Review of Symptoms Assessment During Nasal Allergen Provocation in Patients with Allergic Rhinitis

Akli Zetchi, Marie-Claire Rousseau, Annie LeBlanc, Marie-Eve Boulay and Louis-Philippe Boulet*

Centre de Recherche, Institut Universitaire de Cardiologie et de Pneumologie de Québec, Canada

Abstract: Background: Allergic rhinitis is the most prevalent allergic disease. Nasal provocation tests (NPTs) may be useful for its clinical diagnostic and therapy monitoring although they are mostly used in clinical research. However, the lack of standardisation in the symptoms assessed and the variety of instruments used make effective comparison between studies difficult. Objective: To review the published literature searching for instruments assessing nasal symptoms during NPTs for allergic rhinitis. Methods: Pubmed and Embase electronic databases were reviewed, looking for all methods including an instrument assessing symptoms during or following NPTs. Studies on animal models, pediatric subjects, and patients without allergic rhinitis were excluded. Studies were also excluded if they did not assess nasal symptoms during or following the NPT. Only NPT studies performed with allergen extracts or histamine were included. Results: A total of 520 studies were retrieved, from which 81 different instruments from 81 studies were included in the present analysis. There was no instrument reporting a validation process for the assessment of symptoms during NPTs. From the remaining instruments, the most common symptoms assessed were rhinorrhea (67), sneezing (70), congestion (67), and nasal pruritus (50). The most frequently used type of scales among those instruments was the four-point Likert scale (39), although different methods were used. Conclusions: This review illustrates the large variety of symptoms and methods used to assess the aforementioned NPTs. The lack of validation studies suggests the need to develop and validate a standardized instrument assessing symptoms following NPTs.

Keywords: Rhinitis, symptoms, symptom score, allergen challenge, nasal provocation test.

INTRODUCTION

Several techniques have been developed to study the clinical and pathophysiological mechanisms of rhinitis. Among those being commonly used are direct challenges with histamine or allergens [1]. Nasal provocation tests (NPTs) have the advantage of reproducing an exposure in a controlled setting, making possible the use of the same procedure for all subjects with standardized agents. They are particularly used to assement new treatments of allergic rhinitis [1]. Although rarely performed in clinical practice, NPTs are often used for research purposes on nasal diseases mainly to evaluate efficacy of anti-allergic medication [1-3]. They are also important in the diagnosis of occupational rhinitis.

The evaluation of response during NPTs can be both objective and subjective. With respect to objective methods, biochemical markers measures in nasal secretions have been used [4-6], as well as anterior rhinomanometry, acoustic rhinometry, and rhinostereometry which allow to assess nasal obstruction during NPT [1]. Subjective symptom ratings using Likert or visual analogue scales have been widely used. However, the lack of standardisation in the symptoms assessed and the large spectrum of scales lacking a validation process make effective comparison between studies difficult. Although some scoring systems have been proposed for standardised quantification of clinical parameters [7-11] and the importance of a rigorous validation process reported, there is, to our knowledge, no “gold standard” for the evaluation of response to NPTs.

The aim of this work was to review published reports on NPTs, searching for instruments with a reported validation process that evaluated symptoms during or after NPTs and to assess the validation process when available.

METHODS

Search Strategy and Inclusion Criteria

A systematic literature search was performed by an information specialist, using Pubmed and Embase databases, to identify reports where the evaluation of symptoms in patients with allergic rhinitis during NPT was assessed, regardless of study design. The following keywords and/or medical heading terms and/or text words were used when applicable: 1) rhinitis and 2) symptoms, and 3) evaluation or questionnaire or score or scale or instrument, and 4) nasal provocation test or nasal allergen provocation or nasal allergen challenge or nasal challenge. We analyzed human studies published between 1980 and 2006 written in English or French. Reference lists of included studies and review articles were hand searched afterwards. Studies were included if 1) patients had allergic rhinitis; 2) they included NPTs with allergen extracts or histamine; and 3) they were original publications using tools to assess symptoms during or following NPTs in patients with allergic rhinitis.

*Address correspondence to this author at the Institut universitaire de cardiologie et de pneumologie de Québec, 2725, Chemin Ste-Foy, Québec, Canada, G1V 4G5, Canada; Tel: 418-656-4747 Fax: 418-656-4762; E-mail: lpboulet@med.ulaval.ca
Data Extraction and Tool Assessment

The database was analysed independently by two reviewers. General information on the study goal, the study type, the clinical setting, the treatment provided (medical or surgical), and the patient population and inherent characteristics was first collected. Subjects’ diagnosis of allergic rhinitis and asthma were also considered. The presence of allergic asthma was noted. The number of symptom evaluation tools used by each study was recorded.

For each symptom assessment instrument used in the studies, information was abstracted on the number of items, the subscales or domains, the scoring method and the mode of administration. If mentioned, the performance characteristics of each instrument including validity, reliability and responsiveness was noted. Therefore, information on nasal and ocular manifestations evaluated by the different tools was precisely noted. Regarding the mode of administration, we noted if the patients completed independently the questionnaire or scale or if an interviewer was involved in the process. If a scale was described, the grading system and the number of items scored were recorded. In the case of visual analog scales (VAS), we were interested in its grading (e.g. 0 to 10, 0 to 100) and the items assessed. Finally, we analyzed if the VAS assessed the patient’s overall feeling of symptoms or precise clinical manifestations.

RESULTS

Literature Search Results

At first, 520 articles were identified through the query of the Embase and Pubmed databases. We first excluded 120 duplicates, 38 articles in other languages than French or English, 1 without abstract and 12 reviews (Fig. 1). From the remaining 349 articles, we excluded 6 studies on animals and 41 which focused on pediatric patients. We discarded 22 studies on patients without any form of allergic rhinitis and 65 which did not perform a nasal provocation test. Fifteen studies used other substances than allergens or histamine while 68 did not include an instrument to assess symptoms during NPTs. Finally, 51 studies were not the original article describing the instrument used to assess symptoms and referred to previous studies which were included in this analysis. Hence, 81 studies used instruments to assess nasal symptoms following NPTs among subjects with rhinitis.

Instrument Characteristics

None of these 81 studies used a validation process for their instruments measuring nasal symptoms [9,12-91]. In-
Symptom Evaluation Tools During Nasal Allergen Challenges

The symptoms most frequently evaluated were, in order of prevalence, rhinorrhea (73), sneezing (70), nasal blockage (67), and nasal pruritus (50). The prevalence of these four upper airway symptoms was clearly higher compared to the others. Tearing (12) and itching of the eyes (9) as well as bronchial symptoms (6) were the following most prevalent symptoms assessed during NPTs. Bronchial symptoms, relating to lower airway symptoms, included cough, wheezing, and shortness of breath. In 39 studies, the symptom evaluation tool was auto-administered. Nineteen studies used an interviewer to complete the symptom assessment tool. Twenty-three studies did not mention the mode of administration.

DISCUSSION

This review confirms the lack of standardization and validity assessment of the different tools used to assess the upper airway response to nasal allergen challenges. No validation process for an instrument was found following the review of 81 original manuscripts meeting the previously described criteria. Nevertheless, the publications using non-validated tools were reviewed to find any common characteristics in nasal symptom assessment.

When analysing data extracted from the non-validated tools, the four-point Likert scale was the most commonly used instrument to assess symptoms following NPTs. Likert scales and VAS allow the subjects to report the frequency or intensity of their symptoms. Moreover, these last have been reported has having relatively comparable reliability and responsiveness [92,93]. Otherwise, Likert scales may be easier to administer and interpret and therefore may be preferable for use in clinical trials [93-95].

Fig. (2). Characteristics of the tools assessing allergic rhinitis symptoms.
Rhinorrhea, sneezing, nasal congestion, and nasal pruri-
tus were the most frequently evaluated symptoms. Even
though these results come from studies which lacked a va-
didation process, the four symptoms most frequently assessed
during or after NPTs correspond to the definition of allergic rhinitis according to the Allergic Rhinitis and its Impact on
Asthma workshop report [96]. Allergic rhinitis may be de-
scribed as a complex condition characterized by paroxysms of
sneezing, rhinorrhea, nasal obstruction, and itching of the
eyes, nose, and palate [97]. In a more recent evaluation of
clinical parameters for the definition of allergic rhinitis, Ng
et al. suggested that the most important factors to be consid-
ered in the diagnosis of allergic rhinitis are those related to
nasal and ocular symptoms; for example, the symptoms of
rhinorrhea, sneezing, sniffing, impaired sense of smell,
blocked nose, watery eyes, red eyes, mouth breathing, and
itchy nose [98]. Therefore, the symptoms commonly as-
sumed in studies using NPTs seem to be relevant in the
evaluation of patients with allergic rhinitis and should be
included in an evaluation tool.

Another important finding of the study was the diversity
of the methods to assess symptoms. In some instances, the
same author used different instruments to evaluate symptoms
during NPTs. However, the use of more than one instrument
to assess symptoms following NPTs was rarely noted. Mul-
tiple scales could be used to assess the various components
of the nasal response. On one side, specific symptoms could,
for instance, be individually assessed with a Likert scale. In
addition, it could be of interest to have a composite measure-
ment of the disease control and stability of subjects, for
example, by adding a more objective measure (ex. Nasal
peak flow).

As shown in this review, there is no consensus or gold
standard for the establishment of upper airway symptoms
following NPTs. The data collected in this study are most
valuable for the future construction and validation of a new
symptom score as they reflect the perception of most authors
on rhinitis’ key features. This review stresses the need to
develop and most importantly, validate a common tool to
assess severity and evolution during or following NPTs in
patients with allergic rhinitis. Since no standardized and
common tool has been produced for this purpose, the evalu-
ation and comparison of studies using various methods to
assess NPTs remain difficult and less reliable. In addition,
like other chronic diseases, allergic rhinitis requires adequate
monitoring of symptoms in order to provide adequate treat-
ment. The tool developed for evaluation of symptoms fol-
lowing NPTs could also be useful in the assessment of rhini-
tis control.

**POTENTIAL FINANCIAL CONFLICTS OF INTER-
ESTS**

Advisory Boards: L.-P. Boulet (Altana, AstraZeneca,
GlaxoSmithKline, Merck Frosst, Novartis); **Lecture fees:**
L.-P. Boulet (3M, Altana, AstraZeneca, GlaxoSmithKline,
Merck Frosst, Novartis); **Sponsorship for investiga-
tor-generated research:** L.-P. Boulet (AstraZeneca, GSK,
Merck Frosst, Schering); **Research funding for participating
in multicenter studies:** L.P. Boulet (3M, Altana, AsthmaTx,
AstraZeneca, Boehringer-Ingelheim, Dynavax, Genentech,
GlaxoSmithKline, IVAX, Merck Frosst, MedImmune, No-
vartis, Roche, Schering, Topigen, Wyeth); **Support for the
production of educational materials:** L.-P. Boulet (Astra-
Zeneca, GlaxoSmithKline, Merck Frosst); **Governmental:**
L.-P. Boulet (Adviser for the Conseil du Médicament du
Québec, Member of the Quebec Workmen Compensation
Board Respiratory Committee); **Organisational:** L.-P. Bou-
let (Chair of the Canadian Thoracic Society Respiratory
Guidelines Committee, Holder of the Laval University Chair
on Knowledge Transfer, Prevention and Education in Respi-
ratory and Cardiovascular Health). A. Zetchi, M.C. Rous-
seau, A. LeBlanc, M.E. Boulay: have none to declare.

REFERENCES

[1] Day JH, Ellis AK, Rafeiro E, Ratz JD, Briscoe MP. Experimental
models for the evaluation of treatment of allergic rhinitis. Ann All-

vocative test in patients allergic to pollen. Ann Agric Environ Med

evaluating suspected allergic rhinitis. Ann Intern Med 2004; 140:
278-89.

value of nasal provocation testing and rhinomanometry in allergic

after nasal airway challenge with allergen. Am Rev Respir Dis

gen-induced release of sulphidopeptide leukotrienes (SRS-A) and

[7] Linder A, Strandberg K, Deuschl H. Histamine concentrations in
nasal secretion and secretory activity in allergic rhinitis. Allergy
1987; 42: 126-34.

[8] Riechelmann H, Bachert C, Goldschmidt O, et al. [Application of
the nasal provocation test on diseases of the upper airways. Posi-
tion paper of the German Society for Allergology and Clinical Immu-
nology (ENT Section) in cooperation with the Working Team for

[9] Linder A. Symptom scores as measures of the severity of rhinitis.

[10] Hytönen M and Sala E. Nasal provocation test in the diagnostics of

80.

[12] Ahman M and Holmstrom M. Nasal histamine reactivity in wood-

and non-specific nasal reactions. Reciprocal relationship and inhibi-
tion by topical glucocorticosteroids. Acta Otolaryngol 1989; 107:
270-7.

dependent effects of budesonide aqueous nasal spray on symptoms
in a daily nasal allergen challenge model. Ann Allergy Asthma

inflammation of the nasal mucosa on the severity of rhinovirus 16

[16] Bachert C, Wagenmann M, Vossen-Holzenkamp S. Intranasal
budesonide partially inhibits the nasal response to allergen provocation. Arch

dependent effects of budesonide aqueous nasal spray on symptoms
in a daily nasal allergen challenge model. Ann Allergy Asthma

[18] Bellusci L, Marucci F, Sensi LG, et al. Do tryptase, ECP and
specific IgE measurement by nasal incubation increase the specific
nasal provocation test sensitivity? Int J Immunopathol Pharmacol
2004; 17: 201-8.
Symptom Evaluation Tools During Nasal Allergen Challenges

The Open Allergy Journal, 2010, Volume 3

