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Abstract: With its focus on phenotypes, inheritance, and natural selection, evolutionary quantitative genetics constitutes a 

bridge between the genetic architecture of traits and evolutionary dynamics. This field has produced a vast theoretical 

literature with numerous empirical studies supporting the basic theoretical principles of quantitative genetics. At 

minimum, quantitative genetic studies require data concerning phenotype, fitness, and kin relations for individuals in a 

population. These data are rarely available to primatologists who study primate populations in the wild. Increasingly, 

however, evolutionary quantitative genetic studies have been conducted on wild and free-ranging primates, and several 

long-term studies of wild primates are producing the necessary data to conduct quantitative genetic studies. Our goal in 

this review is to provide a thorough and (hopefully) gentle introduction to quantitative genetic theory, with particular 

emphasis on multivariate selection theory. We review the basic steps in deriving a multivariate equation for evolutionary 

change and we then show how this basic equation can be modified in order to study sexual selection, life history theory, 

evolutionary constraints, allometry, ecological morphology and social behavior. We also discuss the epistemological role 

of quantitative genetic models as well as basic concepts such as fitness, selection, and adaptation as they pertain to 

quantitative genetic studies. Finally, we review some recent quantitative genetic studies of wild and free-ranging primates. 

Keywords: Quantitative genetics, phenotypic evolution, heritability, behavioral ecology, morphology. 

1. INTRODUCTION 

 Adaptation, no doubt, is a cornerstone of biological 
anthropology in general and of primatology in particular. A 
lot of research seeks to generate or test hypotheses about the 
adaptive basis of a particular trait or behavior in primate 
populations. Whether one is studying agonism among adult 
male rhesus macaques or the origins of bipedalism, such 
topics are almost always studied with reference to the fitness 
consequences of a particular behavioral strategy or 
anatomical configuration. For the most part, insights into the 
adaptive evolution of primate behaviors and anatomical traits 
come from three approaches: 1) long-term ecological 
investigations of one or a few primate social groups in the 
wild; 2) measuring osteological specimens in a museum in 
order to understand functional aspects of anatomical form; 
or, 3) developing interspecific comparisons of primate traits 
and a putative selective pressure--the comparative method. A 
bit of reflection about how these three approaches are carried 
out, suggests that they operate on different levels of the 
biological hierarchy and draw from different sample sizes. 
Primatologists in the field often follow focal groups or focal 
animals resulting in numerous datapoints collected on about 
5-25 animals. Anatomists in the museum, on the other hand, 
often take homologous measurements on anatomical 
landmarks from various species resulting in a sample size 
that is often dependent on the number of specimens available 
in the museum collections. Finally, comparative studies 
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often use an average value of a particular trait and map this 
trait against a putative selective pressure across a phylogeny; 
here, the sample size depends on which species are included 
in the analysis. It is interesting that these approaches all 
focus on adaptation, but do not directly study the unit of 
evolution in which adaptations are forged--the population. 
Given that the population is the unit of evolution it would be 
illuminating to gather data on variation among individuals in 
fitness and phenotype as well as some information on the 
fidelity through which traits and behaviors are transmitted 
across generations. If one could collect such information, 
then one could gain insight into the processes by which 
natural selection crafts adaptations across generations. That 
is, one could estimate the strength of selection acting on 
traits or behaviors as well as the heritability of these traits or 
behaviors. Such an endeavor is easier said than done. 
Primates, as an order, tend to live longer and reproduce later 
in life than other orders of mammals. Such a delayed life 
history schedule makes collecting data on variation in 
phenotypes and fitness rather difficult. In order to obtain 
sufficient data to estimate things like selection coefficients 
and trait heritabilities long-term data are required from 
animals with known fates and kinship. 

 In this paper, we outline widely used techniques that 
allow one to quantify the action of natural and sexual 
selection and to estimate the heritable portion of the 
phenotype. These techniques have been widely applied in 
experimental and/or wild populations of insects, fish, birds, 
and some mammal species. Only rarely, however, are they 
applied to wild or free-ranging primate populations. The data 
required to achieve these goals entails considerable effort to 
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collect, but at present, there are numerous long-term studies 
that have collected data on genetic relationships, 
reproduction, and phenotypic variation. Many of these long-
term studies have recently been discussed by Strier et al., [1, 
2] in the context of a comparative primate life history 
database. Thus with the continuing accrual of data from wild 
and free-ranging primate populations and new analyses from 
long-term captive populations, we feel that the techniques 
and methods we outline below will become more prevalent 
in primatology. In short, numerous studies are beginning to 
incorporate genetics and live-capturing into their research 
program; the methods outlined below will hopefully guide 
these studies in the analysis of these new datasets. 

 Our goal is to outline the body of theory for study of 
adaptive phenotypic evolution from a quantitative genetic 
perspective. By “quantitative genetic”, we mean that the 
traits under study are continuous and quantitatively coded by 
many loci. The models we discuss are sometimes called 
“phenotypic selection models,” since they focus on how 
phenotypes change under selection in a multi-trait (i.e., 
multivariate) context. Usually, the only genetic information 
one needs in such models is information on the faithfulness 
through which traits are transmitted across generations. As 
such, the power of these methods is that they provide insight 
into the processes of adaptive evolution while accounting for 
the fact that traits within an organism are sometimes 
integrated and must be analyzed as a unit. In this paper we 
review the basic components of multivariate selection 
theory. Though we rarely discuss primates per se, our goal is 
to provide an accessible introduction to primatologists, with 
the hope that these techniques will be adopted by them. 
Those who already possess some knowledge of these 
techniques will find our review excessively wordy. In short, 
we would rather insult the intelligence of the expert than 
alienate the non-initiate. 

2. MULTIVARIATE PHENOTYPIC SELECTION 
MODELS 

 To begin, we will consider selection on a single trait. In 

what follows, we use the term “trait” to refer to some aspect 

of the phenotype (e.g., height, probability of living to age x, 

body mass) and “trait value” to the corresponding value that 

the phenotypic trait can take in an individual (e.g., 166cm, 

0.95, 68kg). Table 1 gives the defintions of the terms used in 

the equations. Consider a trait such as height. Let's denote 

height as trait z1 . Selection acts on individuals and as a 

consequence, the population evolves; in this case, we want to 

track phenotypic change at the population-level. Specifically, 

we want to understand how the mean of z1  changes from 

generation to generation due to selection. We will denote the 

mean change in trait z1  as z1 . The information we would 

need to understand this is the following: which trait values 

are being favored by selection (Is it tall people...short people, 

etc?) and how much of a parent's height is passed on to 

offspring? or put another way, how heritable is height? 

Imagine a hypothetical population who's average height is 

5 8 . Then, imagine we had knowledge that all people of 

height 6 feet or greater in this population were allowed to 

randomly breed with each other. Further, say we had some 

information that height was heritable. Now, armed with this 

knowledge, imagine we examined the distribution of height 

of the offspring produced by the tall parents (i.e., those 

selected to breed) and we found it to be, on average 5 11 . 

In thinking about this information, we could conclude 

something like, 

 The change in average height due to selection across 

generations is equal to the phenotypic advantage of those 

people being selected for multiplied by the degree to which 

height is heritable. 

 Thus if tall people were being selected for (i.e., allowed 

to out-reproduce short people) and, on average, tall parents 

had tall children (i.e., height is heritable), then we would 

know the change in average height across generations is due 

to selection for tall people. To represent our word equation 

mathematically, we could write  

z1 = Sh
2

            (1) 

 S  is called the selection differential and represents the 

difference in average height between the tall people and the 

total population. Say, the average height of the tall people 

was 6 2 . Thus S  is simply  

S = 6 2 5 8  

 The term h2  in equation 1 refers to the heritability. 

Formally, it is the ratio of the additive genetic variance (VA ) 

to the phenotypic variance (VP ) ( h2 =VA /VP ). Heritability 

is a number between 0 and 1; when heritability is equal to 1, 

then all of the variation in trait values for a particular trait is 

due to additive genetic variation. Heritability determines the 

degree to which offspring resemble their parents based on 

additive genetic effects, because it includes the term VA . 

Additive genetic variance is the genetic variation in the 

population that produces the genetic-based similarity 

between parent and offspring phenotypes (we will expand on 

this concept in Section 3). If we assume the heritability of 

height is 0.5, then we can calculate the change in average 

height using equation 1. We know that S = 6 , thus 

multiplying this number by the heritability yields 3 inches. In 

this regard, the next generation of offspring will be three 

inches taller, on average, due to selection for tall parents 

( 5 8 + 3 = 5 11 ). 

 Substituting VA /VP  for h2  and rearranging, we can 

rewrite equation 1 as  

z1 = S
VA
VP

(equivalently) z1 =VA
1

VP
S          (2) 

 The reason we rewrote equation 1 as equation 2 was that 

this equation will have some correspondence with equations 

we develop below. In equation 2, the mean change in a trait 

value is proportional to the selection differential ( S ) and 

additive genetic variance (VA ), and inversely proportional to 

the phenotypic variation. Equation 2 makes it clear that VA  

is what matters when calculating the response to selection. If 

VA  were zero, then the entire right side of equation 2 would 

be zero and there would be no response to selection. Thus we 
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Table 1. Description of Mathematical Terms Used in this Paper 

 Variables and terms   Description 

 z    Any phenotypic trait (subscripts will be used to distinguish different traits) 

z   A vector of traits z , e.g., z1, z2 ,...zn  

z   The average change in trait z  between generations 

z   The average change in vector of traits zn  between generations 

S    The selection differential  

VA    Additive genetic variance 

VP    Phenotypic variance 

  Breeding value 

h2    Narrow sense heritability 

VP (1,1)   The phenotypic variance in trait 1 

CP (1,2)    The phenotypic covariance between traits 1 and 2 

VA (1,1)   The additive genetic variance in trait 1 

CA (1,2)    The additive genetic covariance between traits 1 and 2 

VE (1,1)    The environmental variance in trait 1 

CE (1,2)    The environmental covariance between traits 1 and 2 

P
   The phenotypic correlation between traits 

G
   The additive genetic correlation between traits 

   The directional selection gradient 

i,i
   The nonlinear selection gradient for trait i  

i, j
   The correlational selection gradient among traits i, j  

P    The phenotypic (co)variance matrix 

G    The genetic (co)variance matrix 

A    The projection matrix 

   Vector of selection gradients 

s    Vector of selection differentials 

   A measure of fitness measured as the rate of population growth 

Ro    A measure of fitness measured as per-generation rate of offspring production 

   A vector of optimum trait values 

   A matix of stabilizing selection coefficients 

B    Additive genetic covariance matrix between males and females 

  Vector of directional selection coefficients for life history traits 

zk
  Sensitivity, or directional selection coefficient for a life history trait 

   Matrix of interaction coefficients in social selection models 

C p
   Matix of correlation coefficients between breeding value and phenotype 

 

can conclude that in order to see some change in average 

phenotype across generations, we need to have some amount 

of genetic variation that produces a correspondence between 

offspring and parents. Also note that if we scale S  by 
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phenotypic standard deviation ( VP ), we get what is known 

as the selection intensity, usually noted as i  ( i = S / VP ). 

 The selection differential is defined as the difference in 

average trait values between those allowed to breed and the 

total population. Implicitly, what we were doing was stating 

that the selection differential involves a non-zero covariance 

between fitness and phenotype. That is, we were stating that 

all folks whose height is equal to or greater than 6  were 

allowed to breed (they have a high fitness) whereas those 

shorter folks have lower fitness because they are not allowed 

to breed. The selection differential in this case represents 

truncation selection since there is some cut-off point that 

determines who breeds and who doesn't. Obviously, in 

nature, selection rarely works with such fastidiousness. More 

often, we would likely see a distribution of offspring 

production that is associated with a distribution of trait 

values. In such cases, the selection differential is calculated 

in a slightly different way than the case for truncation 

selection; it is no longer the difference in average trait values 

among those selected and the total population; rather, S  is 

simply the relationship, itself, between relative fitness and 

phenotype (prior to reproduction). That is, in nature, S  is 

measured as the covariance between fitness ( w ) and 

phenotype. More formally then,  

S = (Cov(w, zi ))             (3) 

 Any association between a particular trait and fitness can 

be measured using equation 3. Here, fitness is scaled by 

mean fitness ( w =W /W ). The selection differential, as 

defined in equation 3, measures the total selection on a trait 

even if the trait is phenotypically correlated with another 

trait. 

 What if selection acts on multiple traits? How do the 

traits change across generations in such cases? To model 

this, we need to introduce some new traits and terms. In 

addition to trait z1 , let's also consider trait z2 . We can model 

selection acting on these two traits in the same way that we 

modeled it for trait z1 . However, the new thing that we need 

to account for is the fact that the traits may be correlated 

(i.e., they covary). For example, if trait z2  is “width” (say, a 

measurement across the hips), we need to account for the 

fact that height ( z1 ) and width ( z2 ) phenotypically covary. 

(We denote the phenotypic covariation between traits 1 and 2 

as CP (1,2) ; following from this, we note that any trait which 

covaries with itself is simply the variance in that trait, for 

example, the variance in trait 1 is denoted VP (1,1) ). Imagine 

that the two traits are indeed positively correlated, but that 

selection is acting only on height (how we would know is 

this discussed below). In this case, we expect that selection is 

acting to make people taller, but that as a consequence of the 

positive phenotypic covariation, there is also selection for 

increased width. If we calculated the selection differential, 

S , for height (i.e., S1 ) we would find that it is positive 

(since tall people have high fitness) but similarly, if we 

calculated S  for width (i.e., S2 ), we would also find it to be 

positive. However, the reason S2  is positive it due to the fact 

that width phenotypically covaries with height, which is 

under selection. Put another way, selection for increased 

height is due to direct selection acting on height (taking into 

account the amount of phenotypic variation in height) plus 

the indirect selection acting on width (taking into account the 

phenotypic covariation between height and width). Recall 

the S  measures total selection (direct selection plus indirect 

selection due to phenotypic covariation) acting on a trait. 

Thus we can write the selection differential for height ( S1 ) 

as  

S1 = direct selection on z1 VP (1,1) +

indirect selection on z2 CP (1, 2)
         (4) 

 In a similar fashion we can write out S2  as  

S2 = direct selection on z2 VP (2, 2) +

indirect selection on z1 CP (2,1)
         (5) 

 Now let's introduce some new notation. Let's make i  

denote direct selection on trait i ; the  coefficients are 

known as selection gradients. Thus we can write equations 4 

and 5 as,  

S1 = 1VP (1,1)+ 2CP (1,2)           (6) 

and  

S2 = 2VP (2,2)+ 1CP (2,1)           (7) 

 Now, note that =
1

VP
S . That is, direct selection on a 

trait is equal to the reciprocal (or inverse) of phenotypic 

variation multiplied by the selection differential. When we 

extend this notion to two or more traits, we get a 

conceptually similar, but not mathematically identical, 

relationship to =
1

VP
S . In the two trait case, equations 6 

and 7 constitute a system of equations and thus solving for 

the  terms must be done simultaneously. Intuitively, 

however, we know that when dealing with multiple traits it is 

necessary to account for phenotypic covariances among 

traits. Thus we would expect that direct selection acting on 

multiple traits involves not only selection differentials acting 

on each trait but also takes into account correlations among 

traits. For traits 1 and 2, we have 

1

2
=

VP (1,1) CP (1,2)

CP (2,1) VP (2,2)

1

S1
S2          (8) 

 In equation 8 we have expressed the direct selection 

coefficients (the  coefficients) and the selection 

differentials ( S ) as vectors (columns of numbers) and 

associations among traits is captured by a matrix (a box of 

numbers) that contains information on the phenotypic 

associations. Formally, the “ 1 ” denotes the inverse of this 

matrix. Hence the matrix in equation 8 is the inverse of the 
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phenotypic variance-covariance matrix. In more compact 

notation, equation 8 can be represented as  

= P 1s             (9) 

where boldface terms denote vectors or matrices. The P 1
 

term represents the inverse of the phenotypic covariance 

matrix, but this is not the same thing as a matrix of the 

reciprocals of variance/covariance of each trait. Written out, 

equation 9 is the following (which emphasizes that the 

entries in the P 1matrix 1 /VP ) 

1

2

=
1

VP (1,1)VP (2,2) CP (1,2)CP (2,1) VP (2,2) CP (1,2)

CP (2,1) VP (1,1)

S1
S2

(10) 

 If we had three traits under study then equation 8 would 

be expanded as such  

1

2

3

=

VP (1,1) CP (1,2) CP (1, 3)

CP (2,1) VP (2,2) CP (2, 3)

CP (3,1) CP (3,2) VP (3, 3)

1 S1
S2
S3

      (11) 

 Equation 11 represents the selection differentials, 

selection gradients and phenotypic variances/covariances in 

terms of vectors and matrices for three traits. Note that we 

can write out the direct action of selection on trait 1 for the 

three trait case from equation 11 as follows  

1 =VP11S1 +CP12S2 +CP13S3         (12) 

 In this case, terms such as VP11  and CP12  represent the 

row by column positions within the P 1
 matrix (e.g., VP11  is 

in the first row and first column of the P 1
 matrix and this 

value is multiplied by S1 ). And as before, equation 11 can 

also be written in a much more convenient format; thus  

= P 1s           (13) 

 Equation 13 (or 11) above provides a description of how 

to parse selection into components of direct and total 

selection. The right side of equation 13 is similar to--but not 

homologous--to the 
1

VP
S  term in equation 2 (since the 

inverse of a matrix is not a simple matter of taking the 

reciprocal of each entry). The  coefficients, or selection 

gradients, are a key component in the theory of multivariate 

phenotypic selection models--they measure the direct 

selection acting on traits while controlling for the effects of 

indirect selection. They help us identify the true target of 

selection. In our example above concerning height and 

width, both of the selection differentials, S1  and S2 , would 

provide evidence for selection on these traits. However, only 

by measuring the selection gradients would we know that 

selection is targeting height and that the selection on width is 

indirect (i.e., 1 > 0, 2 0 ). Armed with the knowledge that 

selection is targeting height, not width, we could go out and 

look for the ecological or social reason as to why there are 

fitness differences with respect to height. In short, the  

coefficients provide a powerful way to quantify the direct 

action of selection on traits when studying multiple traits. 

 So far, we have discussed ways to disentangle how 

selection acts on multiple traits that phenotypically covary. 

However, what we would like to know is how multiple traits 

respond to selection across generations. Thus we seek an 

analogous term for VA  in equation 2. Since we are 

considering multiple traits, we want to focus on trait 

covariances as well as variances. We do this using an 

additive genetic variance-covariance matrix for the traits 

under consideration. For traits z1 , z2 , and z3 , we can 

represent their additive genetic variation (VA (i, i) ) and 

covariation (CA (i, j) ) as  

G =

VA (1,1) CA (1,2) CA (1, 3)

CA (2,1) VA (2,2) CA (2, 3)

CA (3,1) CA (3,2) VA (3, 3)

       (14) 

 This matrix is known as the G matrix. It is another key 

component of multivariate selection theory. The G matrix 

tells us the degree to which traits in offspring will resemble 

the traits in their parents, while also noting that some traits 

may be genetically correlated. That is, traits that have 

additive genetic covariation will respond jointly to selection 

acting on one trait. Common mechanistic explanations for 

genetic covariation among traits is due to pleiotropy (where 

one genetic locus controls two or more different traits) or 

linkage disequilibrium (where two different alleles 

controlling two different traits traits are co-inherited more 

often then expected by chance, thus the two traits tend to 

respond to selection as a unit rather than independently). In 

general, pleiotropy is thought to be more ubiquitous than 

linkage in maintaining genetic correlations, since 

recombination will generally break down correlations due to 

linkage disequilibrium. However, linkage disequilibrium is 

important in many models of sexual selection; further, 

genetic drift, non-random mating, as well as selection can 

maintain linkage disequilibrium in populations. Informative 

discussions of the evolutionary implications of linkage 

disequilibrium are found in Gillespie [3] and Rice [4]. One 

important note about the G matrix is that it assumes that all 

traits potentially covary but it doesn't account for the fact 

that some covariances may be more important than others, or 

that some covariances may not exist at all. Path analysis is a 

technique that allows one to test for hierarchical or complex 

covariance structure among traits. To develop path analysis 

models, one can draw from ecological, physiological, or 

biomechanical principles to specify the covariance among 

traits. Rice [4] gives a short but clear description of path 

analysis for phenotypic selection models. 

 The G matrix is analogous to the VA  term in equation 2, 

and since we know that  is analogous to the S
1

VP
 term, we 
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can write the response to selection acting on three (i.e., 

multiple) traits as  

z1
z2
z3

=

VA (1,1) CA (1,2) CA (1, 3)

CA (2,1) VA (2,2) CA (2, 3)

CA (3,1) CA (3,2) VA (3, 3)

1

2

3

      (15) 

 As before, we can use matrix notation to represent 

equation 15 more compactly. Thus,  

z =G           (16) 

and noting equation 13 above, this equation can also be 

written out as  

z =GP 1s           (17) 

 Equation 16 (or 15 or 17) is one of most notorious 

equations in evolutionary genetics. It was derived by Lande 

in 1979, although previous researchers had also derived it in 

somewhat different form [5]. It allows one to study how the 

mean value of multiple traits respond to selection across 

generations as a result of direct selection on each trait 

(section 5 lists the assumption that go into this equation). 

Analogous equations can be derived for stabilizing and 

disruptive selection [6]. We don't explicate these latter 

equations, but in section 4 we describe and graphically 

depict these different types of selection. An important 

property of equation 16 is that a trait can still change across 

generations even though it does not experience direct 

selection. In the notation of equation 15, it is possible to 

observe z2 > 0  but not observe 2 > 0 . This occurs 

because trait 2 is genetically correlated with some trait that 

does experience selection, for example: CA (1,2) > 0  and 

1 > 0 . Though our treatment above may seem complicated 

to the newcomer, it is actually quite superficial. The 

motivated reader should consult Lande [7], Lande and 

Arnold [6], Phillips and Arnold [8], Arnold, [9]; Brodie et 

al., [10], and Walsh [5] for further details and derivations. 

3. A MODEL OF PHENOTYPIC VARIATION 

 In this section we want to look at a simple model of the 

phenotype. Through our discussion we will introduce 

numerous terms that will be useful in the rest of this paper. 

We begin by discussing an “intuitive” model of the 

phenotype ( P ), namely that a phenotype is built from 

genetic factors (G ) and environmental factors ( E ). If these 

are the only two factors that make up the phenotype, then we 

can write, P =G + E . We will assume that the trait is 

continuous (e.g., height) and that many genetic loci each 

contribute a small amount to height. If we were looking at 

the trait in a bunch of individuals, we could look at the 

variation in this phenotype (VP ) and, similarly, express the 

phenotypic variation as a the sum of the genetic and 

environmental variation:  

VP =VG +VE .           (18) 

 VE  represents the amount of phenotypic variation that is 

due to environmental variation (for example, when some of 

the variation in height in a population is determined by diet, 

not genes). In equation 18 we are explicitly assuming that 

there is no covariance between genetic and environmental 

variation; when such covariances exist equation 18 would be 

written as VP =VG +VE + 2CGE , where the CGE  term 

represents the covariation between genotype and 

environment. In looking at equation 18, it should be obvious 

that the terms “genetic” and “environmental” actually gloss 

over a fair amount of complexities. Depending the question 

at hand, it is possible to further break down each of these 

terms into something more specific. For example, genetic 

factors (G ) can influence a phenotype through the factors 

that cause parents to resemble offspring, which are often 

known as additive effects, through dominance (where one 

allele masks the phenotypic effect of another another allele at 

a locus), and through epistasis (different genetic loci interact 

in a complex manner to produce a phenotypic effect). Thus 

the genetic factor (G) can be broken down into additive ( A ), 

dominance ( D ), and epistatic ( I ) factors. And as before, 

we are considering a population of phenotypes so we are 

more interested in the variation among phenotypes (VP ) and 

the variation in these factors. In this case, we can write 

variation in genetic factors in terms of variation due to 

dominance, epistasis, and additive effects (and we assume 

that there is no covariation among these terms): 

VG =VA +VD +VI           (19) 

 In a similar fashion, environmental factors can also be 

redefined to capture more realism. Consider that some of the 

phenotypic variation in a population is due to the fact that 

every individual who was born in a particular year incurred 

the same environmental conditions (e.g., they all experienced 

drought-like conditions for their first three years of life 

thereby stunting growth). In this case, some of the 

phenotypic variation would be due to birth-year effects, or 

cohort effects (VC ). Similarly, some sets of siblings in a 

population may all be very healthy because their mother was 

a very healthy and an attentive parent. Here, some of the 

variation in phenotype would be due variation in mothering 

ability and/or the placental environment provided by 

maternal effects (VM ). In fact, it is possible to divide up 

environmental (and genetic) factors into almost any 

conceivable component of variation that is relevant. Finally, 

it is important to include a term that is often called “residual 

variation (VR );” this term captures any remaining phenotypic 

variation that cannot be attributed to one of the other terms 

in our model of phenotypic variation. Taking all the terms 

together, our model of phenotypic variation is the following:  

VP =VA +VD +VI +VC +VM +VR .         (20) 

 It should be noted that this partitioning of phenotypic 

variation is only one possible way to model phenotypic 

variation. In practice, most researchers only include those 

terms they are interested in and/or those terms for which 

their are available data (e.g., to model dominance effects 

requires pedigree data that include both paternal and 
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maternal links). In the same sense that variation in phenotype 

(VP ) can be broken down into genetic and environmental 

components, so can the covariation between two traits: 

CP (1,2) =CA (1,2)+CE (1,2)  (which again assumes no 

covariation between genotypes and environment). While 

additive genetic covariances (CA (1,2) ) are produced by 

linkage or pleiotropy, the environmental covariance between 

traits (CE (1,2) ) is essentially a term that means “everything 

else” that is not heritable and not modeled by a specific 

covariance term. In this regard, two traits can 

environmentally covary due to a shared external 

circumstances (e.g., the traits are similar due to experiencing 

a common temperature). 

 In order to understand patterns of inheritance, we need to 

find the portion of genetic variation that causes offspring to 

resemble their parents--this is known as additive genetic 

variation (VA ). We single out VA  from other genetic 

components because only VA  is responsible for the 

resemblance between parent and offspring (Futuyma, [11] 

pages 413-414, gives a clear example of why VA  produces a 

correspondence between parent and offspring); other types 

of genetic variation, for example dominance variation (VD ), 

can influence phenotypic variation but this factor is not 

necessarily transmitted across generations since genotypes 

are not inherited from parents in diploid, sexually 

reproducing species (only alleles are inherited). While we are 

considering parent-offspring covariances, two additional 

points are worth mentioning here. First, it is important to 

remember that non-genetic factors such as maternal effects 

(and other shared environments) can produce similarity 

between parents and offspring; second, there is a form of 

epistatic interaction known as “additive by additive” 

epistasis, and this form of epistasis is also transmitted across 

generations (a good explanation of epistasis is given in [4]). 

Ultimately, a lot of quantitative genetics research is 

concerned with estimating the various components that make 

up VP , with particular attention heaped on VA . This is 

because VA  is a key term in the heritability ( h2 ), which is 

given in equations 1 and 2 and also comprises the terms in 

the G  matrix (equation 14). It is also a key factor that 

determines part of the selection response in equation 16. 

Note that when we are considering the phenotype of a single 

individual (e.g., a parent), the additive genetic component of 

the individual's phenotype is called the “breeding value” 

( ). For simplicity, one can view the breeding value as the 

portion of the parent's genotype that causes their offspring's 

phenotype to deviate from the population mean (the 

connection to VA  should be clear since VA  determines how 

the population mean can shift between generations). More 

simply, the variance in individual breeding values is the 

additive genetic variance (VA ). 

4. FITNESS, SELECTION, AND ADAPTATION 

 In section 2 we have talked a lot about selection without 

formally defining it. In order to introduce selection more 

formally, we need to examine an important factor in the 

definition of selection: fitness. Fitness is a central but 

refractory concept in evolutionary biology. This is because 

researchers think about fitness in different ways depending 

on the question at hand. Behavioral ecologists, 

demographers, and game-theoreticians all use different 

measures of fitness that operate on different time-scales and 

contain different assumptions. While all conceptualizations 

of fitness concern reproduction, there are some key 

differences as to how fitness is best measured. One of the 

most basic distinctions among measures of fitness used by 

these different researchers is that of “rate-insensitive fitness” 

and “rate-sensitive fitness.” Rate-sensitive concepts of 

fitness measure evolutionary success on a per-generation 

basis, whereas rate-insensitive concepts of fitness measure 

success in absolute time. A very common rate-sensitive 

measure of fitness is net reproductive rate ( Ro ). This 

measure is particularly useful to behavioral ecologists 

because it ties into lifetime reproductive success. That is, if 

one is looking at a bunch of animals in a population, the 

average of their lifetime reproductive success (LRS) is Ro . 

Thus estimating lifetime reproductive success in individuals 

allows one to estimate the per-generation rate of offspring 

production. In practice, calculating LRS takes a lot of effort 

and thus researchers often resort to calculating components 

of LRS. Thus when one measures survival, mating success, 

or rate of offspring produced over a given period, these 

measures constitute components of LRS. Most behavioral 

ecological applications of equation 16 use LRS or some 

components thereof. The advantages of this approach is that 

it often allows one to define the appropriate component of 

LRS in order to address a particular question about the type 

of selection (e.g., viability, intrasexual, fecundity, 

intersexual) acting on traits. For example, if one is interested 

in sexual selection, it may be appropriate to use “male 

mating success per mating season” as the measure of fitness. 

In this case, traits that covary with this fitness definition, as 

specified by the beta coefficients in equation 16, measure the 

direct action of selection on these traits due to male “mate-

getting” ability. Likewise, defining fitness as lifetime 

survival (or survival over a given period) will allow one 

identify the traits associated with viability selection. When 

components of LRS are used to estimate selection (e.g., 

survival), they estimate selection over a single episode of 

selection, not over a lifetime. Arnold and Wade [12] and 

Wade and Kalisz [13] discuss the complications and 

potential solutions to this problem. Conner [14] and Conner 

and Hartl [15] provide a lucid description of these methods 

and Brodie and Janzen [16] provide some caveats. 

 LRS, as discussed above, is a simple tally of offspring 

produced over a lifetime, but it doesn't tell us when offspring 

are produced during a lifetime nor does it take into account 

whether the population is growing or shrinking. Because 

selection can act strongly at some ages and less strongly at 

other ages, it is better to think of fitness in terms of the entire 

life cycle of the organism, from birth to death. It is necessary 

to do this because it matters when individuals reproduce 

during their lifetime; for example, in an expanding 

population it pays to reproduce earlier than your 
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conspecifics. Given this, we need to find a fitness measure 

that accounts for the timing of reproduction as well as 

changes in population size, since changes in the population 

growth rate can influence the strength of selection acting on 

different age classes [17]. That is, one needs a fitness 

measure that is insensitive to generation times, or “rate-

insensitive.” A fitness measure that satisfies these criteria is 

the intrinsic rate of increase of a population (or population 

growth rate), often denoted as  or r . These two measures 

are connected by r =log e . [This measure of fitness also 

connects to the concept of mean fitness in population 

genetics, usually denoted as w , in that r log ew , assuming 

that the per generation growth rate is not too large]. The 

population growth rate, , is a demographic measure of the 

eventual rate of population growth, assuming the 

environment does not change. We stress eventual because it 

measures the rate of growth of a population in the long-term, 

or once the proportion of individuals in different age classes 

remain stable. The population growth rate, , is calculated 

from the average rates of survival, growth, and fertility in the 

population, which are embodied in the projection matrix, 

At , described in section 6.3. Populations grow in size when 

>1 , remain the same size when =1 , and shrink in size 

when <1 . Since  takes into account timing of offspring 

production it is often considered a superior measure of 

fitness than Ro . Thus to a demographer,  is the proper 

measure of fitness and Ro  is only a component of fitness. 

The drawback of using  is that it is tricky to estimate on 

individuals, since  is calculated from averages--hence the 

preference for Ro  among behavioral ecologists. There have 

been attempts to develop methods that use a rate-insensitive 

measure of fitness that can be estimated from individuals 

[18-20]. 

 For completeness, we discuss another measure of fitness 

used mostly by theoreticians who study evolutionary 

dynamics. This measure of fitness pertains to invasibility 

(also called the invasion exponent). Consider a population in 

which individuals have the phenotype “have one offspring in 

year t , then die” (this is their “strategy”). Now consider a 

mutation that occurs in one individual that codes for a new 

strategy, such as “have one offspring in year t +1  and one in 

year t + 2 , then die”. Game theoreticians want to determine 

if this mutant strategy can increase in frequency in the 

population in the face of the existing strategy. To do this, 

they calculate the growth rate of the existing strategy ( e ) 

and the growth rate of the mutant strategy ( m ). Fitness, 

then, is viewed as the ability (or lack of ability) of a mutant 

strategy to invade (i.e., increase in frequency) a population 

predominated by different strategy. It is measured as the 

difference in growth rates between the two strategies 

( e m ). An evolutionary stable strategy is a population 

containing a single strategy that cannot be invaded by a 

mutant strategy. 

 Invasibility is considered the master fitness concept, but 

it is rarely used in primatology. On the other hand, both  

and Ro  have been empirically estimated on wild primate 

populations. In short,  is probably a better measure of 

fitness than Ro  but  is difficult to operationalize since it is 

a property of a population and is difficult to apply to short 

time intervals; LRS is easy to measure on individuals 

animals, operates over short-time intervals, but does not take 

into account the timing of reproduction. The two measures of 

fitness Ro  and  do give equal results when =1 . 

Technical but informative discussion of fitness are found in 

Charlesworth [21], Benton and Grant [22], Brommer [23], 

and Caswell [24]. What should be clear about all three 

measures of fitness, however, is that they all tie into our 

notion of fitness-as-reproductive success, independent of the 

time-scale or timing involved. 

 We now turn to the other major factor in evolutionary 

change: selection. Intuitively, we know that selection can 

change phenotypic variation in a population in non-random 

ways. Here, we want to define selection more rigorously. 

The general manner in which selection can change 

phenotypes is by acting on the mean, the variance, or the 

joint variation of a bunch of traits in a population. Thus, if 

we are looking at height, selection can act to increase or 

decrease the mean height (this is positive and negative 

directional selection, respectively), to increase or decrease 

the variance in height (this is disruptive and stabilizing 

selection, respectively) or to act on height along with another 

trait, such as weight (this is correlational selection). 

Correlational selection refers to the fact that combinations of 

traits interact to produce a fitness effect. Since we know that 

selection acts on traits with respect to the fitness differences 

those traits confer, we can visually depict the action of 

selection by plotting the relationship between fitness and 

phenotype. More formally, what we are trying to visualize is 

how variation in fitness covaries with phenotypic variation 

(e.g., equation 3). In fact, one can rigorously define selection 

as the covariance between fitness and those phenotypes that 

causally influence fitness differences. We need to emphasize 

the causality part because drift and/or other evolutionary 

forces can also produce a non-random relationship between 

fitness and phenotype. Thus, measuring selection is not 

simply a matter of regressing fitness on phenotype but 

understanding the causal relationship between particular trait 

values and how they determine variation in fitness [4]. 

 That said, selection can be estimated using linear and 

non-linear least-squares regression models. In principle, any 

measure of fitness described above can be used; however, in 

practice, usually researchers regress some measure of LRS 

against phenotype. When regressing fitness on phenotype, 

the regression coefficients tell us something about the 

strength (i.e., magnitude) and type (directional, stabilizing, 

etc.) of selection acting on the phenotype. This is because 

regression coefficients themselves are defined as 

Cov(w, z) /Var(w) --if w  is fitness and z  is phenotype, then 

it is clear that the regression coefficient captures something 

about the covariance between fitness and phenotype. In fact, 

in equation 15, the  coefficients are partial regression 

coefficients of fitness and phenotype [6]. In a multivariate 
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framework, the partial least squares regression coefficients 

( ) reveal how much a particular trait “predicts” fitness 

when holding the other traits constant. Fig. (1) shows 

examples of types of selection as well as the expected 

response to selection, assuming that the traits under 

investigation possess heritable variation. The response to 

selection shows what aspects of the phenotype distribution 

(i.e., mean, variance, covariance) change given a particular 

form of selection. Also shown is the regression equation 

used to estimate the coefficients describing different types of 

selection. Thus it is not only possible to estimate directional 

selection ( ) but also stabilizing/disruptive selection ( ii ) 

and correlational selection ( ij ). The ii  term captures 

changes in the variance of trait i , whereas the ij  term 

captures changes in the covariance between traits i  and j  

(Fig. 1). It is important to note that selection must act on that 

component of phenotypic variation that is heritable (i.e., the 

breeding value-see Section 3) in order to produce an 

evolutionary response. It is possible that a non-zero 

correlation between fitness and phenotype could occur in 

which selection is acting on that portion of phenotypic 

variation that is determined by the environment [25]. For 

example, a positive covariance between survivorship and 

body mass might be found in humans, but all the variation in 

body mass is due environmental variation (e.g., some 

individuals have deficient diets). Mitchell-Olds and Shaw 

[26], among others (e.g., [27]) discuss the statistical caveats 

in applying these methods to field data. 

 Our discussion of selection and fitness leads to another 

important but contentious topic in evolutionary biology--

adaptation. For the most part, adaptation is viewed from two 

different angles. The first conceptualization concerns 

etiology, where priority is given to either the initial selection 

pressures that produced the adaptation or the derived status 

of a trait (produced by selection) within a clade. This 

definition is adopted in slightly different forms by Gould and 

Vrba [28]; Coddington [29], and Harvey and Pagel [30], 

among others. Usually under this definition adaptations are 

identified using the comparative method and/or design 

principles. The second conceptualization of adaptation is that 

of current utility, where priority is given to the immediate 

fitness benefits that the trait confers independent of its 

etiology. Reeve and Sherman [31], Fisher [32], and Bock 

[33] have all proposed definitions of adaptation that pertain 

to current utility. Usually under this definition adaptations 

are identified by measuring selection or developing 

optimality models. With its emphasis on immediate fitness 

benefits and trait values, equation 16 falls into a natural 

allegiance with the current utility approach [34, 35]. That is, 

equation 16, is able to get at which traits might qualify as 

adaptations because such traits can be identified as the direct 

targets of selection. To the extent that there is a non-random 

and causal association between trait values and fitness 

values, one can conclude that such trait qualifies as a 

potential adaptation. In this regard, equation 16 provides 

insight into the adaptive process. It allows one to answer 

questions such as: Which traits are under direct selection? 

Which traits evolve due to a correlated response? Answering 

such questions can point to the ecological circumstances that 

produce particular selection pressures and why certain trait 

values confer higher fitness. Naturally, additional evidence 

should be brought to bear on the issue; for example one can 

further test the adaptive basis of a trait using the comparative 

method or experimental manipulation. 

5. MODEL ASSUMPTIONS AND THE ROLE OF 

MODELS IN SCIENCE 

 Equation 16 is a model of the evolutionary process. In 

this section we discuss the various assumptions that that are 

built into equation 16. It is likely that most of these 

assumptions are often violated in nature. Consequently, our 

discussion will turn to the role of models in science. When 

applying equation 16 across generations, the following 

assumptions are made: 

1. The traits under study are multivariate normal.  

2. The G matrix remains constant (which implicitly 

suggests that allele frequencies do not change much 

due to selection or drift).  

3. The additive genetic and phenotypic variances change 

more slowly than the average trait values.  

4. No genotype by environment interaction.  

5. The environment remains constant from generation to 

generation.  

6. No maternal/paternal/indirect effects (for example, an 

offspring's phenotype is not partly a function of its 

mother's environment, or the social environment 

provided by conspecifics).  

7. No epistatic effects among loci contributing to the 

traits under study.  

 Ideally, if the above assumptions are not violated, then 

one could iterate equation 16 over many generations and 

predict the trajectory of mean trait values through 

“phenotype space”. In reality, it is likely the case that the 

environment changes, as do the terms in the G matrix. 

Regarding the latter, one can conclude that the G matrix 

itself evolves, and this topic is an area of active research [36, 

37]. In most ecological applications of equation 16, however, 

the researcher is interested in the strength of selection and/or 

the additive genetic variances of the traits, not their long-

term trajectories [38]. In this case, there is little need to 

understand the long-term changes in the G matrix, since the 

 coefficients and trait heritabilities provide insight into 

immediate adaptive processes. 

 With so many assumptions going into equation 16, one 

might ask what is the usefulness of constructing such an 

idealized equation in the first place. To begin this discussion 

we make the blatant assertion that all models make 

assumptions and thus all models are wrong to some degree. 

Given this statement, why bother developing a “wrong” 

model. For starters, models are constructed not for their 

truthfulness, but for their heuristic ability to depict a certain 

property of a system under idealized conditions. More 

colloquially, models ask, “How much of the real world can 
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we throw away and still get a good answer?” Very often, the 

answer shows what is possible when all but one or two key 

factors are left out. To the extent that the model predicts 

and/or provides a good description of what we see out in 

nature, then we have a good model. This is because our 

model has shown us which factors are important given our 

observations. Caswell [39] makes the apt analogy: models 

are to theoretical problems as experiments are to empirical 

problems. Good experiments do not include several factors 

at once and the same is true of models. Our understanding of 

causality would be clouded if we included ten different 

factors in a single model or experiment--how could we 

isolate the key factor that “drives the system”, so to speak? It 

is much more logical to ask what key factors appear to be the 

most important with respect to the question at hand. From 

this one can develop a simplified characterization of a 

particular problem in order to see how it stands up against 

reality (e.g., how traits change under directional selection). 

 Researchers who are unfamiliar with modeling 

techniques might be tempted to criticize a model for what it 

has excluded. It is always easy to suggest what a particular 

model has left out; it is more important to understand if the 

excluded material affects one's conclusions given the 

question at hand. And the only way to do so is to build a 

model and see what it predicts in the absence of such factor. 

By simplifying and isolating the key properties of the system 

under study, a properly constructed model allows the 

researcher to control, and incrementally add, which factors 

are likely important. Equation 16 distills evolutionary change 

due to directional selection down to two key factors--  

(selection) and G  (genetic variation). It allows us, quite 

accurately, to predict how mean trait values will change over 

short-time intervals. No doubt other factors are also relevant 

but we wouldn't necessarily know that  (selection) and VA  

(genetic variation) are important if our model had included 

various factors at the outset. 

6. EXTENSIONS TO SPECIFIC EVOLUTIONARY 

PHENOMENA 

 In this section, we show how equation 16 can be 

modified and applied to particular evolutionary phenomena 

such as sexual selection, life history theory, allometry and 

constraints, ecological morphology, and social evolution. As 

will become evident, addressing such topics often involves 

nothing more than carefully redefining one or more terms in 

equation 16 such that they capture the basic properties of the 

system under study. 

6.1. Sexual Selection and Mate Choice 

 Here we show how equation 16 can be modified to 

capture the dynamics of phenotypic evolution due to 

variation in mate acquisition. We focus on two major topics: 

models of female mate choice and the evolution of sexual 

size dimorphism. Darwin's original conceptualization of 

sexual selection was predicated on explaining the existence 

of male traits that were seemingly detrimental to viability 

(e.g., a conspicuous peacock's tail) or had no intuitive 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (1). A graphic relationship between fitness variation and phenotypic variation and equations describing this relationship (top). The 

response to selection is shown below and is a product of the strength of selection + heritable variation in the trait. Regarding correlational 

selection, the shape of the fitness surface depends on the various selection coefficients; therefore, the fitness surface will not always be flat, 
as depicted here. 
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functional purpose (e.g., extremely large antlers); his 

solution was to suggest that some male traits that were bad 

for survival were good for obtaining mates. A major 

component of sexual selection concerns female mate choice. 

Males displaying elaborate traits were more likely to be 

chosen by females for mating independent of how their trait 

influences their viability. In this regard, modeling sexual 

selection of female preferences requires that we consider 

three traits--a trait denoting female preference ( p ), a male 

display trait ( t ), and a trait pertaining to viability ( v )--and 

two types of selection: sexual selection (due to variation 

female preferences), and non-sexual selection (which 

captures selection that operates on aspects of fitness not due 

to mate acquisition). We can modify equation 16 to capture 

female preference models of sexual selection. This approach 

is developed and treated in detail by Fuller et al., [40]. 

Because two types of selection are present, the selection 

gradient is broken up into two components, one due to non-

sexual selection ( n ) and one due to sexual selection ( s ). 

The G matrix contains the variances and covariances among 

the three traits. The general model is  

z =G( n + s )           (21) 

and expanding the terms  

  
            (22) 

 Female preference models of sexual selection come in 

many different forms, for example Fisher's runaway 

selection model, the good genes model, sensory bias models, 

and direct benefit models. As shown by Fuller et al. [40], the 

predictions from these different models specify which terms 

in the G matrix and selection gradient vectors should be 

important. Many of these sexual selection models require 

that the selection coefficients and variances and covariances 

change as the system evolves. Thus, Fuller et al., showed the 

initial and equilibrium conditions for each model. Below, we 

discuss two models that are likely to be important in 

primatology: the “good genes” model and the “direct 

benefits” model. 

 In the good genes model, males are chosen by females 

because males posses some traits that confer high viability, 

which the female's offspring inherit. This model was 

developed to explain why females choose particular mates 

despite the fact that their mates offer little in terms of 

paternal care (i.e., females are choosing mates based on 

male's genes, not their paternal ability). Good genes models 

possibly operate in mandrills [41]. Two assumptions of the 

good genes models are that the cost of the male trait ( t ) 

increases with the size of the trait and that the cost of the 

female preference ( p ) increases with females choosiness. 

Both are realistic: a male trait may be an elaborate display 

(e.g., some African antelopes “stot” or jump up and down in 

front of a predator in what is interpreted as a display of 

vigor) and a lengthy display may attract predators; equally, 

females who spend too much time looking for the right mate 

may spend less time feeding or may be more vulnerable to 

predation. Under the good genes model, at equilibrium, the 

important terms in equation 18 are highlighted below  

 

        (23) 

 In equation 23, the negative n,t , n,p  coefficients capture 

the action of non-sexual selection on the high costs of having 

an elaborate trait as well as being too choosy. The positive 

n,v , s,p , s,t  terms reflect the fact that viability ( v ) is 

positively selected for (since males survive in spite of the 

elaborate trait), and that both the trait and the viability it 

confers are under positive sexual selection. In this model, 

there is never any direct sexual selection for preference 

(denoted by 0 ). The non-sexual selection against 

preference ( n,p < 0 ) is counteracted by the indirect positive 

selection for female preference due to the positive genetic 

covariance term CA (p,v) ; thus females are selected to prefer 

elaborate males, but this preference is a correlated response 

due to positive sexual and nonsexual selection for viability 

( n,v > 0, s,v > 0 ). 

 In the direct benefits model of mate choice, females 

choose males because of the immediate qualities they can 

confer to the female and her offspring (such qualities include 

things like paternal care or protection from predators). In this 

model, there is no trait-and hence no selection-that signals 

good genes to the female (e.g., a trait that signals increased 

viability). Thus at equilibrium the direct benefits model is, 

 

        (24) 

 In this model, the important terms are the following: non-

sexual selection against preference (females incur a survival 

cost for being too choosy, n,p < 0 ,), and sexual selection 

for preference (females recieve direct benefits for selecting 

particular mates, s,p > 0 ). There is no additive genetic 

covariance between preference and viability. 

 These are just two of the many models of mate choice. 

The contribution from Fuller et al., was to put these models 

into a common framework; this allows for the easy 

identification of the key terms that distinguish each model. 

As Fuller et al., point out estimating such terms can be 

daunting but doing so will allow better resolution to the 

processes shaping mate choice in wild populations. 

Estimating some of the terms in equations 23 and 24 would 

go a long way toward sorting out whether female primates 

gain direct and/or indirect benefits when choosing mates 

(reviewed in [42]). We should note that our treatment above 
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is highly simplified; for example, we have ignored 

mutational input--a pivotal term that can change the 

predictions of a particular model (compare [43] with [44], 

see [45] for an elaboration of this idea). Our goal here was to 

illustrate the basic quantitative genetic framework of sexual 

selection via mate choice. Kokko et al., [45] provides 

additional commentary and analysis on these models. 

6.2. Sexual Selection and Size Dimorphism 

 We now turn to the evolution of sexual size dimorphism 

(SSD). In many primate species, SSD likely evolved due to 

male-male mating competition [46]. The first explicit 

quantitative genetic treatment of SSD was provided by 

Lande [47]. Our explanation follows that given in [48]. To 

set up his treatment, Lande introduced a model of stabilizing 

selection. This type of selection can be captured 

mathematically by denoting  as a vector of optimum trait 

values and z  as the mean values of the traits in question, 

then one can represent stabilizing selection as 

z  

 Thus when each trait is at its optimum, the expression 

goes to zero. This makes sense, in that if we are modeling 

how traits change under stabilizing selection, we would 

expect no more change due to selection once traits reached 

their optimum value, (i.e., z = 0 ). Lande's full model of 

stabilizing selection was thus  

z =G( + P) 1( z)          (25) 

 P and G are the phenotypic and additive genetic 

variance-covariance matrices respectively. The new terms in 

this equation are a matrix of stabilizing selection values ( ) 

that specify the strength of stabilizing selection (along the 

diagonal) and correlational selection (on the off-diagonal). If 

there are n  traits in the model, then  is a n  x n  matrix. 

If the entries along the diagonal of  are much greater than 

the corresponding values in the P, then selection is weak, 

whereas if they are much smaller than the phenotypic 

variance then selection is strong. To model the effects of 

selection acting separately on males and females, Lande 

added more terms to equation 25. The first term is a vector 

of sexual selection coefficients ( s ) that specifies the 

strength of directional selection acting on either males or 

females, the second term was a modified additive genetic 

variance-covariance matrix that specifies the amount of 

genetic covariance between males and females (B). Given 

these new terms, Lande measured how male traits change as 

a result of directional sexual selection in males using the 

following equation (an analogous equation was developed 

for females but we don't show it here, see [48]):  

zm = 0.5Gm ( m+ Pm )
1(( m zm ) + s,m)  

+0.5B ( f+ Pf )
1(( f z f )+ s, f )         (26) 

 This equation, while seemingly daunting, has three main 

parts: 1) stabilizing selection acting on male traits (captured 

by the m,Pm , m, zm  terms); 2) directional sexual selection 

acting on male traits (the s,m  terms); and 3) the effect of 

stabilizing and sexual selection acting on female traits (the 

same terms in parts 1 and 2 but subscripted with f ). The 

two additive genetic variance-covariance matrices specify 

the covariances in traits within a male (Gm ) and the 

covariances between males and females (B). 

 The evolution of sexual dimorphism depends largely on 

the size of the genetic covariance between the sexes (B) as 

well as the pattern of selection on males and females. The 

evolution of sexual dimorphism using equation 26 has 

largely been studied through simulation. In this case, the 

researcher specifies initial trait values for males and females 

as well as the strength of the covariances and the strength of 

stabilizing and sexual selection. A simulation is run using 

equation 26, with males and females initially starting out at 

the same size (this is akin to stating that natural selection 

favors males and females at the same optimal size). One can 

then plot the trajectory of changes in male and female body 

size against time. When directional sexual selection is acting 

on male body size but not female size, most simulations 

show a characteristic trajectory of body size values for males 

and females, as discussed in [49] (Fig. 2). Initially, both male 

and female size increases due to direct sexual selection on 

male body size with the increase in female body size 

resulting from a correlated response (this period of 

monomorphism can last numerous generations depending on 

the magnitude of selection and genetic correlations). After 

this initial and equal increase, however, the mean male and 

female trait values slowly begin to diverge, and the rate of 

divergence depends on the magnitude of the terms in B  

matrix. Over many generations, the two sizes settle on their 

new optimal sizes: Females return to the size favored by 

natural selection, whereas male size is a balance between the 

effects of natural selection and sexual selection. It is 

important to note that the above model is highly simplified. 

Fairbairn [49] and Reeve and Fairbairn [48] present good 

discussions of the assumptions and limitations of these 

models. 

 Such simulations have interesting implications for the 

evolution of sexual size dimorphism in primates. As shown 

in Fig. (2), there is an initial period in which males and 

females are monomorphic, even though both sexes are 

increasing in size (the portion of the trajectory between the 

arrows). This suggests that in monomorphic primates (e.g., 

Callicebus or some Propithecus spp.), similar size may be 

due to either no sexual selection acting on males (likely in 

the case of Callicebus), or that equal body size is due to non-

equilibrium conditions, where equal male and female body 

size is a transient condition, as has been proposed in some 

diurnal lemurs [50] (but see [51]). 

6.3. Life History Theory 

 Imagine we are interested in understanding how selection 

acts on the life history traits of a baboon. Recall that life 

history traits are the major phenotypic manifestations of 

fitness itself. In this regard, all we are doing is recognizing 

that things like age at sexual maturity, survivorship, and age 

at death are phenotypic traits and thus can be targets of 
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selection similar to morphological traits. The best way to 

understand how selection acts on such traits is to develop a 

life cycle model. The life cycle model (or graph) should 

capture the particular life history traits one wants to examine. 

An example of a life cycle is given in Fig. (3). This life cycle 

has four stages corresponding to 1yr olds, juveniles, 

subadults/adults without offspring, and mothers with infant. 

The arrows on the life cycle specify which transitions are 

possible from year to year (i.e., you can go from yearling to 

juvenile but not vice versa) and the coefficients under the 

arrows give the average probability of making the transition 

specified by the arrows each year as well as the average 

probability of giving birth (transititon F4 ). The coefficients 

can also be represented in a matrix form and such a matrix is 

called a projection matrix, by convention denoted as At , 

with entries aij  denoting the i th row and j th element in 

matrix A  (to keep with this convention, we use aij  to denote 

life history traits, rather than z  in this section). 

 It should be apparent that the coefficients tell us 

something about the life history of the organism because 

they specify probabilities of survival, growth, and fertility. 

[Obviously it is possible to develop many alternative life 

cycles for a baboon, including those using ages instead of 

stages--the key is to develop a life cycle that represents the 

biological question you're interested in.] What we want to 

find out here, is how directional selection acts on these 

coefficients. Answering this question will provide insight 

into which stages are important determinants of fitness. In 

1982, Lande demonstrated how to connect the demographic 

aspects of life history theory to quantitative genetics [52]. 

What he was able to show was that response to selection on 

life history traits could be calculated as  

a =
1
G           (27) 

where,  

 

=

a11

a12

aij

 

 In words, this equation reads: the change in the mean 

phenotype of a vector of traits is equal to the reciprocal of 

mean population growth rate ( ) multiplied by the G  

matrix multiplied by the selection gradient. The biological 

interpretation of the terms in the equation is as follows. The 

a
-
 is the response to selection, which captures the following 

process: the change per unit time in average phenotype is 

equal to the difference between the mean breeding value at 

birth and at age x , divided by the generation time. This 

formulation encapsulates the idea that at birth the genotypic 

and phenotypic probabilities of survival, growth, and fertility 

are similar, but as the population ages the phenotype 

distribution changes because some individuals fail to survive 

or breed. What Lande derived was the fact that as 

phenotypes change through time, the change in phenotypes 

is due to differences in survival among particular genotypes 

(from birth to age x ), weighted by the number of offspring 

each genotype produced. On the right hand side of the 

equation, the G , is the G-matrix--a matrix containing the 

additive genetic variances and covariances for the life history 

traits. The last term is a vector of selection gradients. 

Formally, this is an array of partial derivatives of mean 

population growth rate with respect to each trait. Such partial 

derivatives are analogous to the  coefficients in equation 

15 above (that is, 
aij

). Like beta coefficients, the 

partial derivatives measure the direct action of selection 

acting on each life history trait while all others are held 

constant. 

 

 

 

 

 

 

 

 

 

 

Fig. (2). Schematic of a typical simulation of equation 26 for the evolution of sexual size dimorphism (redrawn from [49]). Sexual selection 

operates on male body size and natural selection selection operates on male and female body size in the form of stabilizing selection. The 

actual trajectory of body sizes depends on the parameter values in eq. 26 and population size; the dots do not represent single generations, 
they simply show the basic trajectory. Note that monomorphism occurs during the phase bracketed by arrows. See text for discussion. 
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 Lande's final equation (equation 27) is very similar to 

equation 16. What is underappreciated is the elaborate 

mathematics used to merge the demographic aspects of life 

history theory, as captured by the life cycle, and the basic 

framework of quantitative genetics, as expressed in equation 

16. The clearest exposition of Lande's derivation is given in 

Caswell [53]. In connecting the two, it was necessary to 

make adjustments to equation 16 to incorporate age or stage 

structure and overlapping generations while making sure that 

the measure of fitness relates to the transitions in the life 

cycle graph. Further, as in other conceptualizations of 

multivariate evolution, the equation must account for 

correlations between traits, since life history theory is 

predicated on idea that many traits have negative correlations 

(i.e., trade-offs). Finally, Lande needed to make sure the 

response to selection is measured in absolute time, not per 

generation. Lande's equation provides a critical link between 

understanding life cycle evolution and quantitative genetics. 

There is a substantial body of theory for analyzing projection 

matrices and an important concept in this theory is the 

concept of sensitivity [24]. In the most common usage, 

sensitivity measures the degree to which population growth 

rate would change given some change (i.e., perturbation) in 

the projection matrix entry, holding all other entries constant 

(recall that the matrix entries give us the probabilities of 

engaging in some sort of life history transition). 

Mathematically, sensitivities are represented as 
aij

. 

Immediately, this should look familiar: 
aij

 is a component 

of the selection gradient in Lande's equation (see equation 

27, above). Thus, sensitivities in matrix population models 

have an interpretation as selection gradients, this is because 

they measure how fitness (as represented by population 

growth rate, ), depends on (or “covaries with”) a particular 

life cycle transition, aij , and we learned in Section 4 that 

selection can be formally defined as the covariation between 

fitness and phenotype. Sensitivities are a key part of 

demographic theory; Lande's contribution was to anchor 

them into an evolutionary quantitative genetic framework. 

We should note that such selection gradients (
aij

) measure 

directional selection; to measure stabilizing/disruptive 

selection it is necessary to take the second derivatives of 

fitness with respect to each trait (i.e., (
2

aij
2 )). There are 

several programs that enable the calculation of sensitivities 

from projection matrices (e.g., RAMAS, Vortex) and they 

can also be calculated using a few lines of Matlab code [24] 

or R code [54]. Upon their calculation, one can interpret the 

sensitivity value as the magnitude of directional selection 

acting on that transition in the life cycle (see Section 7.1). 

6.4. Evolutionary Constraints 

 In this section and the next one we address topics that 

examine how traits interact during their evolution. We will 

consider the G matrix first. The G matrix tells us, in part, 

how two or more traits will respond to selection based on 

their genetic covariances. Depending on the sign of these 

covariances, the response to selection (i.e., the change in 

mean trait values) may not be in the direction of highest 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (3). Hypothetical life cycle (top) and projection matrix (bottom) for a baboon. This life cycle contains four stages. The coefficients on 

the arrows represent the probability of moving within ( Pi ) and among (Gi ) stages each year. The F4  term represents the probability of 

moving into the maternity stage (i.e., giving birth) multiplied by the probability that the infant will survive to stage 1. These probabilities 

enter into the projection matrix ( At ). The dominant eigenvalue of the projection matrix provides the population growth rate,  (see section 

4). Sensitivities of  to entries in the projection matrix can be interpreted as directional selection gradients, as discussed in the text.  
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fitness. Here, we define “constraint” as a bias in the selection 

response that prevents a population from reaching its 

maximum fitness (maximum fitness could be determined a 

priori, for example, through an optimality model). For 

example, assume that height and weight have a negative 

genetic covariance. This would suggest that direct selection 

to increase height would indirectly decrease weight (and vice 

versa). Now imagine an ecological scenario in which both 

increased height and increased weight conferred the highest 

fitness (for example, tall and heavy individuals may have an 

advantage during aggressive contests). Consider, that there is 

direct positive selection to increase height and direct positive 

selection to increase weight. Because of the negative genetic 

covariance between height and weight, the response to 

selection will not move in the direction of both increased 

height and weight. Thus, the negative genetic covariance 

constrains, or biases, the selection response away from the 

trait values which confer the highest fitness [55]. The G 

matrix can also enhance, rather than bias, the selection 

response. In this case, if two traits are positively correlated 

and there is direct positive selection on both traits, the 

selection response will be enhanced. Conner and Hartl [15] 

provide a nice table illustrating how evolutionary change 

will be enhanced or constrained depending on the sign of the 

genetic covariance and the whether directional selection is 

acting to increase or decrease the mean value of a trait (Table 

2).  

 It is important to note that a negative genetic covariance 

can exist despite a positive phenotypic covariance among 

traits. Cheverud [56] suggests that often phenotypic 

covariances can be used as a proxy for genetic covariances, 

when the latter cannot be measured directly. However, this 

proxy appears to hold better for morphological traits, but not 

life history traits [38]. In fact, life history theory suggests 

that there should be trade-offs among traits such as survival 

and reproduction, as well as current and future reproduction 

[57, 58] (see Section 7.2). Here, the P and G matrices are 

expected to contain negative covariances between traits; such 

covariances can bias the response to selection toward non-

optimal trait combinations. Arnold [59] provides a good 

discussion of evolutionary constraints and Pigliucci [60] 

provides a recent review and critique of the “G matrix 

concepts” in evolutionary biology. Two additional points are 

worth mentioning about the G matrix. The first is that such 

constraints and biases in the selection response operate over 

the short-term--predicting long-term trajectories requires the 

major assumption that the terms in the G matrix do not 

change. Second, the G matrix tells us how the mean values 

of traits respond to selection due to a common genetic 

control. In principle, one can have associations between trait 

distributions that involve other moments of the distribution 

(e.g., variances, skewness, and kurtosis). For example, 

selection on the mean of one trait can change the variance or 

skewness of another trait. Rice [4, 61] develops a body of 

theory for the evolution of entangled traits; traits were 

selection on the nth  moment of one trait's distribution 

changes the mth
 moment of another trait's distribution due to 

developmental associations among traits [61]. 

6.5. Allometry 

 Allometry is the study of scaling relationships among 

anatomical systems. Most often, allometry is studied in the 

context of how one morphological measurement changes in 

size or shape with respect to changes in another 

morphological measurement. A lot of work in allometric 

studies seeks a biological interpretation for the scaling 

relationship among two or more traits. Because allometry 

involves two (or more) characters that covary, it suggests 

that it can be studied using phenotypic or genetic variance-

covariance matrices. In fact, the original derivation of 

equation 16 above, was used in the context to study brain-

body mass allometry in mammals by Lande [7]. What was 

known at the time was that brain-body mass had an 

allometric coefficient of 0.2-0.4 among closely related 

species (i.e., within the same genus). One of the goals of 

Lande's analysis was to figure out if this allometric scaling 

relationship could be explained by directional selection on 

body size with brain size being a correlated response. Here, 

we'll look at the ways in which equation (16) can be used to 

gain insight into allometric relationships. We'll denote z1  as 

the log of body size and z2  as the log of brain size. Further, 

for notational purposes, we will define additive genetic 

variances and covariances for traits as 
2 (A1,A1 )  and 

(A1,A2 ) , respectively (i.e., CA (1,2) = (A1,A2 )  from 

above); we change the notation since it is easier to keep track 

of how a variance, 
2 (A1,A1 ) , can be converted to a 

standard deviation by taking its square root, 
2 (A1,A1 ) = (A1,A1 ) . With this new notation, we'll look 

at Lande's conceptualization of allometry. Note that since the 

allometry coefficient is a slope, and a slope is defined as a 

change in y  over a change in x , we can write 
z2
z1

. With 

this, we can consider a two-trait version of equation (16) (see 

Table 2. Ways in Which Genetic Covariances Enhance or Constrain the Selection Response Depending the Pattern of Selection 

Acting on Each Trait (from [15]) 

Sign of  for each trait 

Positive   Negative  

 Sign of genetic covariance 

 The selection response will be 

 Positive   Enhanced  Constrained  

 Negative   Constrained  Enhanced 
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equations 6 and 7) and write out the direct response of 

selection on body size as z1 =
2 (A1,A1 ) 1 ; note that this 

expression is simply the additive genetic variance for body 

size (
2 (A1,A1 )) multiplied by the strength of directional 

selection ( 1 ) acting on body size. Similarly, the correlated 

response of brainmass to selection on body size is 

z2 = (A1,A2 ) 1 ; this expression is the additive genetic 

covariance between body size and brain size and the strength 

of directional selection acting on body size. Writing out 

these terms with respect to the way they scale allometrically 

(
z2
z1

) and doing some algebra yields,  

z2
z1
=

(A1,A2 ) 1
2 (A1,A1 ) 1

=
(A1,A2 )

(A1,A1 ) (A2 ,A2 )

2 (A2 ,A2 )
2 (A1,A1 )

      (28) 

 The left term on the right side of equation 28 is a 

covariance divided by the standard deviation of traits 1 and 

2. This is the definition of a correlation coefficient, often 

denoted as . In this case,  is the additive genetic 

correlation, G , hence equation 28 can be written as  

z2
z1
= G

(A2 ,A2 )

(A1,A1 )
         (29) 

 Lande used experimental results from mice to determine 

the values of G  and (A2 ,A2 ) / (A1,A1 ) ; respectively 

these values are 0.68 and 0.524. Plugging these values into 

equation 29 gives us a value of  

z2
z1
= G

(A2 ,A2 )

(A1,A1 )
= 0.68 0.524 = 0.356        (30) 

 Recall Lande's original goal was to find a biological 

reason for why brain-body mass scaled with a ratio of  

0.2-0.4 (
z2
z1
=  0.2-0.4). The calculated value in equation 30 

falls within this range. Thus from equation 30, Lande 

concluded that the allometry of brain-body size among 

closely related species could be explained as a consequence 

of direct selection for body mass with brain size increasing 

as a result indirect selection. Allometry is widely studied in 

primates (e.g., [62, 63]); as genetic estimates become 

available, it will be interesting to see if other allometric 

patterns could be explained with respect to direct and 

indirect selection pressures. 

6.6. Ecological Morphology 

 In 1983, Arnold published an influential paper that 

connected selection gradients to ecological morphology ([34] 

also see [35]). Arnold's main point was that equation (16) 

allowed researchers to directly measure the adaptive 

significance of a particular anatomical trait. His approach 

partitioned selection into two distinct components. One 

component of selection was the “performance gradient”, 

measured as the trait's influence on some measure of 

performance (e.g., how lower limb length influences walking 

speed). The second component of selection was the “fitness 

gradient”, or how the measure of performance influences 

reproductive output or some other measure of fitness (e.g., 

how walking speed influences survival). This partition 

formalized the basic goal of ecological morphology: to 

understand morphological traits in the context of ecological 

selection pressures and evolutionary change. If we designate 

traits z , as above, performance measures as p , and fitness 

as F , then we relate the two gradients as depicted in Fig. 

(4). Both gradients are estimable using partial regression 

(which controls for covariances between traits). Thus, the 

framework outlined by Arnold drew from the same statistical 

machinery as that of multivariate selection theory. 

 Arnold's paper is very important for formalizing and 

drawing connections between two fields that, at the time, 

were somewhat distinct: functional morphology and 

theoretical evolutionary biology. This is not to say that 

practioners of one field were ignorant of the basic tenets of 

the other field. Only that functional morphologists often 

made little mention of selection coefficients and variation in 

fitness, while those studying the theory of selection 

dynamics usually did not consider the nuances of form-

function relationships. Arnold was able to specify a research 

program that connected how traits perform in a given 

ecological task with how such performance influences 

fitness. Arnold's conceptualization grounded the raw 

material of evolutionary change--variation in traits-in a field 

that has some of its roots in typology and structuralism [64]. 

In addition, Arnold was able to provide an explicit 

methodology that allowed connections between proximate 

(e.g,. ecological function) and ultimate (e.g., the adaptive 

process) domains in biology. While some of these ideas 

appear obvious in hindsight, Arnold provided an explicit 

methodology for merging empirical and theoretical research 

in the context of morphological evolution. Walker discusses 

an extension of Arnold's approach [65]. 

6.7. Social Behavior 

 While Arnold's paper sought to connect morphological 

variation to fitness, a recent formalization has the promise to 

connect behavioral variation to variation in fitness [66-68]. 

As in other models of the phenotype, the approach of Moore 

et al., [66] breaks down a phenotypic trait ( zi ) into two 

components: an additive genetic affect ( ai ) and a general 

environmental effect ( eg,i ). Thus we can write zi = ai + eg,i . 

In this case we will view zi  as a behavior rather than an 

anatomical trait. In social behaviors, often one behavior 

provides the “environment” that influences another behavior. 

For example, a dominance threat displayed by one individual 

is a behavior that often elicits a behavioral response (e.g., 

submissive gestures) in a different individual. In this context, 

one individual's behavior is an environmental influence on 

another individual's behavior. To this end, we can write out 

how another behavior ( z j ) influences our behavioral trait zi  

as  

zi = ai + eg,i + ij z j          (31) 
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 In this case, the new terms are the other individual's 

behavior ( z j ) and the effect ( ij ) that this behavior has on 

our focal trait zi . This is illustrated in Fig. (5). 

 With this basic framework, let us consider the case of 

dominance and submissive behaviors. In many such cases, 

agonistic threats influence the subordinate's level of 

submissive response and, in turn, the subordinate's response 

mediates the intensity of the aggressor's threats. In this case 

there is a reciprocal effect of one trait's expression on 

another trait. Putting this situation into mathematical 

notation, let's denote dominance threats as z2  and 

submissive displays as z1 . Both of these traits are capable of 

being displayed by all individuals but they are treated as 

separate characters. We will write out expressions for how 

dominance displays are componsed of direct genetic and 

environmental effects and an indirect effect. They are (the 

prime indicates the trait of another individual),  

z1 = a1 + eg,1 + 12 2

'

z          (32) 

z2 = a2 + eg,2 + 21 1

'

z          (33) 

 From equation 32, we see that submissive displays are 

influenced by additive genetic effects ( a1 ), general 

environmental effects ( eg,1 ), and the strength of the 

influence, denoted as 12 , that dominance displays ( z2 ) 

have on submissive displays. Equation 33 gives the 

components of dominance behaviors in light of the 

expression of submissive behaviors. Moore et al., [66] 

derived a multivariate expression for how average trait 

values change under selection due to indirect genetic effects, 

such as the social environment provided by another 

individual. This expression is  

z =C p (I ) 1          (34) 

 In this equation, the mean change in an array of 

behaviors is determined by direct selection on each trait (the 

 term) as well as by a matrix which specifies the strength 

of the effect of outside behaviors--the indirect genetic 

effects; this is denoted by (I ) 1 . The term I denotes an 

identity matrix, which is a matrix of ones along the diagonal 

and zeros on the off-diagonal and  is a matrix of 

coefficients that specify the strength of the indirect effect. 

We have replaced the familiar G matrix with C p --a matrix 

of the correlations between breeding value and 

corresponding phenotype. In most situations, we can write 

the correlation between breeding value and phenotype ( ,P ) 

in terms of VA  (that is, VA = ,P ). However, when a trait is 

influenced by indirect effects, then we can no longer use VA  

as a stand-in for ,P . This is because our trait in question, 

z , is now a function of its own direct additive genetic and 

environmental effects, plus the additive genetic and 

environmental effects of its conspecific (see Fig. 4). The 

indirect genetic effects enhance or diminish the correlation 

between the breeding value and phenotype of the focal 

individual. In this case, one needs to substitute the actual 

values for ,P  into C p  in lieu of using VA  as we do in the 

G matrix. 

 It is helpful to write out the the average change in a 

single trait. From equation 34, we can write  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. (4). Arnold's conceptualization of the relationship between morphology, performance, and fitness. The top part of the figure shows the 

basic pathway between a trait and fitness. The bottom shows the relationship between many traits, two measures of performance, and fitness. 

The performance gradients ( pizi ) and fitness gradients ( ) can be measured using partial regression. The double-headed arrows represent 

phenotypic covariance. 
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z1 = [Gff 1 +Gfc 2 ]+ 12[Gfc 1 +Gcc 2 ]       (35) 

 From equation 35, we see that the average change in trait 

z1  is specified by direct selection on the trait and its 

covariance with another trait (the bracketed terms on the 

left), plus the indirect genetic effects (the bracketed terms on 

the right). The new terms are Gff , the additive genetic 

variance in the focal animal's trait; Gcc , the additive genetic 

variance in the conspecific's trait; and, Gfc , the genetic 

covariance between direct additive effects and indirect 

additive effects. If the term Gfc  is positive, alleles that cause 

an increase in the focal animal's trait also increase the 

conspecific's trait. The key to understanding this equation is 

to note that a social behavior is both an environmental effect 

and a genetic effect. That is, the behavior creates an 

environment that influences a particular trait, and the 

behavior itself usually has some genetic basis (i.e., it is 

partly heritable). This model of indirect genetic effects is a 

generalization of a kin selection model. It is possible to 

replace  with “ r ”, the coefficient of relatedness; when we 

do this, we have a model of kin selection that incorporates 

not only the influence of a relative's behavior on the focal 

animal's trait, but also the influence of the focal animal's own 

additive genetic effects on its own trait. Moreover, this 

model does not ignore heritability of traits--a key parameter 

that is not included in most conceptualizations of Hamilton's 

rule (see [69]). Thus, equation 34 provides a very general 

framework for understanding the influence of the allele's 

carried by conspecifics on the expression of a trait in a focal 

animal. 

 Finally a topic of recent interest that we do not cover here 

is phenotypic integration (often known as morphological 

integration). Perhaps more so than any other topic covered 

here, phenotypic integration has a long-standing tradition in 

primate biology and some of the first studies of phenotypic 

integration were conducted on owl monkey teeth [70]. 

Phenotypic integration draws from the field of quantitative 

genetics since it concerns several (presumably polygenic) 

traits and how these traits evolve to become interdependent. 

In particular, phenotypic integration manifests as strong 

phenotypic covariation due to traits which are functionally or 

developmentally interdependent. As such, phenotypic 

integration involves an investigation of the G and P 

matrices. Cheverud [56], among others, showed that there is 

a strong correlation between G and P. Due to this, many 

studies of phenotypic integration only examine patterns of 

phenotypic covariation (e.g., [71-73]). Ackermann and 

Cheverud [74] provide an excellent review of phenotypic 

integration studies in primates, and methodological and 

theoretical approaches are covered in [75-77]. The general 

framework of phenotypic integration has recently been 

extended to behavioral traits in an approach commonly 

known as “behavioral syndromes.” This approach seeks 

correlations in particular behaviors among individuals in a 

population; the framework for studying suites of behaviors is 

accommodated using a phenotypic (or genetic) correlation 

matrix (reviewed in [78]). 

7. QUANTITATIVE GENETIC STUDIES OF 

PRIMATES: SOME EXAMPLES 

 Some early and influential studies of quantitative 

genetics were first conducted on primate species, notably in 

the work of Cheverud (e.g., [79, 80]). Since then, the 

estimation of quantitative genetic parameters on wild and 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (5). The logic behind social selection models. If there is only a single individual, a trait zi  is composed of additive genetic component 

( ai ) and an environmental component ( ei ). When there are social effects, the trait zi  is similarly influenced by an additive and 

environmental effect, but in addition, a conspecific's trait ( z j ) (or behavior) also influences the expression of the focal individuals trait ( zi ). 

The term ij  measures the magnitude of the effect that z j  has on zi . When zi  also has an effect on z j  (dotted line) we would note the 

effect of zi  on z j  as ji . 
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free-ranging primates has been sparse, but growing. In this 

section we review studies that have estimated one or more of 

the various parameters, or associated parameters, in equation 

(16) in wild or free-ranging primate populations. These 

include selection differentials, selection gradients, 

heritability, and genetic correlations. Our review is not 

exhaustive; instead, we focus on recent studies that illustrate 

the diverse approaches to understanding adaptive evolution 

in non-human primates. There is a large literature on 

heritability/quantitative genetics for captive primates as well 

as humans; we don't review these topics. 

7.1. Measuring Selection in Primate Populations 

 Although methods for measuring selection have been 

around for a long time, there have been few applications to 

wild primate populations. We summarize some of the most 

recent studies and the main results of these studies are 

provided in Table 3. De Gusta et al., [81] figured out a way 

to measure viability selection in a population of wild Howler 

monkeys (Alouatta palliata) from Barro Colorado island. 

They were able to determine a proxy of a selection 

differential by measuring the bucco-lingual width of the first 

upper molar (UM1). The measurements came from a 

collection of crania “found dead” of natural causes on the 

Island. The crania were sexed and aged based on standard 

techniques. Each cranium was assigned to one of five dental 

stages based on the eruption sequence of other teeth in the 

crania. Their choice of UM1 width was based on the fact that 

this trait has been shown to be partly heritable and that the 

molar crown is fully formed soon after birth and therefore 

does not exhibit growth related changes. Since all animals 

they looked at were dead, and eruption patterns provide an 

estimate of relative age, then these data provided estimates 

of age at death--a measure of fitness. Their phenotypic 

measurement doesn't change with age but shows natural 

variation, some of which may correlate with survival. De 

Gusta and colleagues looked at the width of UM1 against 

different age classes and showed that animals with smaller 

UM1 widths were more often found dead than animals with 

larger UM1 widths. They interpreted this as viability 

selection against animals with smaller UM1s. Specifically, 

they found that the highest mortality, and hence strongest 

selection, was against animals in the 6-12 month stage, a 

period that corresponds to weaning. As they note, they were 

only able to measure this particular trait's correlation with 

fitness and were not able to parse selection into direct and 

indirect components, nor account for variation in maternal 

health. Nevertheless, De Gusta et al.'s study is interesting 

because it demonstrates that selection can be estimated in 

non-obvious ways--a collection of dead animals. This 

approach is one of the first to measure phenotypic selection 

in a wild population of primates. 

 Another recent study of viability selection used 

demographic data to estimate selection on foot length in a 

wild population of Verreaux's sifaka (Propithecus verreuaxi 

verreauxi). One of the goals of this study was to examine if 

foot length, which scales with negative allometry to body 

size during growth, was associated with survival [82]. In this 

regard, Lawler [82] sought to test if foot size was adaptive. 

Since foot size is a trait that changes with age it is necessary 

to remove growth related variation. This was accomplished 

by regressing foot size against age. The residuals from this 

regression provide a measure of age-corrected size variation. 

Other age-corrected traits included humerus length, radius 

length, hand length, femur length, and tibia length. Multiple 

regression was used in order to estimate the magnitude of 

direct selection (i.e., the selection gradient, ) acting on 

each trait. A discrete measure of fitness was used as the 

dependent variable: alive past age of eight or dead before age 

of eight. All traits were standardized to have a mean of 0 and 

a standard deviation of 1 and fitness was scaled to produce 

relative fitness. The resulting directional selection 

coefficients indicated that strong selection was acting on foot 

length (  = 0.119). Standardizing the traits allows us to 

interpret the selection coefficient as follows: relative fitness 

will increase by 11.9% for every increase in one standard 

deviation in foot length. From these findings, Lawler 

proposed that increased foot length (relative to body size) 

plays a role in allowing younger animals to safely leap 

between substrates; younger animals with relatively shorter 

feet have lower survivorship. 

 A similar study on this same population estimated the 

strength and type of intrasexual selection in male Verreaux's 

sifaka [51]. In this study, the goal was to determine which 

traits were important determinants of male fertility. As such, 

the measure of fitness was the relative rate of offspring sired 

by males over a given sample period (that is, the number of 

offspring produced produced by each male divided by the 

number of years he spent in the sample period). The traits in 

the analysis were body mass, canine length, arm shape, torso 

shape, and leg shape (the latter three traits were principal 

components of numerous linear measurements). Lawler  

et al., [51] estimated different types of selection acting on 

these five traits with respect to male fertility. They found 

that significant directional selection acts on leg shape and 

stabilizing selection ( ii ) acts on body mass. In addition, 

there was negative correlational selection ( ij ) for leg shape 

and body mass. These patterns of selection were interpreted 

with respect to male mating competition. Male mating 

contests take place in the trees and males with larger values 

of leg shape (which means longer legs and larger thigh 

circumference) and “stream-lined” body mass were likely 

better equipped to engage in such contests. Thus, important 

determinants of male fertility in this population 

corresponded to traits that enhanced locomotor contests 

during the mating season. 

 So far, we have been considering the effects on selection 

on anatomical traits. However, as discussed above, selection 

can also target life history traits--traits like age at sexual 

maturity, survivorship in age-class k , etc. Alberts and 

Altmann [83] constructed an age-based matrix population 

model using long-term data from female savana baboons 

(Papio papio). The life cycle of the baboon was similar to 

that of Fig. (2), but contained 27 stages, of which the first 26 

were ages 1 through 26, and the 27th  stage contained a “self-

loop” corresponding to a stage of animals aged 26 years and 
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above. The resulting projection matrix was a 27  27 

matrix. It is possible to calculate the directional selection 

acting on age-specific survival and growth by calculating the 

“sensitivity” of fitness to transitions (i.e., surviving the year 

and growing onto the next age) between particular age 

classes. Technically, Alberts and Altmann [83] calculated 

elasticites, which are scaled sensitivities, but we present 

sensitivity values here. Using the right hand side of equation 

27, sensitivity values for all age class transitions were 

calculated. The overall pattern that emerges from these 

calculations is that strong directional selection acts on the 

youngest age classes. For example, the directional selection 

coefficient (
a21

) acting on the transition from age 1 to age 

2 (this would correspond to the G1  transition in Fig. 3) is 

0.127. Coefficients for other transitions between younger age 

classes are similarly valued around 0.11. The strength of 

directional selection drops off quite steeply for transitions 

between older age classes, a pattern seen in most other long-

lived vertebrates [24]. 

7.2. Measuring Heritability and Genetic Correlations in 

Primate Populations 

 In this section, we examine studies that estimated 

heritability and genetic correlations in wild or free-ranging 

primates. Because heritability is proportional to additive 

genetic variance, it is a key parameter governing the 

evolutionary response to selection (see equations 1 and 15). 

Accordingly, several researchers have sought to estimate the 

heritability and genetic correlations of morphological and 

life history traits in wild primate populations. These 

estimates provide insight into the standing levels of additive 

genetic variation and covariation for particular traits, thus 

helping to determine how a population will adapt to selection 

pressures. Table 4 provides some examples of studies that 

have estimated heritability and genetic correlations in wild 

and free-ranging primates. 

 One of the first large-scale studies of morphological 

heritability on a wild primate population was conducted by 

Cheverud and Dittus [84]. This population of Toque 

macaques (Macaca sinica) has been studied for over 30 

years at Pollonuaruwa in Sri Lanka. Cheverud and Dittus 

sought to estimate the heritability of 27 morphometric 

measurements, which included traits such as crown-rump 

length, arm length, leg length, tail length, and head length. 

The long-term behavioral observations made it possible to 

determine 172 maternal-offspring pairs from 39 different 

maternal lineages. Because the data come from animals of 

different ages as well as from sons and daughters, the 

authors first removed any age and sex-effects via two steps; 

first, they fit a flexible spline regression to each trait by age 

(and sex) in order to identify natural “breaks” in the trait 

distribution with respect to age. The spline regression 

suggested three age classes, and thus the subsequent step was 

to perform linear regression of each trait against that 

particular age class (and sex). This resulted in sets of 

residual values that were then used to estimate heritabilities 

of the traits. To estimate heritabilities they linearly regressed 

the offspring's trait value on the corresponding mother's trait 

value using linear regression, and they also used “pedigree 

methods;” this latter method takes advantage of the fact that 

trait values covary among all relatives, not just mother-

offspring pairs [85]. Using linear regression, the heritability 

is 2x the regression slope value, since mothers only 

contribute 1/2 of the additive genetic variance to offspring 

trait values. They found that 23 of the 27 heritability 

estimates were significantly different from zero using the 

regression method and all heritability estimates were 

significant using pedigree methods. The average heritability 

among all traits was 0.51 using mother-offspring regression 

and 0.56 using the full pedigree. These results suggest that a 

significant amount of anatomical traits, particularly lengths 

of long bones, spine, and head, and the circumferences of 

limb elements contain a significant amount of variation that 

is inherited. As such, this population has the capacity to 

respond to selection on numerous skeletal elements or 

overall body form itself [84]. 

 Another study that looked at heritability in a wild primate 

population was that of Lawler [82]. This study is outlined 

above with respect to estimating selection pressures that act 

on limb elements on Verreaux's sifaka. In addition to 

estimating selection gradients, Lawler also estimated the 

heritability of limb elements and hand/foot length. He used 

146 father-offspring pairs. The use of father-offspring pairs 

can reduce the influence of maternal effects (see section 3), 

whereby some of the phenotypic variation in traits is due to 

Table 3. Summary of Studies on Wild/Free-Ranging Primate Populations that Estimated Selection 

Trait(s) involved  Parameter  Reference  Major finding 

Upper molar width   S    [81]   Animals with wider molars have higher survivorship 

Foot length   [82] For animals 1 to 8yrs, longer feet is associated with higher survival 

Leg shape     [51]  Male fertility iss associated with longer, stronger legs 

Body mass  
ii   [51] Male fertility is associated with intermediate body mass 

Body mass and leg shape  ij    [51]   Correlational selection acts on body mass/leg shape 

 Survival in age class k  
 
aij

  
[83]  Directional selection is strongest at younger age classes 
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differences among groups of siblings born to different 

mothers. Lawler found that heritability values were lowest in 

the hands and feet (0.116 for the foot and 0.21 for the hand) 

and the values increased in magnitude moving up the limb 

from hand/foot to lower arm/leg to upper arm/thigh. Lawler 

interpreted this pattern as partially reflecting the action of 

past and current selection pressures acting on hands and feet 

(recall from above that positive directional selection acts 

most strongly on foot length) based on the idea that selection 

should erode the amount of additive genetic variance and 

hence lower heritability as it acts to change the mean value 

of a trait across generations. However, the heritability values 

for these traits have very large standard errors so this study 

would benefit from a more robust analysis of heritability. 

 The above two studies focused on skeletal traits but a 

more recent study looks at the heritability of life history 

traits in free-ranging macaques. In a recent study of the 

quantitative genetics of Cayo Santiago macaques (Macaca 

mullata), Blomquist [86] examined the heritability of three 

traits that are strongly associated with fitness: lifetime 

reproductive success (LRS), lifespan, and individual rate of 

increase ( i ). LRS is the total number of offspring born to 

females regardless of the offspring sex or whether the 

offspring died early into its life; lifespan is measured in years 

and calculated from long-term demographic observations. i  

is an individual measure of the growth rate--not “growth” in 

a skeletal sense, but growth in a demographic sense-- i  

measures the rate and timing of offspring production for 

individuals as calculated by an individual projection matrix 

(in section 6.3 we discuss the population projection matrix, 

which contains the average probabilities of survival, growth 

and reproduction for a population from which the population 

growth rate, , can be calculated; it is possible to construct 

analogous projection matrices for individuals and then use 

these matrices to calculate the individual growth rate, i ). 

The difference between LRS and i  is that the latter takes 

into account not only total number of offspring produced but 

when in the life cycle these offspring were born (see 

discussion on Fitness in section 4). Blomquist estimated 

these “fitness traits” using two sets of females--those that 

lived “whole” lives from birth to a natural death who may or 

may not have reproduced (the uncensored group), and a 

nested set of the uncensored group of females which 

comprised females who lived “whole” lives from birth to 

natural death but reproduced at least once in their lives (the 

censored group). Blomquist estimated the life history traits 

by writing the phenotypic variation (VP ) as the sum of other 

components of variation that included birth cohort (VC ), 

maternal effects (VM ), social group (VG ), additive genetic 

(VA ), and residual variation (VR ) (see section 2). When 

values for each variance component were estimated, it was 

possible to calculate heritability by taking the ratio of 

additive genetic variance to total phenotypic variance 

( h2 =VA /VP ). Heritability of LRS, lifespan, and i  was 

0.38, 0.36, and 0.43 respectively using the uncensored group. 

When the censored group was used the heritability estimates 

were roughly half the value of the uncensored estimates. The 

difference between these sets of estimates can be attributed 

to the fact that a large portion of genetic variation is due both 

survival and recruitment; that is, when females who have 

reproduced are the only ones included in the analysis, this 

censored data set purposely omits a lot of females (and hence 

a lot of variation) who didn't survive to reproductive age. 

Hence, the total amount of phenotypic variation and additive 

genetic variation is reduced by not including females who 

died prior to reproduction. The environment at Cayo 

Santiago is relatively homogenous and free from predators 

and factors causing nutritional stress. In this case, if there is 

lots of additive genetic variation for survival in early years, a 

homogenous environment will create conditions in which 

this additive genetic variance for survival gets exposed and 

animals with “bad” genotypes die off (since there few 

environmental factors that cause young animals to die due to 

predation and/or nutrition--that is, there is reduced 

environmental variation). This results in moderately high 

heritabilities for uncensored fitness traits because of lot of 

the variation observed in the population is due to genetic 

differences with respect to survival and reproduction, not 

environmental differences. 

 The above studies focused on estimating heritability for 

various morphometric and life history traits. Additional 

studies of free-ranging and captive primates have estimated 

genetic ( G ) and phenotypic ( P ) correlations among traits. 

We will discuss two such studies. Hlusko et al., [87] used 

quantitative genetic techniques to estimate heritability and 

genetic correlations among dental measurements and trunk 

length in a captive population of Hamadryas baboons (Papio 

hamadryas), which is comprised of different subspecies that 

interbreed (P. h. anubis and P. h. cynocephalus). This 

population resides at the Southwest Foundation for 

Biomedical Research. It has been studied for over 20 years 

and mating designs are implemented in this population in 

order to ensure non-inbred animals. Hlusko et al., used a 

model of phenotypic variation in which phenotypic variance 

was written as the sum of additive genetic variation and 

environmental variation (VP =VA +VE ) but tested for the 

effect of different covariates (e.g., sex, age, percent of 

subspecies admixture, etc.) that may also influence 

phenotypic variation. They tested whether genetic 

correlations exist between trunk length and several 

measurements of the upper and lower second molar. It was 

possible to do this by considering a two-trait version of their 

phenotypic decomposition into additive and environmental 

components. In this case, the output consists of a phenotypic 

variance/covariance matrix (P) which can be broken down 

into additive and environmental components. They found 

significant genetic correlations between upper molar area 

and trunk length ( G = 0.44 ) as well as lower molar area and 

trunk length ( G = 0.56 ). Phenotypic correlations between 

these traits were much lower. Their results suggest that about 

19-42% of the additive effects are shared between trunk 

length and the area of the upper and lower molar. Additional 

genetic correlations were found to exist between linear 

measurements of crown area and trunk length with the 



Multivariate Selection Theory in Primatology The Open Anthropology Journal, 2010, Volume 3    227 

majority of the significant correlations existing between 

buccolingual width rather than mesiodistal length. As Hlusko 

et al., (page 424) note, the mechanisms that link up these two 

traits are likely due to, “latent rather than specific genetic 

factors.” The low phenotypic correlation, in spite of the 

modest genetic correlation, is likely due to the various 

differences in the way these two traits grow and/or are 

influenced by nongenetic factors. Hlusko et al., note the 

relevance of this finding in that molar length is often 

observed to increase in mammalian lineages whereas molar 

width does not. Their results suggest that a genetic 

correlation between body size and molar width constrains 

molar dimension to only increase in length not width. 

Further, they note that in phyletically dwarfed lineages tooth 

width decreases much more rapidly than tooth length--this is 

possibly due to selection for smaller body size and a 

correlated response in tooth width. 

 Genetic correlations have also been estimated for life 

history traits. Using the same large-scale dataset for Cayo 

Santiago Macaques, Blomquist [88] estimated the genetic 

correlation between age at first reproduction (AFR) and adult 

survival in females. Both AFR and lifespan are heritable in 

this population [86, 89]. Motivating this study is the 

widespread theoretical and empirical pattern of trade-offs 

among life history traits. Common trade-offs in life history 

theory include current versus future reproduction and a trade 

off between survival and reproduction. As Blomquist 

discusses, it is particularly important to estimate the genetic 

correlations among life history traits because phenotypic 

correlations among such traits often do not provide any 

indication of their underlying genetic covariation; this is 

usually due to the confounding effect of environmental 

correlations and environmental variation that influences life 

history traits. Because primates are long-lived creatures, a lot 

of total adult fitness depends on surviving from year to year. 

In the macaque population at Cayo Santiago, there is a very 

strong and positive correlation between lifespan and lifetime 

reproductive output. Due to this positive correlation 

Blomquist sought to determine if there was a genetic 

correlation between AFR and survival. In this case, a 

positive genetic correlation would be evidence for a tradeoff 

since a later age at first reproduction would ostensibly 

enhance survival, whereas reproducing earlier would 

diminish survival--the trade-off. He defined four ages that 

could be used as survival milestones: 11, 16, 21, 26. Thus 

Blomquist was looking for a positive genetic correlation 

between AFR and survival rates to these four ages. 

Blomquist estimated the genetic correlation between AFR 

and adult survival using a multivariate model in which 

phenotypic variation is decomposed into additive genetic and 

residual variance (VP =VA +VR ). He obtained the additive 

genetic and residual covariances between traits and 

converted these covariances into correlations. The 

phenotypic correlations between AFR and the four survival 

milestones were relatively small (
P

 = 0.109, 
P

 = 0.132, 

P
 = 0.101, 

P
 = 0.083, respectively) and only one 

correlation was significant at the 0.05 level. However, strong 

and positive additive genetic correlations existed between 

AFR and the four survival milestones: 
G

 = 0.590, 
G

 = 

0.595, 
G

 = 0.476, 
G

 = 0.706. The additive genetic 

correlation between AFR and age 11 was not significant at 

the 0.05 level, but the other three correlations were 

significant. These results suggest a genetically mediated 

trade-off between reproductive maturation and survival. 

Females who reproduce earlier are less likely to survive to 

later ages. In fact, Blomquist was able to numerically 

calculate the magnitude of the trade-off: the cost of 

reproducing 1 year earlier in life results in a loss of 

approximately 11 months of adult life. This is the first 

empirical study of nonhuman primates that documents a key 

principle of life history theory, namely that genetic mediated 

trade-offs exist between different components of fitness. 

CONCLUSIONS 

 Because the basic properties of adaptive evolution are 

few: heritable variation  selection pressure = change in 

phenotype, it is possible to modify equation (16) to capture 

almost any specific evolutionary scenario that involves 

phenotypic change. Our section showing the extensions of 

equation (16) to specific evolutionary scenarios captures 

only a portion of the diverse approaches to studying 

phenotypic evolution in a quantitative genetic framework. In 

contrast, our section reviewing quantitative genetic studies 

wild/free-ranging primate populations are few; the lack of 

application is likely due to estimation problems: gathering 

sufficient data from which to estimate heritability and/or 

selection pressures can be daunting or unfeasible. In this 

largely theoretical overview, we have omitted a section on 

how to actually estimate the quantitative genetic parameters 

that we discuss. The topic of estimation is a very 

mathematically dense literature. However, several good 
reviews are found in [27, 85, 90]. 

Table 4. Summary of Studies on Wild/Free-Ranging Primate Populations that Estimated Heritability and Genetic Correlations 

 Trait(s) involved  Parameter  Reference  Value of parameter/comments 

Various traits   h2   [84] average h2  was 0.53, lower values for distal elements 

 Foot length  h2  [82] heritability was 0.16 and higher for other limb elements 

LRS, i , lifespan   h2   [86] h2 = 0.38,0.36,0.43  respectively (uncensored group) 

Molar area and trunk length 
G  [87] Positive genetic correlation among these two traits 

 Age at first reproduction and survival  G    [88] Positive genetic correlation among these life history traits 
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 It's important to remember three rules of thumb when 

applying any of these multivariate procedures to actual data: 

1) Be a good biologist. By this, we mean don't be wooed by 

the multivariate analysis; you still need to interpret your 

data. It is especially imperative to determine the causal 

structure that creates a non-zero relationship between fitness 

and phenotype. The statistical relationship is vacuous 

without biological input from many careful hours of 

observation and thought; 2) Remember what you left out. 

Your analysis is only as good as the traits you've included in 

the model. It is always possible that some unmeasured trait 

influences the traits that you have actually measured--you 

need to be mindful of this possibility; and, 3) Do not 

extrapolate wildly. Equation (16) provides information on 

evolutionary trajectories over the short-term and these 

trajectories are specific to the population you're studying. 

Selection pressures and additive genetic variances (and 

covariances) change due to a variety of circumstances. To 

suggest that trait heritabilities or trait-trait correlations from 

your population likely apply to other populations invites 
well-deserved scrutiny. 

 The above might seem like a lot of information to the 

non-initiate. However, like most topics in biology, it is only 

possible to scratch the surface of the field in a short review 

such as this. We have left out many important topics such as 

phenotypic plasticity, epistasis, and how other evolutionary 

forces (e.g., non-random mating, drift, etc.) impinge on the 

theory above. This review should serve only as an 

introduction to the field, not as a one-stop source. The reader 

is highly encouraged to consult [4, 15, 27, 38, 57, 58] for 
further information. 
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