Charge Carriers Compensation in a Ferromagnetic Mn-Implanted Si

A.F. Orlov*,1, L.A. Balagurov1, I.V. Kulemanov1, Yu.N. Parkhomenko1, A.V. Kartavykh2, V.V. Saraikin3, Yu.A. Agafonov4 and V.I. Zinenko4

1State Institute for Rare Metals, Moscow, 119017, Russia
2Institute for Chemical Problems of Microelectronics, Moscow, 119017, Russia
3State Research Institute of Physical Problems, Zelenograd, Moscow, 103460, Russia
4Institute of Microelectronics Technology and High Purity Materials, Chernogolovka, Moscow Region, 142432, Russia

Abstract: Secondary ions mass-spectrometry and spreading resistance profiles in the layers of a ferromagnetic Si implanted with Mn have been studied. Czochralski Si wafers both n- and p-type, of high- and low-resistivity, as well as a float zone Si were implanted with impurity fluencies of (1 - 5) x 1016 cm-2. The Mn impurity was found to compensate acceptors in a high-resistivity p-Si and donors in a low-resistivity n-Si. Only the small part of Mn ions in Si apparently incorporates into the Si crystal lattice, occupies the interstitial sites and the appropriate energy levels (Mn i)-/0 and (Mn i)+/++ equal to Ec – 0.12 eV for n-type Si and Ev + 0.32 eV for p-type Si, respectively, are activated after vacuum annealing.

PACS: 61.72.uf; 71.55.Cu; 72.20.Jv

Keywords: Ferromagnetic Si, implantation of Mn, spreading resistance, energy levels.

INTRODUCTION

Diluted ferromagnetic semiconductors keeping a ferromagnetic ordering at above room temperature are considered as the most promising material for creation semiconductor spin electronics devices. Especially, it concerns the ferromagnetic Si due to its technical compatibility in the present mature microelectronics technique. Room temperature ferromagnetism in Si doped with Mn have been firstly reported in [1, 2]. Authors [1] have made the crystalline Mn0.05Si0.95 films at Si (001) substrate by vacuum deposition followed by post-crystallization processing. The films were ferromagnetic ones with the Curie temperature over 400 K and the magnetization up to 1.3 emu/g. Above room temperature ferromagnetism of implanted with Mn commercial single-crystal Si wafers has been observed in [2, 3]. The structure, magnetic and magneto-optic properties of a ferromagnetic Si have been investigated in [3-9].

For application of such materials in devices of spin electronics it is very important to know the depth profiles of structural and physical properties in the ferromagnetic layer. The resistivity and carrier concentration profiles of starting commercially available p-type Si wafers with an initial resistivity of 600 Ω cm, implanted with Mn and annealed, were measured in [10] by spreading resistance profiling (SRP). The resistivity of wafers was found to be enhanced by several times for Mn-doped material. The magnetic properties of this material have not been investigated. In this paper, we report the results of study the resistivity profiles in the above room temperature ferromagnetic Si n- and p-types both of high- and low-resistivity, implanted with impurities of Mn (Co). The magnetic and magneto-optic properties of these materials have been published earlier [8].

MATERIALS AND METHODOLOGY

Commercially available Si wafers grown by the Czochralski method both n-type with the standard resistivity of 0.01 (doped with Sb) and 4.5 Ω cm (doped with P) and p-type with the resistivity of 0.005 and 10 Ω cm (both doped with B) as well as very high resistivity float zone n-type Si substrates were used as the starting materials. The materials were implanted with the impurities of Mn (or Co) at the ion energy of 195 keV and the fluencies in the range of (1, 2, and 5) x 1016 cm-2 at the temperature of 350 °C. After implantation, part of the samples were annealed in vacuum at 850 °C, 5 min. Measurements of the impurities concentration profiles were performed by using the Secondary ion mass spectrometer (SIMS) IMS-4F and SRP – measurements were carried out with ASR-100C.

RESULTS AND DISCUSSION

Fig. (1) depicts the Mn depth profiles in Si matrix for the samples after implantation with different fluencies and annealed and (insert) for the sample as-implanted at the fluency of 5 x 1016 cm2 and for the same sample after following anneal. Before annealing, the profiles show a typical gaussian-like distribution with a projected range of 180 nm. An augmentation of the implantation fluency leads to increase of the Mn concentration value in maximum and to expansion of the profile. After annealing, as well as in [4], the Mn redistributes giving rise to "shoulders" on the right side of the main peak. This phenomenon has been described earlier as the segregation of implanted species as recrystallization fronts move through the material [11].
Charge Carriers Compensation in a Ferromagnetic Mn-Implanted Si

The Open Applied Physics Journal, 2009, Volume 2

Spreading resistance profiles were measured both in as-implanted and annealed samples. The curve in Fig. (2) presents the resistivity changing across the implanted layer of very high-resistivity (4.2 kΩ cm) n-type float zone Si at the Mn fluency of 2 \times 10^{16} \text{ cm}^{-2} and annealed at 850 °C, 5 min. Up to the depth of 0.6 μm one can see the decrease of n-type Si resistivity down to 20 Ω cm. Since the material is a float zone Si, the effect cannot be caused by oxygen thermodonors and the reason of it may be donors of Mn impurity. Fig. (3) shows the resistivity profiles in the high-resistivity p- and n-type Si after implantation with Mn at the fluency of 2 \times 10^{16} \text{ cm}^{-2} and the following anneal. The hole compensation in p-type Si is observed up to the depth of 0.3 μm. The comparison with the appropriate curve at Fig. (1) shows that the compensation completely ceases approximately at the Mn concentration of 1 \times 10^{17} \text{ cm}^{-3}. Since the B concentration in the sample is equal to 1.5 \times 10^{15} \text{ cm}^{-3}, rather small part of Mn ions takes part into the hole compensation. Changing of the manganese for cobalt at implantation of such Si leads to the greater hole compensation (Fig. 4). However, only the small compensation was found in the as-implanted Si (Fig. 4), which indicates on activation of Mn impurity by the used short vacuum anneal. In the low-resistivity Si, as it is seen in Fig. (5), in the contrary to high-resistivity Si, the electron compensation was discovered after implantation with Mn and anneal. The compensation ceases at Mn concentration of 3 \times 10^{20} \text{ cm}^{-3} and the Sb concentration equal to 5 \times 10^{18} \text{ cm}^{-3}. Therefore, as well as in the case of p-type Si, only the small part of Mn ions displays an electroactivity. The comparison of Figs. (3, 5) shows that Mn reveals the properties of an amphoteric impurity and compensates acceptors in a high-resistivity p-Si and donors in a low-resistivity n-Si.

The observed resistivity values in Mn-compensated parts of Si layers closely correspond to the values of energy levels equal to E_c – 0.12 eV for n-type Si and E_v + 0.32 eV for p-type Si. The amphoteric character of Mn-impurity in Si is well known. Ions of Mn in Si create donor levels (Mn)_{\text{trig}} and (Mn)_{\text{trig}}^{++} for interstitial sites in the crystal lattice and (Mn)_{\text{sub}} and (Mn)_{\text{sub}}^{++} for substitutional sites. The energies of these levels are equal to 0.43 eV below the bottom of conductivity band for (Mn)_{\text{trig}} and two rest situated in the lower half of the forbidden band at 0.27-0.32 eV and 0.34 eV, correspondingly, above the floor of valence band [3, 12, 13]. The sole acceptor level (Mn)_{\text{trig}}^{-0} for Mn in Si was found to be situated at 0.11 - 0.13 eV below the bottom of conductivity band [13, 14]. Thus, one can suppose that Mn ions in the materials under consideration occupy the interstitial sites and the energy levels (Mn)_{\text{trig}}^{-0} and (Mn)_{\text{sub}}^{++} are activated in the low- and high-resistivity Si, respectively.
CONCLUSIONS

Spreading resistance profiles in the ferromagnetic layers of Mn-implanted Si wafers both n- and p-type of a various resistivity have been investigated. Mn-impurity in Si was found to reveal the amphoteric behaviour. The small part of implanted Mn ions after annealing apparently occupy the interstitial sites in Si crystal lattice and create the energy levels \((\text{Mn}_n)^{0}\) in the n-type Si and \((\text{Mn}_n)^{\pm}\) in p-type.

AKNOWLEDGEMENTS

The authors would like to thank Mrs. I. Yur’eva for preparation of the samples for measurements. The work was supported by the Russian Foundation for Basic Research, project #07-02-00327.

REFERENCES