all descriptors of the 
original test matrix that do not correlate well with the 
reference matrix. The odi (optimal descriptors 
identification) function requires the analyst to choose 
a priori a minimum value of correlation above which 
the reference matrix will be retained in the optimal 
matrix. This function, in fact, takes all descriptors 
whose correlation with the reference matrix is not 
lower than the threshold chosen by the analyst and 
merges them in a “optimal matrix”. The function, rodi 
(reiterated odi) does not require any predefined 
threshold, but computes odi for several values of 
threshold included in a range chosen by the analyst. 
The operator is required to input the minimum and 
maximum values of the range and the interval 
between two successive threshold values. This 
function calculates for each threshold the 
corresponding correlation between the optimal matrix 
and the reference input data. In addition, this function 
calculates the gain in correlation, i.e. the increase in 
correlation obtained with each single optimal matrix 
in comparison to the original reference matrix. Gains 
in correlation values are shown in the ordinate of a 
graph reporting the thresholds on the abscissa. 

5. Cross Correlation. The dcc (descriptors cross-
correlation) function is available only when both the 
reference and test data are represented by matrices. It 
carries out a cross-correlation of all descriptors of the 
two rectangular matrices, returning a list of descriptor 
pairs whose correlation exceeds the chosen threshold 
and a pseudo heat-map. As a graphic output, dcc 
produces a pseudo- heatmap in which the correlation 
between descriptors of the two rectangular matrices is 
shown with different colors.  
 

RESULTS AND DISCUSSION 

Experimental Rationale and Taxonomic Models Used in 

the Validation of DADI 

 In order to evaluate the functionality of the proposed 
algorithms, we considered an increasingly interesting 

situation in modern microbial taxonomy as the classification 
or characterization of taxa by means of totally different 
approaches and descriptors. One such case is represented by 
the sequencing of the D1/D2 domain of the 26S rDNA and 
the FTIR analysis of whole cells. The molecular approach is 
largely accepted since its first proposal as a tool in yeast 
taxonomy [8] and has the advantage of an extended and 
expanding collection of data contained in GenBank 
(http://www.ncbi.nlm.nih.gov/Genbank/GenbankSearch.html, 
2010) or in similar databases. The decreasing costs of 
automatic DNA sequencing is another advantage of this 
largely adopted technique. On the other hand, FTIR has been 
shown to be able to differentiate between bacterial [9-11], 
and fungal taxa [12-15], although public spectral libraries are 
not available yet. The main advantages of the FTIR approach 
are its low cost in terms of consumables, the relative rapidity 
of the procedure and - most importantly - the capability of 
giving a complete picture of the cellular metabolome. A 
typical case in taxonomic paper dealing with FTIR is a 
laborious search of spectral regions whose data correlate 
with the accepted taxonomy of the group under study. This 
complex work is time consuming and is not necessarily able 
to pinpoint all optimal descriptors (in this case 
wavenumbers) with the necessary resolution. The basic 
rationale of DADI is to define a set of taxonomically well 
identified strains and to obtain both D1/D2 26S rDNA 
sequences and FTIR spectra from each of them. The D1/D2 
domain alignment has been chosen as reference, since it 
represents a widely accepted taxonomic classification. The 
complex of the FTIR data has been arranged in a matrix 
representing the test input data. The alignment dimensions 
and FTIR matrix have in common the same objects (the 
strains in this case) but are constituted by very different 
numbers of descriptors (respectively nucleotides and 
wavenumbers in the alignment and in the FTIR matrix). The 
triangular distance matrices obtained from each data set will 
share the same dimension, in fact both will be (N

2
-N)/2 

where N is the number of strains. These triangular distance 
matrices, having the same dimensions, can be subject to 
Mantel analysis, obtaining an overall value of correlation 
and a statistical significance value indicating the probability 
that the calculated correlation can be obtained by chance. 

 The validation has been carried out with three 
independent and different sets of taxa: one is represented by 
members of the yeast genus Debaryomyces, the second is 
constituted by the species of the genus Kazachstania. 
Finally, the third set is composed by species of a group of 
three yeast genera: Saccharomyces, Zygosaccharomyces and 
Lachancea (Table 2). 

Searching for FTIR Descriptors Correlating with DNA 
Alignments 

 There is a wide consensus in using a specific DNA 
sequence of the D1/D2 domain of the 26S rDNA gene as 
marker at taxonomic level [8]. As a matter of fact, most of 
the yeast identification is now carried out using this system 
which takes advantage of large free databases such as 
GenBank (http://www.ncbi.nlm.nih.gov/Genbank/, 2010). 
DADI has been employed to define the correlation of the 
26S D1/D2 rDNA alignments with the single FTIR 
descriptors (wave-numbers) produced by the strains of the 
genus Debaryomyces, using the ada.maca function with the 
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following settings: K80 DNA distance model, FTIR distance 
method calculated with the Euclidean or dcor1algorithm, the 
correlation method was according to the Spearman or the 
Pearson algorithm. The Spearman algorithm does not assume 
the linear relation between the two series of data and is 
therefore preferable if the analyst does not want to take this 
assumption or has no evidence of linearity. The Spearman 
correlation used (Fig. 2a, c) gave outputs similar to the 
default Pearson correlation (Fig. 2b, d) although the 
correlations, were somehow lower. The distance algorithm 
had a much stronger impact, in fact the distance based on the 
correlation between data (dcor1) produced much higher 
figures of correlation between the FTIR and the DNA data, 
than when Euclidean distances were used. This can be 
explained by the fact that the dcor1 algorithm calculates the 
changes in the spectral curve trend rather than the absolute 
point-by point distance as the Euclidean distance. 
Interestingly, all the four combinations of Fig. (2) confirm 
the high correlation of the wavenumbers in the 1300-1200 
cm

-1
 region, identified as the spectral range of the amide III 

and of the phospholipids [16]. Similarly, an area of high 
correlation between 1300 and 1100 cm

-1
 was obtained when 

the species of the Kazachstania genus were used (Fig. 3a) 
and in the joint analysis of strains belonging to the genera 
Saccharomyces, Lachancea, Zygosaccharomyces and 
Kazachstania (Fig. 3b). The area between 900 and 700 cm

-1
, 

already individuated as important in species identification 
and strain typing [17], showed several interesting peaks with 
relatively high correlation. 

 From these analyses resulted that some descriptors 
(wavenumbers) were more interesting than others to 
correlate FTIR with DNA alignments. Reducing the original 
FTIR matrix to these wavenumbers requires to define a 
threshold of correlation such that only wavenumbers with 
correlation over the threshold will remain in the optimal 
matrix. The analyst can carry out this operation with the 
function odi by defining the desired threshold and observing 
the “gain in correlation”, i.e. the increase of correlation of 
the optimal matrix vs the original dataset. In case no 
threshold can be defined a priori, the function rodi carries 

out an automatic analysis of the gain in correlation 
obtainable at different thresholds. In this validation. the rodi 
function obtained three very different profiles for the three 
taxonomic groupings (Fig. 4). The analysis on 
Debaryomyces species yielded a marked increase of the gain 
in correlation with a threshold around 0.75, triggering the 
correlation between DNA alignment and optimized FTIR 
matrix from 0.5 to 0.8 (Fig. 4a). In the other two cases there 
is a slower increase of correlation which occurs with 
threshold values from 0.50 to 0.65 when the Kazachstania 
species were analyzed (Fig. 4b) and between 0.35 and 0.45 
in the four yeast genera group (Fig. 4c). In this last case it is 
remarkable that when the threshold increases from 0.45 to 
0.55 the correlation drops from 0.64 to 0.52. This behavior 
can be explained considering that the increase of the 
threshold decreases the number of descriptors and that these 
few wavenumbers produce a good correlation only for some 
strains, but not for the others, causing a decrease of the 
global correlation. As a matter of fact this phenomenon 
occurred in the more heterogeneous groups represented by 
strains from four yeast genera. The differences of the gain in 
correlation observed in these three taxonomic situations 
indicate that no general rule can be formulated regarding the 
increase of correlation when the threshold raises. However it 
should be noticed that very high thresholds increase the 
correlation, but can reduce too much the number of 
descriptors. These plots suggest that the best strategy to 
produce optimal matrices consists in defining threshold 
values producing high correlation retaining a sufficient 
number of descriptors that in our cases should be at least of 
some tents. 

 The distance of the optimized matrices were subject to 
Mantel test with the distances of the original FTIR matrices 
and of the DNA alignment. Interestingly, there was a low 
correlation between the optimized matrix and the FTIR 
matrix from which it was derived and a large increase in 
correlation with the DNA alignment that in the three 
taxonomic panels was 0.613, 0.404 and 0.156 (Table 3). The 
fact that the group of four yeast genera produced the smallest 
increase in correlation indicates that this method has a 

Table 1b. Synopsis of the Methods Employable in the Distance Algorithms 

 

Function Distal Method Model Cormethod 

explanation Distance algorithm Distance method when distal=dist DNA Alignment distance Method of correltion 

dist Euclidean K80 Pearson 

dcor1 Manhattan Raw Spearman 

dcor2 Minkowski JC69 Kendall 

dcor3 Canberra K81  

  F84  

  BH87  

  T92  

  TN93  

  GG95  

  Lodgment  

O
p

ti
o

n
s 

  paralin  
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natural limit with heterogeneous groups in which the single 
wavenumbers were easily optimal for some members and not 
for others. 

 The increase of correlation obtained by the optimal 
matrix led to an arrangement of the strains in the dendrogram 
more similar to that obtained with the D1/D2 26S 

alignments. In fact the DNA marker indicates K. 
transvaalensis as the most distant species of the group and 
places together into two separate clusters the strains of K. 
exigua and of K. unispora. (Fig. 5a). The FTIR dendrogram 
retained only the clustering of the K. unisporai strains, while  
 

 

Fig. (3). Correlation plots between D1/D2 domain DNA sequences and whole FTIR spectra. 

Panel a shows the correlation plot obtained with species of the genus Kazachstania, panel b reports the correlation plot obtained with some 

species of the four yeast genera Saccharomyces, Zygosaccharomyces, Kazachstania and Lachancea. 

Parameters were: function ada. maca, grid=30, sf=20, distance method = dcor1, correlation according to Pearson’s algorithm. 
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Fig. (4). Gain in correlation plots. 

The plots show the gain in correlation by varying threshold values. 

Panel a Debaryomyces species, panel b species of the genus 

Kazachstania, panel c some species of the yeast genera Saccharomyces, 

Zygosaccharomyces, Kazachstania and Lachancea. 

the two isolates of K. exigua resulted in separate groups. 
Moreover, the K. transvaalensis appeared clustered with two 
other species (Fig. 5b). The optimized FTIR dendrogram 
appeared topologically very similar to that obtained with the 
DNA sequences with the only difference that the K. barnetti 
- K. spencerorum clade was split. 

 These data confirm that an increase of correlation 
improves the topological distribution of the strains in the 
dendrogram, although this effect was less visible in the four 
yeast genera group (data not shown). 

Comparison of DADI with Other Statistical Methods 

 The efficacy of DADI in selecting the best correlating 
wavenumbers to a 26S DNA alignment was compared with 
that obtainable with QUANT2, a Partial Least Square (PLS) 
regression method developed for the specific use of 
spectroscopy and included in the package OPUS (Bruker - 
Germany). The vector of reference data to set up the 
regression in QUANT2 was obtained as the distances of each 
Kazachstania strains from K. barnettii as calculated 
according to the 26S rDNA alignment. The Quant2 method 
produced a regression curve with R

2
 =0.245 using the 

regions from 2557.6 to 2196 and from759.9 to 399.3cm
-1

 
(Fig. 6a). These two wavenumbers ranges selected by 
QUANT2 were employed to build the dendrogram displayed 
in Fig. (6b). The dendrogram is inconsistent from a 
phylogenetic point of view, in fact separates the two K. 
exigua strains, which are indeed very similar at the 26S 
level. Furthermore, the region spanning from 2557.6 to 2196 
cm

-1
 does not include any significant signal and is considered 

critical by the PLS procedure, whereas it gave very low 
correlation values when DADI was employed to search 
significantly correlated wavenumbers [18]. Another 
advantage of DADI is the possibility to set the threshold of 
correlation (odi function) to select the optimal wavelengths, 
whereas the QUANT2 algorithm gives a series of ranges 
without the possibility for the analyst to interact with the 
program. 

Comparison with Random Matrices 

 The interpretation of the correlation graph could raise the 
question on whether the figures observed are really due to a 
solid correlation between the matrices or to random effects. 
In order to address the question the package DADI includes 
the function randomtest, which produces a matrix of random 
values (ran) with the same dimensions of the test matrix. 
The ran matrix can be further used in any correlation 
function (ma.maca, ama.maca etc) to visualize the difference 
between the correlation plot obtained with the actual test 
matrix and that yielded by random data. Using the 
randomtest function we carried out an ada.maca analysis 
similar to that shown in the validation of the algorithm using 
26S alignment and FTIR data (Fig. 7a). The same analysis 
with the same settings was repeated using a ran matrix (Fig. 
7b). In the former case the peaks are well shaped and 
discriminated, whereas in the latter are irregularly 
distributed. Moreover, the maximum correlation observed 
with real data was 0.6, whereas was 0.4 with random data. 
However, it seems more important to consider the peak 
distribution and their significance (biological or chemical) 
more than the maximum correlation value. Using the sort 
command within the ada.maca function, two rather different 
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curves were obtained (Fig. 7c, d). The sorted curve from 
random data is quite similar to a uneven degree curve, 
whereas that from real data is much less smooth and presents 
some regions of irregularity. All together it seems that the 
shape of the sorted and usorted correlation graphs is a good 
parameter to determine whether the correlation values are 
similar to those yielded with a series of random data. 

Table 3. Results of Mantel Test on DNA, FTIR and 

Optimized FTIR Matrix Distance Correlation 

 

Table 3a. 
 

  Dd Fd OFd 

DNA distances (Dd)   0.055 <0.001 

FTIR distances (Fd) 0.199   0.24 

Optimized FTIR Distances (Ofd) 0.812 0.07   

 

 

Table 3b. 
 

  Dd Fd OFd 

DNA distances (Dd)   0.117 0.024 

FTIR distances (Fd) 0.261   0.021 

Optimized FTIR Distances (OFd) 0.665 0.434   

 

Table 3c. 
 

  Dd Fd OFd 

DNA distances (Dd)   0.08 <0.001 

FTIR distances (Fd) 0.182   0.004 

Optimized FTIR Distances (OFd) 0.638 0.33   

Mantel test were carried out on distance matrices among strains of the Debaryomyces 

genus (Tab. 3a), Kazachstania genus (Table 3b) and of the Saccharomyces, 

Zygosaccharomyces and LAchancea genera (Table 3c) 

 Lower triangle figures are results of the mantel test between distance matrices. 
Upper triangle figures represent the probability error of the corresponding tests; 

low values indicate robust results. 
 

Table 2. List of the Strains Employed in this Study 

 

Genus Species Strain Genus Species Strain 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces 

Debaryomyces  

D. carsonii 

D. carsonii 

D. castellii 

D. coudertii 

D. etchelsii 

D. hansenii var. fabryii 

D. hansenii 

D. hansenii 

D. marama 

D. marama 

D. melissophilus 

D. melissophilus 

D. nepalensis 

D. nepalensis 

D. nepalensis 

D. occidentalis occidentalis 

D. occidentalis parsoonii 

D. polymorphus africanus 

D. polymorphus polymorphus 

D. polymorphus polymorphus 

D. pseudopolymorphus 

D. udenii 

D. vanrijiae 

D. vanrijiae 

D. yamadae 

D. yamadae  

CBS 2285 

CBS 4050 

CBS 2923 

CBS 5167 

CBS 2011 

CBS 789 

CBS 1793 

CBS 2330 

CBS 1958 

CBS 4262 

CBS 6344 

CBS 6694 

CBS 1325 

CBS 2334 

CBS 5921 

CBS 4516 

CBS 2169 

CBS 6741 

CBS 186 

CBS 4346 

CBS 2008 

CBS 7056 

CBS 6454 

CBS 6756 

CBS 7035 

CBS 7036  

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

Saccharomyces 

 

Kazachstania 

Kazachstania 

Kazachstania 

Kazachstania 

Kazachstania 

Kazachstania 

Kazachstania 

Kazachstania 

 

Zygosaccharomyces 

Zygosaccharomyces 

Zygosaccharomyces 

 

Lachancea 

Lachancea  

S. bayanus 

S. cariocanus 

S. cerevisiae 

S. cerevisiae 

S. cerevisiae 

S. cerevisiae 

S. kudriavzevii 

S. mikatae 

S. paradoxus 

S. pastorianus 

 

K. barnettii 

K. exigua 

K. exigua 

K. martiniae 

K. spencerorum 

K. transvalensis 

K. unispora 

K. unispora 

 

Z. bailii 

Z. florentinus 

Z. microellipsoides 

 

L. cidri 

L. fermentati  

CBS 380 

CBS 8841 

CBS 1171 

CBS 1508 

CBS 2247 

CBS 5835 

CBS 8840 

CBS 8839 

CBS 432 

CBS 1538 

 

CBS 5648 

CBS 2141 

CBS 4660 

CBS 6334 

CBS 3019 

CBS 2186 

CBS 3004 

CBS 399 

 

CBS 680 

CBS 746 

CBS 427 

 

CBS 4575 

CBS 707  
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Fig. (5). Dendrograms of species belonging to the yeast genus Kazachstania. 

Dendrograms were obtained with the diana function from the cluster R package. Panel a dendrogram calculated on the basis of the 26S 

D1/D2 domain alignments, panel b and c dendrograms obtained respectively from the whole and optimized FTIR matrices. 
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Fig. (6). QUANT analysis of FTIR data on the basis of the 26S rDNA alignments. 

a) QUANT2 regression, b) dendrogram obtained with the FTIR regions indicated by the QUANT2 analysis. 
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Cross Correlation 

 The cross-correlation function dcc allows for rapid 
analyses in diverse combination, of which three are 
illustrated below. 

 The dcc algorithm was firstly used to correlate the strains 
of the four genera group, according to the description 
provided by the whole FTIR matrix. This can be 
accomplished by introducing in the dcc function the 

transposed matrix of the FTIR matrix. Results in Fig. (8) 
showed that intermediate correlation values prevailed (green 
squares). The high correlation values (blue), beyond those of 
the ascending diagonal, are present within the two groups 
delimited by curly brackets. Interestingly, in the larger group 
were included species of all the four genera, indicating that 
FTIR, without optimization could not organize the taxa in a 
way similar to that of the DNA alignments. 

 
Fig. (7). Compsrison of correlation graphs derived from FTIR spectral data (Test matrix) and 26S rDNA sequences of eight yeast strains 

(reference matirx); b. Correlation graph obtained with a randomly generated test matrix and the same reference matrix as in a, c, and d are 

the same correlation graphs as a and b, respectively, with correlation values sorted in ascending order. 
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 Another application of dcc was carried out by 
introducing the complete FTIR matrix, producing a cross 
comparison of the wavenumbers (Fig. 8), which were 
maintained in decreasing order from left to right and from 
bottom to top, in order to facilitate the reading of the pseudo-
heatmap. In this very dense map (2400 x 2400) the 
intermediate correlations prevail, alternated with red and 
yellow areas (very low and low correlation) and blue areas 
(high correlations). Interestingly, the size of the red-yellow 
and blue stains decreases with the decrease of the 
wavenumbers, resulting in a very dense web in the right-
upper part. This observation suggests that most of the FTIR 
descriptors are independent from one another as shown by 
the prevalence of the green squares. However, in several 
parts of the map a combination of close red (low correlation) 

and blue (high correlation) stains could be found as 
emphasize by the dotted squares. These areas represent an 
alternation of descriptors linked by a strong correlation 
which alternated from positive (blue) to negative (red) within 
few cm

-1
 of wavenumbers. The right understanding of the 

meaning of these areas of high correlation needs further 
insight and could help in the interpretation of the FTIR 
spectra and in their use. 

CONCLUSIONS 

 The proposed R package DADI was able to identify the 
FTIR wavenumbers best fitting to the chosen reference, 
supporting its use in defining the descriptors to be used in 
FTIR and possibly in other metabolomic analyses. Beyond 
taxonomy and phylogenetics, DADI can be employed in a 

 

Fig. (8). Pseudo heathmap showing the correlation among some species of the genera Saccharomyces, Zygosaccharomyces, Kazachstania 

and Lachancea. 
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number of applications. In general, it seems that DADI can 
be a helpful application to optimize complex datasets 
composed of independent variables. The main conceptual 
problem is maybe represented by the difficulty to define a 
significant reference model really representative of the 
situation under study. The possibility to consider 
alternatively each matrix as reference or as test and the cross 
correlation obtained with dcc are additional opportunities to 
identify the best descriptors of each matrix and to define the 
reference model carefully. 
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