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Abstract: In this paper, nonlinear oscillators under cubic nonlinearity with stochastic inputs are considered. Two techni-
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1. INTRODUCTION  

 Cubic oscillation arises through many applied models in 
science and engineering when studying oscillatory systems 
[1]. These systems can be exposed to a lot of uncertainties 
through the external forces, the damping coefficient, the fre-
quency and/or the initial or boundary conditions. These input 
uncertainties cause the output solution process to be also 
uncertain. For most of the cases, getting the probability den-
sity function ( p.d.f.) of the solution process may be impos-
sible. So, developing approximate techniques through which 
approximate statistical moments can be obtained, is an im-
portant and necessary work. There are many techniques 
which can be used to obtain statistical moments of such pro-
blems, among of which are the proposed techniques; the 
WHEP and HPM. The main goal of this paper is to compare 
these two methods when applied to a cubic nonlinearity pro-
blem. 

 The problem is formulated in section 2. The WHEP and 
HPM techniques are illustrated and used to solve the general 
problem and then applied for an illustrative case study in 
sections 3 and 4 respectively. Comparisons are also illustra-
ted in these sections between the two methods.  

2. PROBLEM FORMULATION 

 In this paper, the following cubic nonlinear oscillatory 
equation is considered  

 
x + 2w x +w2x + w2x3 = F(t ; ) , t [ 0 ,T ]         (1) 

under stochastic excitation F(t; )  with deterministic initial 

conditions 

 
x(0) = x0 , x(0) = x0 , 

where w: frequency of oscillation, 

: damping coefficient 
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 : deterministic nonlinearity scale 

( , , p)  : a triple probability space with  as the sample  

space ,  is a -algebra on events in  and P 

is a probability measure. 

3. THE WHEP TECHNIQUE 

 Since Meecham and his co-workers [2] developed a theo-

ry of turbulence involving a truncated Wiener-Hermite ex-

pansion (WHE) of the velocity field, many authors studied 

problems concerning turbulence [3-8]. The nonlinear oscilla-

tors were considered as an opened area for the applications 

of WHE as can be found in [9-15]. There are a lot of applica-

tions in boundary value problems [16,17] and generally in 

different mathematical studies [18, 19].  

 The application of the WHE aims at finding a truncated 

series solution to the solution process of differential equa-

tions. The truncated series composes of two major parts; the 

first is the Gaussian part which consists of the first two 

terms, while the rest of the series constitute the non-Gaussian 

part. In nonlinear cases, there exists always difficulties of 

solving the resultant set of deterministic integro-differential 

equations got from the applications of a set of comprehen-

sive averages on the stochastic integro-differential equation 

obtained after the direct application of WHE. Many authors 

introduced different methods to face these obstacles. Among 

them, the WHEP technique was introduced in [14] using the 

perturbation technique to solve perturbed nonlinear pro-

blems.  

 The WHE method utilizes the Wiener-Hermite polyno-

mials which are the elements of a complete set of statistically 

orthogonal random functions [20]. The Wiener-Hermite po-

lynomial H (i ) (t1, t2 , ...ti )  satisfies the following recurrence 

relation: 

H (i ) (t1, t2 , ...ti ) = H
(i 1) (t1, t2 , ...ti 1 ).H (1) (ti )

                 -   H (i 2) (ti1 , ti2 , ...tii 2
)

m=1

i-1

. (ti m ti ),  i 2
        (2) 
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              (3)  

in which n(t) is the white noise with the following statistical 

properties 

 

  

E  n(t)=0,                      

E  n(t
1
).n(t

2
) = (t

1
t

2
),

           (4) 

where (-) is the Dirac delta function and E denotes the 

ensemble average operator. 

 The Wiener-Hermite set is a statistically orthogonal set, 

i.e. 

  
E  H (i) .H ( j )

= 0   i j.             (5)  

 The average of almost all H functions vanishes, particu-

larly, 

  
E  H (i)

= 0  for i 1.             (6)  

 Due to the completeness of the Wiener-Hermite set, any 

random function G(t; )  can be expanded as 

  

G(t; ) = G
(0) (t) + G

(1) (t; t
1
)H

(1) (t
1
)dt

1
 +

--

G
(2) (t; t

1
, t

2
)H

(2) (t
1
, t

2
)dt

1
dt

2
+ .....  

        (7) 

where the first two terms are the Gaussian part of G(t; ) . 
The rest of the terms in the expansion represent the non-

Gaussian part of G(t; ) . The average of G(t; )  is 

μG = EG(t; ) = G (0) (t)             (8) 

 The covariance of G(t; )  is 

  

Cov(G(t; ),G( ; )) = E(G(t; ) μ
G

(t))(G( ; ) μ
G

( ))

= G
(1) (t; t

1
)G (1) ( , t

1
)dt

1
 +2

--

G
(2) (t; t

1
, t

2
)G (2) ( , t

1
, t

2
)dt

1
dt

2
 
 

              (9)  

 The variance of G(t; )  is 

 

  

Var G(t; ) = E(G(t; ) μ
G

(t))2

= [G (1) (t; t
1
)]2

dt
1
 +2 [

--

G
(2) (t; t

1
, t

2
)]2

dt
1
dt

2

       (10)  

 

 

 In WHEP technique, every deterministic kernel of the 

expansion of the unknown 
  
x(t; ) , mainly 

  
x

( j ) (t, )  is ex-

panded in the problem small parameter, say . In this case 

the kernel is assumed as follows; 

   
x

( j ) (t, ) = x
0

( j ) (t, ) + x
1

( j ) (t, ) + 2
x

2

( j ) (t, ) + . 

 Substituting in the original equations, after taking the 

necessary set of averages, one always has number of equa-

tions as the number of unknowns 
  
x

k

( j ) (t, ) . 

 The WHEP technique can be applied on linear or nonli-

near perturbed systems described by ordinary or partial diffe-

rential equations. The solution can be modified in the sense 

that additional parts of the Wiener-Hermite expansion can 

always be taken into considerations and the required order of 

approximations can always be made depending on the com-

puting tool. It can be even run through a package if it is co-

ded in some sort of symbolic languages. The technique was 

successfully applied to several nonlinear stochastic equa-

tions, see [20,22,23,25]. 

3.1. Case-Study 

 The cubic nonlinear oscillatory problem, equation (1), is 

solved using WHEP technique. The second order approxima-

tion of the solution process takes the following form: 

x(t ; ) = x(0) (t)H (0) (t) + x(1)

D1

(t, t1 )H
(1) (t1 )dt1 +

x(2)

D2

(t, t1, t2 )H
(2) (t1, t2 )dt1dt2 + ........

      (11)  

 Applying the WHEP technique , the following equations 

in the deterministic kernels are obtained: 

Lx(0) (t)+ 2 x(0)
3
+ 8 x(2) (t,t1,t2 )x

(2) (t,t1,t3 )x
(2)

D

(t,t2 ,t3 )dt1dt2dt3

+ 3x(0) (t) x(0) (t,t1 )
2
dt1

D

+ 6x(0) (t) x(2) (t,t1,t2 )
D

2
dt1dt2

+ 6 x(2) (t,t1,t2 )x
(1) (t,t1 )x

(1) (t,t2 )dt1dt2
D

= F (0) (t)

 

              (12) 

Lx(1) (t,t1 )+
2 3 x(0) (t)

2
x(1) (t,t1 )+ 3x

(1) (t,t1 ) x(1) (t,t1 )
2
dt1

D

+12x(0) (t) x(2) (t,t1,t2 )x
(1) (t,t2 )dt2

D

+ 6x(1) (t,t1 ) x(2) (t,t1,t2 )
D

2
dt1dt2

+ 24 x(1) (t,t2 )x
(2) (t,t1,t3 )x

(3) (t,t2 ,t3 )dt2dt3
D

= F (1) (t,t1 )

 

            (13) 
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Lx(2) (t,t1,t2 )+
2 3 x(0) (t)

2
x(2) (t,t1,t2 )+ 3x

(0) (t) x(2) (t,t1,t3 )x
(2) (t,t2 ,t3 )dt3

D

+ 3x(2) (t,t1,t2 ) x(1) (t,t3 )
2
dt3

D

+ 6x(1) (t,t1 ) x(1) (t,t3 )x
(2) (t,t2 ,t3 )dt3

D

+ 6x(2) (t,t2 ) x(2) (t,t3 )x
(2) (t,t1,t3 )dt3

D

+ 24 x(2) (t,t1,t3 )x
(2) (t,t2 ,t4 )

D

x(2) (t,t3,t4 )dt3dt4

+ 6x(2) (t,t1,t2 ) x(2) (t,t3,t4 )
D

2
dt3dt4

= F (2) (t,t1,t2 )

 

            (14) 

 Let us take the simple case of evaluating the only Gaus-

sian part (first order approximation) of the solution process. 

In this case, the ensemble average is 

μx (t) = x
(0) (t) ,           (15) 

and the variance is 

x
2 (t) = x(1) (t; t1)

2

dt1  .          (16) 

 In this case, the WHEP technique uses the following ex-

pansion for its deterministic kernels, 

  
x

( i) (t) = x
0

( i)
+ x

1

( i)
+

2
x

2

( i)
+

3
x

3

( i)
+ , i = 0,1 ,       (17) 

 

where the first two terms consider the first correction ( up to 

), the first three terms represent the second correction (up 

to  
2 ) and so on. This means that we have a lot of correc-

tions possibilities within each order of approximation. 

3.1.1. Example 

 Let us take 

  
F(t; ) = e

t
+ n(t; )  ,          (18) 

 Where 
  
n(t; ) is white noise. Solving using the WHEP 

technique, the following results are obtained, see Figs. (1, 2 

and 3). 

4. THE HOMOTOPY PERTURBATION METHOD 

(HPM) 

 In this technique [21-25], a parameter p [0,1]  is em-

bedded in a homotopy function v(r, p) : [0,1]  which 

satisfies  

H (v, p) = (1 p)[L(v) L(u0 )]+ p[A(v) f (r)] = 0        (19) 

where u0  is an initial approximation to the solution of the 

equation 

A(u) f (r) = 0, r            (20) 

with boundary conditions 

a     b     c 

 

Fig. (1). a: The first order approximation and first correction of the mean at different  values (WHEP).  

b: The first order approximation and second correction level of the mean at different  values (WHEP).  

c: Comparison between the two correction levels of the mean at = 1  (WHEP).  

 

a    b    c 

 
Fig. (2). a: The first order approximation and first correction of the variance at different  values (WHEP).  

b: The first order approximation and second correction level of the variance at  values (WHEP).  

c: Comparison between the two correction levels of the variance at = 1  (WHEP).  
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B(u,
u

n
) = 0, r           (21) 

in which A is a nonlinear differential operator which can be 

decomposed into a linear operator L and a nonlinear operator 

N , B is a boundary operator, f(r) is a known analytic func-

tion and  is the boundary of . The homotopy introduces 

a continuously deformed solution for the case of p=0 , 

L(v) L(u0 ) = 0 , to the case of p=1, A(v) f (r) = 0 , which 

is the original equation (19). This is the basic idea of the 

homotopy method which is to continuously deform from a 

simple problem (and easy to solve) into the difficult problem 

under study [26]. 

 The basic assumption of the HPM method is that the so-

lution of the original equation (19) can be expanded as a 

power series in p as: 

v = v0 + pv1 + p
2v2 + p

3v3 + ....          (22) 

 Now, setting p=1, the approximate solution of equation 

(22) is obtained as: 

u = lim
p 1

v = v0 + v1 + v2 + v3 + ....          (23) 

 The rate of convergence of the method depends greatly 

on the initial approximation 
0

v  which is considered as the 

main disadvantage of HPM. 

 Applying the HPM technique on the proposed example in 

3.1.1, one can get the following results when getting the 

fourth approximation: 

  

μ
x(t )

= I(t) w
2

h(t s) I
3(s) + 3 2

I(s) h
2 (s v)dv

0

s

0

t

ds    (24) 

  
x(t )

2
= 9 4

w
4

h(t s
1
)

0

t

h(t s
2
)

0

t

 

  

I
2 (s

1
)I

2 (s
2
) + 3 2

I(s) h(s
1

v)h(s
2

v)dv

0

s
1

  
ds

2
ds

1
      (25)

    a      b 

 
Fig. (3). a: The first order approximation and first correction of the covariance at = .5  (WHEP). 

b: The first order approximation and second correction of the covariance at = .5  (WHEP). 

    a      b 

 
Fig. (4). a: The first, second and third order approximations of the mean (HPM). 
b: The first ,second and third order approximations of the variance at different  (HPM).  
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a    b 

 
Fig. (5). a: The fourth order approximation of the mean for different  (HPM). 

b: The fourth order approximation of the variance for different  (HPM). 

 

a     b 

             
Fig. (6). a: A comparison between first , second , third order and the fourth order of the mean (HPM). = 1  at. 

b: A comparison between first , second , third order and the fourth order of the (HPM). = 1  variance at. 

 

    a      b 

 
Fig. (7). a: The first, second and third order approximation of the covariance at = .3 (HPM).  

b: The fourth order approximation of (HPM). = .3  the covariance at. 

where 

  

I(t) = e
v

0

t

h(t v)dv           (26) 

 Figs. (4 and 5) are some illustrations for the previous 

results: 

5. COMPARISONS BETWEEN WHEP AND HMP 

 Now let us compare between some results of the different 

two methods, mainly the WHEP technique and the homoto-

py perturbation method (HPM), see Figs. (6-9): 
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5. CONCLUSIONS 

 Concerning the cubic nonlinearity problem and the proto-
type example used for illustrating the efficiency of the pro-
cessed approximation techniques, the WHEP technique can 
be corrected for each order of approximation while the HPM 
method is very sensitive to the choice of the initial condition. 
The comparisons between WHEP technique and HMP are 
illustrated through figures and showed near results according 
to the order of approximation. 
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