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Abstract: Fluorescence in situ hybridization analysis, performed with chromosome specific DNA probes labeled with 

fluorochromes, is a simple and reliable tool for the indirect study of aneuploidies in interphase cells such as spermatozoa. 

It is known that infertile male patients with poor sperm quality, due to different causes, produce cytogenetically abnormal 

spermatozoa despite a normal constitutional karyotype as a result of an altered intra-testicular environment that negatively 

affects the mechanisms controlling chromosome segregation during cell division. A particular subgroup of this category is 

composed of individuals with systematic sperm defects, characterized by an identical, specific alteration that affects the 

vast majority of their sperm population. Altered meiotic segregation has been described mainly in globozoospermia and in 

sperm with dysplasia of the fibrous sheath. 

Moreover, we also considered sperm aneuploidies in the presence of somatic chromosome abnormalities: numerical 

chromosomal anomalies, such as the presence of an extra chromosome and structural chromosomal anomalies, including 

translocations and inversions. It is known that somatic chromosomal abnormalities are often associated with infertility and 

have definite consequences on the cytogenetic anomalies observed in spermatozoa. 

Since individuals with abnormal semen parameters, also those that are carriers of a constitutional abnormal karyotype, 

make up the majority of intracytoplasmic sperm injection candidates, it is of great interest to study the chromosomal 

constitution of their spermatozoa. 

The problem of the possible presence of aneuploidy in sperm from infertile men should be seriously considered due to the 

documented risk of the transmission of a chromosomal imbalance to offspring. 

INTRODUCTION 

 Infertility is a significant problem that affects up to 15% 
of couples in the reproductive age [1]. Difficulties in 
reproduction have been associated with somatic 
chromosomal anomalies or with cytogenetic abnormalities 
found directly in the germ cells of infertile individuals with a 
normal constitutional karyotype. 

 Both of these categories generally show more or less 
severely compromised spermatogenesis leading to altered 
sperm parameters concomitant with an increase in the 
frequency of chromosome aneuploidy [2, 3]. 

 Meiosis is a process that includes two consecutive cells 
divisions, with a single DNA replication, leading to a 
reduction in the amount of genetic material. The first meiotic 
division involves primary spermatocytes (diploid) and 
consists of a pairing of homologous chromosomes in order to 
recombine genetic material and to produce new genetic 
combinations in the offspring; at anaphase, each homologous 
chromosome migrates to the cell poles to produce secondary 
spermatocytes. During the second meiotic division the  
chromatids of each chromosome migrate to cell poles to 
produce haploid spermatids. The spermatids are finally 
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shaped in spermatozoa by means of spermiogenesis, a 
process characterized by the formation of the acrosome and 
the axoneme, by the change of the cellular profile and the re-
location of organelles. If any of these steps fails to happen 
correctly, different kinds of chromosome abnormalities, such 
as aneuploidy and diploidy, can occur [4]. 

 The possible consequences of sperm aneuploidies 
become clinically relevant with the advent of assisted 
reproductive techniques (ART), particularly with the 
introduction of intracytoplasmic sperm injection (ICSI), 
which gave rise to many concerns about its safety and about 
long term effects on offspring. ICSI bypasses all the natural 
barriers of the fertilization process, enabling sperm with 
abnormal morphology and motility and those that are not 
fully mature to fertilize the egg. 

 Since individuals with abnormal semen parameters make 
up the majority of ICSI candidates, it is of great interest to 
study the chromosomal constitution of their spermatozoa. 
During the past few years there has been an explosion in the 
information about chromosome abnormalities in human 
sperm and the meiotic events that induce these abnormali-
ties. The chromosome constitution of human spermatozoa 
was studied for the first time in 1978 by Rudak et al. [5] 
using the ability of human spermatozoa to penetrate zona-
free hamster oocytes, and subsequently by other groups [6-
8]. This method provides precise sperm karyotypes, in which 
numerical and structural abnormalities can be assessed for 
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each chromosome. However, sperm-hamster oocyte fusion is 
difficult and time-consuming, thus its use was limited to a 
few laboratories and it was never applied in a clinical setting. 

 Fluorescence in situ hybridization (FISH) technology is a 
useful option for estimating aneuploidy frequencies directly 
in interphase cells, such as spermatozoa [3]. FISH analysis is 
based on the hybridization of chromosome-specific DNA 
probes labeled with different fluorocromes to complemen-
tary DNA sequences on target chromosomes, and then on 
detection by means of an optical microscope equipped with a 
fluorescence apparatus and filters for the dyes that were 
used. Centromeric or locus specific probes can enumerate 
chromosomes in interphase nuclei and their use allows for 
the study of thousands of spermatozoa in a relatively short 
period of time. Two-color FISH is required for autosomes 
analysis and three-color FISH is necessary for the analysis of 
sex chromosomal aneuploidy in order to distinguish a diploid 
XY sperm (two autosomal signal, Fig. (1a, b) from a 
disomic one (one autosomal signal, Fig. (1c, d). FISH 
emerged as a fast, inexpensive and easy method to study 
sperm chromosomal constitution, and for this reason it has 
been included in the protocols for the study of infertile males 
in many laboratories around the world. It should be noted 
that FISH is an indirect method: fluorescent signals, rather 
than chromosomes, are scored. The limitations of FISH 
analysis consist in the impossibility to obtain a complete 
karyotype: the analysis only considers the chromosomes 
investigated and does not allow for the detection of 
chromosomal structural anomalies. New methods, such as 
single sperm typing and synaptonemal complex analysis, 
have provided valuable insight into the association between 
meiotic recombination and the production of aneuploid 
sperm [3]. Single sperm polymerase chain reaction is a 
difficult and time consuming technique that can be used in 
specific studies on recombination in particular areas of the 
genome. Meiotic analysis of the synaptonemal complex (SC) 
can be performed by means of immunofluorescence using 
antibodies able to visualize SC elements or DNA repair 
proteins such as MLH1, identifying the sites of meiotic 
exchange [3]. 

 The first report on spermatozoa from infertile men 
analyzed by FISH was published in 1994 [9]. Since that time 
an increasing number of papers have illustrated FISH data in 
decondensed sperm nuclei in order to evaluate the incidence 
of aneuploidies and diploidies in infertile males with a 
normal karyotype. First of all, meiotic alterations were found 
in cases of severe oligoasthenoteratozoospermia (OAT) [4, 
10, 11]. The risk of chromosomal aneuploidies was inversely 
correlated with sperm concentration and total progressive 
motility [12, 13]. Templado et al. [14] demonstrated an 
increase in sperm chromosome abnormalities in a selected 
group of patients with asthenoteratozoospermia and normal 
sperm concentration. At the same time the studies focused on 
the correlation between the incidence of chromosomal 
alterations and sperm morphology, sometimes also evaluated 
by transmission electron microscopy (TEM) [15-19]. 

 Subjects showing systematic sperm defects [20] are a 
particularly interesting subgroup of infertile men with a 
normal constitutional karyotype. In these rare cases all the 
spermatozoa of a sterile individual are affected by only one  
 

 

 

 

 

Fig. (1). Micrographs showing human sperm nuclei studied by 

FISH performed using probes (CEP, Chromosome Enumeration 

Probes, Vysis, IL, USA) for chromosomes 18 (aqua), X (green) and 

Y (red). A diploid sperm is characterised by a green X signal, a red 

Y signal and two aqua chromosome 18 signals (a); a disomic sperm 

shows a green X signal, a red Y signal and a single aqua 

chromosome 18 signal (c). Figs b-d represent the same spermatozoa 

after 4',6 Diamidino -2-phenylindole dihydrochloride (DAPI) 

staining. 

identical, specific alteration. This alteration is not treatable 
and is present during the entire life of the subject. The 
spermatozoa of these patients will always be unable to 
naturally fertilize and their defects have been suspected of 
having a genetic origin [20, 21]. The systematic sperm 
defects reported in the literature are: the “crater defect” [22], 
the “globozoospermia” [23], the “miniacrosome” [24], the 
“detached tail” [25, 26], the “Dysplasia Fibrous Sheath” 
(DFS) [27], the “Primary Ciliary Dyskinesia” (PCD) [28], 
the “9+0 axoneme” [29], and composed tail defects 
characterized by an abnormal mitochondrial helix associated 
with the presence of multiple axonemes and alternatively 
with the “absence of fibrous sheath” [30, 31] or lack of 
axoneme and outer dense fibers from the principal piece 
[32]. 

 In regard to systematic sperm defects, few papers have 
reported aneuploidy and diploidy data in decondensed sperm 
nuclei concerning mainly globozoospermia, DFS and PCD 
[33-43]. 
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 Another field of investigation concerns the correlation 
between the presence of an abnormal lymphocyte karyotype 
and an increased incidence of sperm aneuploidy. 

 The most common karyotype alterations include 
numerical sex chromosome anomalies, such as the 47, XXY 
chromosome constitution in Klinefelter syndrome, or 47, 
XYY aneuploidy and balanced structural chromosomal 
reorganizations, such as Robertsonian translocations or 
reciprocal translocations which are found in 0.1% of 
newborns, or pericentric and paracentric inversions that are 
detected in 0.02% of newborns (with the exception of 
inversions affecting the heterochromatic regions of 
chromosomes 1, 9 and 16, which are considered to be 
polymorphisms) [4]. Structural chromosomal anomalies, 
usually involving sex (4%) and autosomal (1%) 
chromosomes [44, 45], occur more frequently in infertile 
men than in the general population [46]. 

 Since cytogenetic studies of spermatozoa have become 
possible, several groups have focused on the analysis of the 
meiotic behavior of specific chromosomal reorganizations 
and on the evaluation of balanced or unbalanced sperm in 
order to offer patients accurate reproduction advice. Many 
papers have reported the correlation between the presence of 
abnormal lymphocyte karyotype, mainly translocations, and 
an increased incidence of sperm aneuploidies [3, 12, 47-51]. 
Moreover, in patients with an altered somatic karyotype, the 
segregation of rearranged chromosomes could lead to 
missegregation of the chromosomes not involved in the 
reorganization. This phenomenon is known as the 
InterChromosomal Effect (ICE) [52]. For example, an 
aneuploidy of sex chromosomes might affect the segregation 
of an autosome, or the presence of a translocation could 
interfere with the segregation of chromosomes that are not 
involved in the rearrangement. 

 This review is aimed at summarizing FISH studies 
concerning sperm aneuploidy evaluated in infertile men with 
a normal somatic karyotype, including those affected by 
systematic sperm defects and in carriers of somatic 
chromosome abnormalities. 

INFERTILE MEN WITH A NORMAL KARYOTYPE 

 Sperm aneuploidies were evaluated by FISH analysis in 
order to explore the possibility that meiosis in infertile men 
with normal karyotypes is prone to errors of nondisjunction. 
Several putative male risk factors for sperm aneuploidy have 
been described, including advanced age, cancer 
chemotherapy, suicide attempts by the use of high-dose 
diazepam, cigarette smoking, exposure to air pollution [53], 
chronic hepatitis C virus infection [54], and recently even 
emotional stress [55]. Although the effect of hormones on 
meiotic segregation has been poorly investigated, a link has 
been reported between gonadal failure (demonstrated by a 
high serum follicle-stimulating hormone level) and the 
occurrence of sperm chromosome aneuploidies [56, 57]. An 
emerging field of research regards the potential effect of a 
toxic chemical present in the environment on reproductive 
disfunction. FISH studies on the sperm of men exposed to 
pesticides, including xenoestrogens, have yielded conflicting 
results [58]; however, recent studies indicate that persistent 
organohalogen pollutants may contribute to changes in Y- 

and X-chromosome-bearing sperm, determined by two-color 
FISH, of exposed populations [59]. 

 Several studies have already verified that patients with 
poor semen quality and a normal 46,XY karyotype show an 
increase in sperm disomy and diploidy rates [2, 18, 60]. The 
first report on this topic was performed by Moosani et al. 
[61] who studied men with OAT by using the human sperm-
hamster oocyte fusion system and FISH for chromosomes 1, 
12 and the sex chromosomes. A significant increase in the 
frequency of chromosome 1 and of XY disomies was found. 
Since then, many groups have confirmed that the frequency 
of sperm aneuploidy in 46, XY infertile men is approximately 
three times higher than in control donors [3]. Most of these 
studies concluded that there was an increase risk of 
chromosomal aneuploidies in cases of severe OAT [4, 10, 
11, 62, 63]. Looking separately at each sperm parameter, the 
association of both severe oligozoospermia and 
teratozoospermia with sperm aneuploidy is generally 
accepted [4, 12, 14, 64-66]. Regarding sperm morphology, 
macrocephalic, multinucleated, multiflagellated sperm 
appear to be at very high risk of aneuploidy [15, 17, 67-69]. 
Some asthenozoospermia studies have been performed to 
explore whether reduced sperm motility could be associated 
with increased sperm disomy and diploidy rates in infertile 
patients [12, 70-72]. Unfortunately it was difficult to isolate 
a large group of men with asthenozoospermia only, since this 
condition is often concomitant with oligo and/or 
teratozoospermia. Collodel et al. [13], examining a large 
population of patients stratified in groups according to 
motility parameter, observed that asthenozoospermia could 
be associated with altered sperm chromosome segregation. 
Increased rates of non disjunction for chromosomes 18, X 
and Y have also been demonstrated in sperm from infertile 
patients that had been identified as normal by strict 
morphology: normal morphology was not considered to be 
an absolute indicator for the selection of genetically normal 
sperm [73]. 

 Looking at this issue from another perspective, altered 
meiotic segregation, leading to the production of diploidy 
and sex chromosomes disomy, has also been described in 
sperm from patients with genitourinary infections or 
recovered genitourinary infections [74, 75], from patients 
with varicocele [18, 76] and patients who underwent 
orchidopexy for unilateral or bilateral cryptorchidism during 
childhood [19]. It seems that any perturbation of 
spermatogenesis may cause an increased risk of aneuploid 
spermatozoa. Infertile males with poor sperm quality 
produce cytogenetically abnormal spermatozoa despite a 
normal karyotype as the result of an altered intra-testicular 
environment that negatively affects the mechanisms 
controlling chromosome segregation during cell division, as 
also noted by Calogero et al. [77]. 

 An increase in sperm aneuploidy is undoubtedly involved 
in the outcome of ART. Increased total sperm aneuploidy 
rates were found to be associated with lower implantation 
and pregnancy rates and higher rates of miscarriage in 
patients undergoing ICSI [78]. A report from Bonduelle  
et al. [79] on prenatal diagnoses carried out on 1568 fetuses 
conceived by ICSI, showed a significant enhancement in de 
novo chromosomal anomalies of 1.58% of them, while only 
0.45% of de novo abnormalities were found in the normal 
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population. De novo sex chromosomal anomalies alone 
accounted for 0.63% of prenatally tested ICSI fetuses, 
compared to 0.19% in the normal population. This increased 
incidence of chromosomal abnormalities was related to 
sperm concentration and motility. Another study [80] reports 
the results of prenatal cytogenetic analysis performed in 71 
fetuses conceived by ICSI: nine (12.7%) chromosomal 
aberrations were detected, including two cases of 47, XXY, 
four cases involving a 45,X cell line and three cases of 
autosomal trisomies. Six cases involving a sex chromosome 
abnormality were found to be of paternal origin. 

 Aran et al. [62] have shown that patients with meiotic 
disorders and increased diploidy frequencies (0.53% vs 0.25 
% in controls) also had increased miscarriage rates after ICSI 
(33.3% vs 7.1% in cases with normal meiosis) suggesting a 
direct involvement of abnormal spermatozoa in cases of 
recurrent miscarriage of presumably paternal origin [4]. 

 Several sets of data indicate that moderate, albeit 
significant, increase in a given type of sperm disomy is 
related to an increase of aneuploidy in offspring. Some 
fathers of children with Down syndrome of paternal origin 
were affected by higher frequencies of chromosome 21 
disomy in spermatozoa [81]. Paternal origin of trisomy 21, 
following ICSI procedure, was demonstrated by the analysis 
of two polymorphic microsatellite markers [82]. FISH 
studies explored sex chromosomes aneuploidy in sperm from 
men who fathered, by natural conception, children with 
Turner syndrome [83] and Klinefelter syndrome [84] 
highlighting a significant increase in XY disomy and sex-
null sperm. A high level of nullisomy was also detected in 
sperm from a severely oligoasthenozoospermic man who 
produced, by ICSI, a 45, X abortus [85]. 

Systematic Genetic Sperm Defects 

 This section concerns the current literature related to 
FISH studies in spermatozoa with genetic sperm defects such 
as “globozoospermia”, “DFS”, “PCD”, “detached tail”, 
“absence of fibrous sheath” and defects of possible genetic 
origin recently described and characterized by an abnormally 
elongated midpiece and the presence of multiple axonemes 
and alternatively the absence of axoneme and outer dense 
fibers (ODF) or the absence of fibrous sheath in the principal 
piece. 

Globozoospermia 

 Globozoospermia is a rare, yet severe disorder leading to 
male infertility that was first properly described by Schirren 
et al. [23] using electron microscopy. This uncommon 
alteration is characterized by 100% round headed sperm 
totally lacking an acrosome. These spermatozoa also show 
multiple defects involving the absence a of post-acrosomal 
sheath, and maturation defects such as persistence of 
cytoplasmic droplets surrounding the head or the midpiece, 
coiled flagella often with disorganized mitochondria and 
abnormal chromatin structure [86]. 

 In 1992, Singh [87] distinguished two types of 
globozoospermia: type I is characterized by a complete 
absence of acrosome and consequently of acrosomal content, 
so these spermatozoa are totally unable to penetrate the zona 
pellucida; type II shows some acrosomal covering with a 
conical nucleus, sometimes embedded in large cytoplasmic 

residues, indicating secondary degenerative changes, and in 
this case infertility is caused by subsequent poor motility. 
Most of the papers, based on describing this morphology, 
regard type I globozoospermia. 

 It is noteworthy that in globozoospermic cells the 
chromatin compaction appears to be disturbed, in particular 
poor condensation and DNA fragmentation [88] were 
observed. Moreover, apoptosis, immaturity and necrosis 
have been detected by TEM [41]. On the contrary, other 
studies reported an association between globozoospermia 
and an abnormally condensed chromatin and overmaturity 
[86]. Taken together, the described chromatin alterations 
could also influence meiotic segregation, consequently 
impairing ICSI outcome. FISH studies, reporting meiotic 
segregation in sperm affected by the globozoospermia defect 
are shown in Table 1. Many authors have reported high 
aneuploidy frequency of autosomes 13, 15, 16, 18, and 21 
[33, 34, 37, 39, 41, 89] and sex chromosomes [33, 36, 41], 
whereas other researches have not confirmed such an 
increased aneuploidy rate [35, 88, 90]. 

 Family incidence has been reported in men suffering 
from acrosomal aplasia, and a mono or polygenic origin has 
been suggested but not proven [20]. Over the past few years, 
knockout studies have identified several male infertility 
candidate genes, including some gene that alters sperm head 
morphology. In particular, the HIV-1 Rev-binding protein 
(Hrb) [91], Casein Kinase II alpha’ isoform (Csnk2a2) [92], 
the Golgi-associated PDZ-and coiled coil motif-containing 
protein (GOPC) [93] and a protein interacting with C kinase 
(PICK1) [94] are of particular interest, due to phenotypes in 
null mutant mice that are very similar to human 
globozoospermia. Regarding the pathogenesis of human 
globozoospermia, Dam et al. [95] reported a first description 
of an involved gene, describing a family with three affected 
brothers, in whom they identified a homozygous mutation in 
the spermatogenesis-specific gene SPATA 16. 

 Until the advent of ICSI, patients with this type of 
disorder were considered sterile. The first live birth by ICSI 
from globozoospermic sperm was reported by Lundin et al. 
[96], thus, if the inability to penetrate the oocytes is 
bypassed, fertilization could take place. Since then, 
numerous reports have described successful attempts to 
achieve either fertilization and pregnancy following ICSI 
with globozoospermic cells [86]. However, a low 
fertilization rate of globozoospermic sperm was observed 
and fertilization seems to be improved by the addition of a 
calcium ionophore. Using this method Rybouchkin et al. 
[90] reported a pregnancy in a couple with complete 
fertilization failure due to globozoospermia defect associated 
with deficient oocyte activation ability. Later, this system 
was successfully applied in other cases of globozoospermia 
[97-99]. 

Dysplasia of the Fibrous Sheath (DFS) 

 The denomination DFS was introduced by Chemes et al. 
[27] and it identifies major alterations in the fibrous sheath 
(FS). Most spermatozoa affected by this defect show rigid, 
short, thick, and/or irregular tails and 95 to 100% are 
immotile. Ultrastructural studies have highlighted that, 
despite general maturity of the head region, the axonemal 
components are generally disorganized and embedded in 
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hyperplasic FS material, invading the whole space of the 
short tail. Mitochondria are not assembled as a periaxonemal 
helix. The familial incidence of DFS suggests a genetic 
origin of the defect [100-102]. In recent years, extensive 
work has been carried out on the protein composition of the 
FS. Numerous proteins of the FS have been isolated and 
characterized [103]. Two of these proteins, members of 
AKAP family (A-kinase anchor proteins), AKAP3 and 
AKAP4, have been studied extensively in human 
spermatozoa and in knockout mice showing sperm with short 
flagella and disorganized FS [20, 104-106]. 

 Regarding FISH studies (Table 2), Rives et al. [40] 
described elevated frequencies of XX, YY disomies and 
diploidies in spermatozoa from an individual affected by the 
DFS defect, whereas Viville et al. [35], examining sperm 
from a patient with short flagella syndrome, detected a 
normal meiotic segregation for the analyzed chromosomes. 
In recent papers [38, 43] triple-color FISH for chromosomes 
18, X and Y was used to analyze spermatozoa from 13 
patients with DFS, diagnosed by TEM. A high incidence of 
numeric disturbances in sperm chromosome constitution, 
mainly diploidy and sex chromosomal aneuploidies, was 
observed (Table 2). 

 Fertility prognosis in these cases has been addressed with 
microinjection of DFS sperm, which has resulted in fair to 
good fertilization. Successful ICSI treatments using DFS 

sperm have been reported in the literature [102, 107-109]; an 
accurate review of ICSI outcome in those cases was 
performed by Chemes and Rawe [20]. 

Primary Ciliary Dyskinesia (PCD) 

 PCD, also known as immotile cilia syndrome (ICS), is a 
condition of sperm immotility and recurrent respiratory tract 
infections in which all ciliary and flagellar functions are 
involved [110]. Approximately 50% of ICS/PCD patients 
have alterations in the visceral rotation (situs viscerum 
inversus) with dextrocardia, corresponding to the Kartagener 
syndrome. Under light microscopy, sperm tails appear 
morphologically normal but stiff. TEM analysis revealed the 
characteristic features of this defect, such as missing outer or 
inner or both dynein arms, the absence of one or two central 
microtubules or radial spokes, transposed microtubules, and 
a lack of axoneme [110-113]. 

 To date, many genes have been found to be mutated in 
human PCD: some of them encode for dynein protein arm 
subunits (DNAI1, DNAI2, DNAH5, DNAHI1) [114-116]. A 
new gene, kintoun (ktu), was found mutated in PCD where 
both outer and inner dynein arms were missing or defective 
in the axoneme [117]. 

 Current information on meiotic segregation is scarce 
(Table 2) and includes an increased frequency of XX, YY 
disomy and diploidy that has been observed in spermatozoa 

Table 1. FISH Studies of Disomy and Diploidy in Spermatozoa with Round Head Genetic Sperm Defect 

 

Chromosomes Disomy % 
Studies 

1 7 8 9 12 13 15 16 18 21 X+Y XX YY XY 

Diploidy 

% 

Carrell et al. 
[33] 

(2 siblings) 
     

0.7 
0.3 

  
0 

0.2 
0.6 
3.0 

 
0.6 
0.4 

0 
0 

12.1 
0 

 

Morel et al. 
[37] 

(2 cases) 

 
0.259 
0.099 

 
0.199 
0.139 

 
0.390 
0.078 

  
0.021 
0.039 

0.390 
0.058 

 
0 

0.019 
0.042 
0.079 

0.148 
0.079 

0.876 
0.304 

Viville et al. 
[35] 

0           0 0 0 0.1 

Carrell et al. 
[34] 

(2 sibling) 

     
0.40 
0.32 

4.03 
0.58 

 
0.74 
0.74 

0.40 
0.14 

 
* 
° 

* 
° 

  

Ditzel et al. 
[39]$ 

     6.0  7.0  4.0     1 

Vicari et al. 
[88]  

  0  0    0   0 0.16 0  

Martin et al. 
[36]  

0.09      0.13   0.19  0.12 0.07 0.38 0.21 

Moretti et al. 
[41] 

(2 cases) 
        

0.052 
0.078 

 
0.364 
0.364 

0.104 
0.052 

0.026 
0.026 

0.234 
0.286 

0.599 
0.494 

Shi & Martin 
[2] 

(Controls) 

0.20    0.17 0.08 0.06  0.06 0.07 0.13 0.03 0.05 0.05  

Collodel & 
Moretti, [179] 

Controls) 

        0.10  0.25 0.06 0.05 0.14 0.28 

*Chromosome X aneuploidy %: 0.46; Chromosome Y aneuploidies%: 0.52, ° Chromosome X aneuploidy %: 0.52; Chromosome Y aneuploidies%: 0.60. $ 100 spermatozoa were 
evaluated in each sample. In the other published studies the number of cells scored for each patient was between 3,716 [35] and 30,145 [36]. 
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from a patient affected by Kartagener syndrome associated 
with situs viscerum inversus, chronic sinusitis and 
bronchiectasis [40]. Moretti and Collodel [43] reported a 
case of PCD where FISH data highlighted that the frequency 
of chromosome 18 disomy was normal, whereas the values 
of sex chromosomes disomy and diploidies were higher 
compared with those from controls. 

 Regarding reproductive potential, only one live birth has 
been reported after in vitro fertilization (IVF) using 
spermatozoa with no progressive motility [118] due to 
Kartagener syndrome. Fertilization [119], pregnancies [118, 
120, 121], and live birth [119, 120] have been reported in the 
case of PCD, also using testicular sperm from men with 
Kartagener/immotile cilia syndrome [122, 123]. 

Detached Tail 

 Sperm with the “detached tail” defect show heads of 
normal structure but a deficient post-nuclear region, lacking 
basal plate and implantation fossa. Tails are broken off at 
different levels of the midpiece. The detached tail defect 
originates in the testis and may also occur in the epididymis. 
If the separation occurs in the testis, the heads are probably 
phagocyted by Sertoli cells [124] and in vitro fertilization is 

impossible. Many authors have reported cases of “acephalic 
spermatozoa” or “decapitated spermatozoa”, indicating 
abnormalities of the head-neck attachment at various levels 
of the tail [26, 125, 126]. Proteins such as centrin, 
pericentrin, -tubulin, speriolin and that recognized by 
mitotic protein monoclonal antibody-2 have been localized 
in the sperm centrosome and connecting piece regions, 
however their significance in the pathogenesis of this 
syndrome is not clear [127-129]. The human Hook1 gene has 
been identified as a candidate gene for male infertility since 
mutation of this gene causes teratozoospermia and 
decapitation defects [130]. 

 The only case of FISH analysis for chromosomes 18, X 
and Y (Table 2), performed in decondensed sperm nuclei of 
such a defect, revealed values of disomy and diploidies 
comparable to those obtained from the sperm of fertile men 
[43]. 

 Two cases regarding the possibility of ART attempts 
must be distinguished. Acephalic forms are predominant in 
most reported cases, making any attempt at ART impossible. 
In another variant of the syndrome, acephalic forms are less 
frequent and spermatozoa with abnormal head-midpiece 
alignment are predominant [20]. In this case attempts to 

Table 2. FISH Studies of Disomy and Diploidy in Spermatozoa with Different Genetic Sperm Defects Affecting the Tail 

 

Chromosomes Disomy % 
Studies 

18 X+Y XX YY XY 

Diploidy % 

Baccetti et al. [38] 

DFS (12 cases) 

0.092 

0.240 

0.050 

0.024 

0.232 

0.120 

0.050 

0.213 

0.086 

0.088 

0.091 

0.130 

0.530 

0.490 

0.205 

0.270 

0.408 

0.670 

0.470 

0.355 

0.259 

0.176 

0.306 

0.733 

0.069 

0.190 

0.025 

0.098 

0.146 

0.050 

0.040 

0.047 

0.065 

0.022 

0.061 

0.131 

0.092 

0.090 

0.103 

0.049 

0.116 

0.170 

0.130 

0.023 

0.086 

0.022 

0.061 

0.157 

0.369 

0.210 

0.077 

0.123 

0.146 

0.450 

0.300 

0.285 

0.108 

0.132 

0.184 

0.445 

0.946 

0.890 

0.465 

0.344 

0.554 

0.430 

0.630 

0.593 

0.172 

0.595 

0.858 

0.575 

Rives et al. [40] 

DFS (2 cases) 

0.06 

0.01 
 

0.40 

0.18 

0.51 

0.16 

0.13 

0.13 

0.16 

0.17 

Moretti & Collodel [43] 

DFS 
0.098 0.569 0.198 0.074 0.297 0.669 

Rives et al. [40] 

Kartagener 
0.080  0.220 0.190 0.130 0.460 

Moretti & Collodel [43] 

PCD 
0.140 0.340 0.200 0.040 0.100 0.460 

Absence of fibrous sheath 0.100 0.270 0.060 0.040 0.170 0.280 

Detached tails* 0.00 0.054 0.054 0 0 0.16 

Moretti et al. [32] 

Composed sperm defects 
0.09 0.18 0.03 0.03 0.12 0.24 

Collodel & Moretti, [179] 

(Controls) 
0.10 0.25 0.06 0.05 0.14 0.28 

*1855 nuclei analyzed, since only a few sperm heads were found in the ejaculate. 
In the other studies the number of cells scored for each patient was between 4,374 [43] and 10,000 [40]. 
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achieve pregnancies have been made using the ICSI method. 
In the first report by Chemes et al. [125], oocytes reached 
the pronuclear stage but failed to undergo syngamy and 
cleavage. This phenomenon was also observed by Rawe  
et al. [131] in four ICSI cycles with two chemical 
pregnancies followed by preclinical miscarriage and by 
Saias-Magnan et al. [132] who observed little embryo 
fragmentation but no pregnancy. A malfunction of the sperm 
centriole has been claimed as an explanation of this 
phenomenon [131] and recently a decreased proteasomal 
activity in human spermatozoa with defective centriolar/ 
pericentriolar structures has also been observed [133], 
suggesting an important role of sperm proteasomes in 
zygotic development. A successful birth after ICSI using 
detached tail sperm has recently been obtained [134]. 

Composed Sperm Defects of Possible Genetic Origin 

 These sperm defects are apparently very rare and TEM is 
needed to characterize them. They probably originate during 
spermiogenesis and share some typical features, such as a 
generally well structured sperm head, an abnormally 
elongated midpiece and the presence of supplementary 
axonemes. In a case described in the literature by only two 
groups [30, 31], a total absence of fibrous sheath was 
observed in the principal piece region, whereas in the other 
case a total absence of the axoneme and ODF in 95% of 
principal pieces at the tail level was highlighted [32, 135]. 
FISH analysis was performed in only one case for each 
defect and a normal incidence of diploidy and disomy for 18, 
X and Y chromosomes was observed (Table 2) [32, 43]. 

 In these cases no ICSI attempts were performed, although 
Rawe et al. [136] obtained oocytes fertilization but no 
pregnancies by means of ICSI in two infertile patients with 
abnormal organization of sperm mitochondrial helixes and 
severe asthenoteratozoospermia. 

MEN WITH ALTERED SOMATIC KARYOTYPE 

Robertsonian Traslocations 

 Robertsonian translocations are characterized by the 
centric fusion of two acrocentric chromosomes resulting in a 
45 chromosome karyotype. When the chromosomes pair 
during meiosis, the translocated chromosomes and their 
homologues do so as a trivalent. The resulting gametes can 
be chromosomally normal or aneuploid with an extra or 
missing chromosome q arm. Robertsonian carriers with 
fusions between chromosomes 13 ad 14 are very common 
among infertile men. 

 FISH studies recently reviewed by Martin [3] have 
shown that the meiotic segregation of Robertsonian 
translocation carriers presented a mean of 15% unbalanced 
spermatozoa. All Robertsonian translocations have relatively 
similar segregation behaviours, despite the participation of 
different acrocentric chromosomes. 

 Another aspect to be considered is the possiblility of ICE, 
which seems to affect 58% of Robertsonian translocation 
carriers [3]. The effects of ICE on the meiotic segregation of 
sex chromosomes and autosomes has been broadly 
investigated [12, 48, 137-139] and the results have generally 
suggested that ICE is restricted to translocation carriers with 
abnormal semen parameters [12, 48, 51]. 

 Some studies concerning preimplantation genetic 
diagnosis (PGD) in the case of Robertsonian translocation 
carriers have reported that a high frequency of embryos show 
aneuploidy [140, 141], whereas others have not found this 
effect [142, 143]. 

 In summary, the risk of chromosomal imbalance at 
prenatal diagnosis is quite low. The final outcome can be a 
spontaneous abortion or a chromosomally abnormal conceptus, 
depending on the chromosome involved. Many of these 
unbalanced chromosomal patterns are not viable since only 
1-2% of paternally derived Robertsonian translocations are 
unbalanced at prenatal diagnosis [144]. 

Reciprocal Translocations 

 Reciprocal translocations are an exchange of 
chromosome material between the arms of any two 
chromosomes, and the risks of chromosomally unbalanced 
offspring from male carriers are higher than those from 
Robertsonian translocations. During meiosis I, translocated 
chromosomes and their homologues are associated as a 
quadrivalent and the segregation of the chromosomes 
involved in this quadrivalent give rise to different 
frequencies of unbalanced sperm. 

 The average frequency of chromosomally unbalanced 
spermatozoa in reciprocal translocation carriers is 50%, it is 
strongly dependent on the chromosomes involved in the 
individual translocation and in the break-point position, and 
it may be slightly increased as a result of a small ICE [2]. As 
observed by Vozdova et al. [145], studying sperm from three 
male carriers of two different translocations involving 
chromosomes 11 and 18, the incidence of chromosomally 
unbalanced or aneuploid gametes varies in the individual 
translocation carriers even if the same chromosomes are 
included in the translocation. Martin [3] summarized FISH 
studies about chromosome segregations in 99 reciprocal 
translocation heterozygotes, showing a wide range in the 
frequency of unbalanced gametes, from 37% to 91%. In 
most reciprocal translocation carriers, alternate segregants 
are the most common, occurring at approximately 44%-51%; 
adjacent 1 segregants have a frequency of 16%-40%; 
adjacent 2 segregants are less common with a mean 
frequency of 9%; and 3:1 segregants occur at a mean 
frequency of 11% with a wide range of 2%-40% [2]. 
Reciprocal translocation X- autosomes have been reported to 
be a direct genetic risk factor for spermatogenetic maturation 
arrest. For example, an unusual reciprocal X-autosome 11 
translocation was recently found in an infertile man with 
azoospermia [146]. It is also known that Y-autosome 
translocation is a rare condition, associated with azoospermia 
[147] and Pinho et al. [148] found a de novo t(Y;1)(q12;q12) 
balanced reciprocal translocation with the loss of the 
heterochromatic region of chromosome 1 that caused the 
unpairing of sex chromosomes followed by meiosis I arrest, 
apoptotic degeneration of germ cells and azoospermia. A 
correlation between poor sperm quality, increased sperm 
aneuploidy rates and the presence of a reciprocal 
translocation is well documented [12, 48, 50]. 

 Many studies, reviewed by Shi and Martin [2], have 
analyzed ICE in reciprocal translocation carriers, 
demonstrating that the presence of ICE varies greatly among 
the studied chromosomes. In particular, the high frequency 
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of sperm diploidies detected by FISH indicates an 
incomplete process of meiosis leading to immature sperm 
cells with double nuclei, as observed by TEM, or with a 
double chromosome set. So far, the increase in diploid sperm 
has been detected in carriers of balanced reorganizations [4], 
underling the pivotal role of diploid sperm in the origin of 
triploidy, causing pregnancy wastage. 

 An analysis of meiotic segregation patterns and 
aneuploidy in the spermatozoa of a father and son with a 
t(4;5)(p15.1;p12) and the prediction of the individual 
probability rate for unbalanced progeny at birth have also 
been carried out; the risk assessment for unfavorable 
pregnancy outcomes was predicted as 1.6% for unbalanced 
progeny at birth and about 30% for miscarriage. These 
figures may be used as guidelines for the genetic counseling 
of families with similar reciprocal translocations [149]. 
However, some translocations have increased risks of 
imbalance and survival, and all have serious consequences of 
mental and physical handicaps. A number of fetuses with 
unbalanced segregation of reciprocal translocations has been 
reported after ICSI [150, 151]. PGD plays a pivotal role in 
these cases in order to avoid the implantation of 
chromosomally abnormal embryos. 

Inversions 

 Paracentric and pericentric inversions have been 
described in almost all human chromosomes. 

 Paracentric inversion (PAI) is a rearrangement involving 
two breaks within the same chromosome arm, followed by 
the reinsertion of the chromosome segment after a 180 
degree rotation. PAI are one of the most common forms of 
chromosome polymorphism found in nature, with a 
suggested incidence ranging from 0.1% to 0.5% in the 
human population. PAI is associated with a very low risk of 
recombination disequilibrium, as reported and reviewed by 
Vialard et al. [152]. A new strategy based on FISH assay has 
been developed using multiple bacterial artificial 
chromosome probes to identify chromosomal breakpoints 
and meiotic products in human sperm [153, 154]. 

 Most researchers agree on the absence of ICE in PAI. To 
the best of our knowledge, no publications have reported a 
relationship between PAI and altered sperm parameters, 
although Ichioka et al. [155] have described a case in which 
PAI of the short arm of chromosome 7 was associated with 
azoospermia. 

 Pericentric inversions are structural chromosomal 
abnormalities resulting from two breaks within the same 
chromosome, one on each side of the centromere, followed 
by a 180 degree rotation and reunion of the inverted 
segment. Anton et al. [156] reported a variable production of 
unbalanced gametes (0-38%) in inversion carriers, which 
implies heterogeneous behavior of the inversion. This 
variability seems to be directly related to the size of the 
inversion, indicating that the production of recombinant 
gametes in an inversion carrier would not be relevant when 
the inverted segment is small. Pericentric inversion of 
chromosomes 9 and 2 are considered to be normal variants 
of karyotype [157]. However, some evidence reported in the 
literature has shown a possible involvement of pericentric 
chromosome 9 inversion in unrelated and related infertile 
men [158, 159]. Baccetti et al. [160] observed a severe 

asthenozoospermia in two unrelated heterozygous carriers of 
a pericentric inversion of chromosome 9, explained by the 
existence of the DFS sperm defect. Semen samples from 18 
male carriers of chromosome 9 inversion were recently 
analysed. Five out of 18 patients were azoospermic, sperm 
concentration was normal in nine patients and progressive 
motility was in the normal range in only two patients. The 
presence of apoptosis was observed by TEM analysis. FISH 
data have shown an increased incidence of diploidy [161]. 

 The reproductive fitness of inversion carriers could also 
be compromised by the occurrence of ICE; the literature 
reports several sperm segregation studies in inversion 
carriers, reviewed by Anton et al. [156], but none of them 
found a significant occurrence of ICE. On the contrary, an 
increase in aneuploidy in sperm nuclei was demonstrated in 
a man who was heterozygous for pericentric chromosome 9 
inversion [162]. 

Numerical Chromosome Anomalies 

 Sex chromosome aneuploidies are the most common 
chromosome abnormalities observed in the general male 
population, predominantly in Klinefelter syndrome (47, 
XXY) and 47, XYY [163]. 

 Patients with Klinefelter syndrome, or mosaic 
47,XXY/46,XY, generally show greatly impaired 
spermatogenesis with severe oligozoospermia or 
azoospermia. Mosaicism is a condition in which tissues of 
genetically different types occur in the same organism; the 
most common mosaic karyotypes are 45,X/46,XX and 
45,X/46,XY; another frequent mosaicism is 46,XY/47XXY. 

 With the aid of modern infertility treatment, technologies 
such as testicular sperm extraction and ICSI, it is possible for 
azoospermic 47, XXY patients to father a child. Sperm 
chromosome studies have demonstrated that only normal 
germ cells seem to enter into meiosis and at least some XXY 
cells can reach the primary spermatocyte stage [4]. FISH 
studies performed in several men with 47,XXY/46,XY have 
revealed higher sperm aneuploidy frequencies compared to 
controls; sperm aneuploidy frequencies in non mosaic 
Klinefelter men varied from 2% to 25% [2]. Arnedo et al. 
[164] studied by FISH sperm aneuploidy in fathers of 
Klinefelter syndrome offspring. In 53% of the examined 
cases, the additional X chromosome was of paternal origin. 
The fathers of paternally transmitted Klinefelter syndrome 
also showed a significantly higher frequency of XY disomy 
sperm compared to fathers of the maternal origin group. 

 Males with an extra Y chromosome are mostly fertile. 
However, as in the general male population, semen 
parameters in these men may vary from normozoospermia to 
severe oligozoospermia [4]. Early meiotic studies in 47,XYY 
patients suggested that the extra Y chromosome might be 
lost in the pre-meiotic stages, but in some cases the presence 
of one X and the two Y chromosomes was detected during 
prophase I as an univalent plus a YY bivalent. 

 Sperm chromosome studies by FISH in 47,XYY males 
were first performed by Han et al. [165]. Since then, other 
authors have shown a moderately increased frequency of sex 
chromosome abnormalities in this kind of spermatozoa [166-
168], but they have found ICE in a lower number of men 
[166]. 
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 A case of an oligoasthenoteratozoospermic 47, XYY 
male has recently been described. TEM analysis showed an 
elevated percentage of sperm apoptosis associated with a 
higher incidence of sex chromosomes disomy and diploidy 
(specifically 1818XY, indicating a nondisjunction in the first 
meiotic division (Fig. 1a) than the values observed in 
controls [169]. Sperm apoptosis has been supposed to be the 
cause of spermatogenetic impairment due to the persistence 
of an extra Y chromosome [167, 170]. 

 In addition, a high rate of sex chromosomal and 
autosomal aneuploidy has been observed in sperm and 
preimplantation embryos from nonmosaic 47,XYY males. 
The offspring of this category of patients may be at an 
increased risk of chromosomal abnormalities, and therefore 
PGD can be suggested to these patients [171]. 

 Numerical autosomal alterations, such as monosomies 
and trisomies, are not viable and their products are 
eliminated during pregnancy or in the perinatal period. 
Chromosomally abnormal conceptions surviving to term 
include mainly trisomy 13 (probability of survival at birth 
2.8%), 18 (probability of survival of 5.4%) and 21 
(probability of survival of 22.1%). Males with trisomy 21 are 
azoospermic or show severe oligozoospermia. To our 
knowledge, meiotic studies have only been performed in one 
case, and in most metaphase I figures (88.5%) the extra 
chromosome was present as a univalent [4]. 

 Morphological and meiotic spermatogenetic impairment 
has also been described in men showing a mosaic 
46XY/47XY+18 karyotype [172, 173] and altered semen 
quality. Evidence of a generalized perturbation of the meiotic 
mechanism leading to an increased risk of producing 
offspring with aneuploidy was highlighted. 

DISCUSSION 

 Since infertile males, who are candidates for ICSI, could 
be carriers of sperm aneuploidies, the study of the 
chromosomal constitution of their spermatozoa is of great 
interest. The natural selection process of spermatozoa does 
not occur in ICSI and the risk of injecting abnormal sperm 
may cause a higher incidence of chromosomal anomalies 
[174], thus greatly contributing to pregnancy wastage. The 
increase in prenatal chromosomal abnormalities in ICSI 
pregnancies, mainly involving sex chromosomes [79] or the 
novo complex intra chromosomal rearrangement [175], has 
led to the debate regarding the origin of abnormalities and 
the risk of men prone to aneuploidy. Although some 
conceptions with numerically altered chromosomal 
karyotype are maternally derived, studies identify the father 
as the origin of many of these abnormalities. 

 The advent of FISH in decondensed sperm nuclei has 
offered an interesting approach to evaluate aneuploidies 
directly in male gametes. FISH sperm analysis has been 
revealed to be the fastest and easiest method, particularly to 
measure the proportion of unbalanced gametes produced by 
individuals with structural chromosomal rearrangments. Its 
use has become very common worldwide and it is even 
recommended to be routinely incorporated in the genetic 
screening offered prior to PGD. 

 The problem of the possible presence of aneuploidy in 
sperm from infertile men should be seriously considered in 

ART, due to the documented risk of transmission of 
chromosomal imbalance to offspring. 

 We are aware that it is difficult to consider FISH sperm 
analysis as a routine examination, but the best candidates for 
a meiotic study should be carefully identified. Regarding 
infertile males with normal karyotype, we recommend FISH 
screening in cases of severe impairment of at least one 
semen parameter. Gianaroli et al. [176] have suggested the 
inclusion of FISH sperm analysis in preliminary tests offered 
to infertile couples, mainly in the case of repeated IVF 
failure. Sanchez-Castro et al. [177] recently reported that 
sperm aneuploidy and diploidy screening seems to be an 
effective prognostic tool that would be useful in the 
reproductive genetic counseling of infertile couples, 
especially in oligozoospermic patients. 

 Particular attention should be payed to systematic sperm 
defects, for which further studies should be performed to 
implement the lack of data regarding the incidence of 
aneuploidies in that kind of anomalies. Moreover, besides 
the risk of aneuploidy transmission, there could also be a real 
possibility of transmitting unknown mutations and causing 
genetic sperm defects. Regarding infertile males with altered 
karyotype, Anton et al. [178] affirmed that Robertsonian 
translocation carriers would not obtain much benefit from 
particular segregation studies because they have a non-
random homogeneous segregation pattern with a clearly 
preferential alternate segregation, leading to a mean of 84% 
normal/balanced gametes. In reciprocal translocation 
carriers, the production of normal/balanced gametes would 
be in a small range of around 35%-50%. Only some specific 
cases with particular cytogenetic characteristics would 
deserve further consideration. In inversion carriers, the 
convenience of FISH sperm studies should be considered in 
relation to the dimensions of the inverted segment. FISH 
sperm studies should be recommended [178] only in cases in 
which the risk of producing unbalanced gametes varies with 

significant reproductive consequences (carriers of inverted 

segments involving ~40%-50% of the chromosome). 

Structural reorganization carriers with significant increases 
in aneuploidies would have two genetic risks: those derived 
from the segregation of the rearranged chromosomes, and 
ICE. ICE studies in sperm could be helpful in the genetic 
reproductive advice for carriers involved in a PGD program, 
mainly because the frequent presence of this phenomenon in 

carriers, the absence of conclusive data about the 
characteristics of the reorganizations related to ICE, and its 
controversial effect at the embryo level. 

 In cases of positive results, a supplementary aneuploid 
PGD screening should be incorporated in the conventional 

PGD for structural anomalies [178]. As reported by Egozcue 
et al. [4], prenatal diagnosis is highly recommended in 
embryos obtained when the male partner carries a sex 
chromosome abnormality; although PGD would be desirable 
in these cases, the risk of loosing the embryos and the lower 
pregnancy rates obtained after PGD preclude its use when 
gestation may already be very difficult to obtain. 

 In general, all patients should be informed of the risks of 
producing chromosomally abnormal sperm and children; 
they should undergo appropriate genetic analyses and 
informed consent should be obtained before proceeding to 
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ICSI and it is important to discuss the option of PGD with 
the couple. 
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