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Abstract:

Background:

Evidence  has  accumulated  in  recent  years  regarding  the  scope  of  local  and  global  climate  changes  attributed  to  exacerbating
anthropogenic factors such as accelerating population growth, urbanization, industrialization, traffic and energy use. Remote space
monitoring, unlike ground-based measurements, has the advantage of providing global coverage on a daily basis.

Methods:

MODIS (Moderate  Resolution Imaging Spectroradiometer)  Aqua and Terra  1°×1° spatial  resolution as  well  as  the 1 km higher
resolution of Aqua-MODIS were investigated for a global overview of megacities temperature variations, as well as the recent trends
of the 10 largest Monsoon Asian megacities.

Results:

The average Land Surface Temperature (LST) cross-sections of the 10 Asian megacities were examined for June-August 2002-2014.
Temperature variations fit a spatial bell-shaped curve, with a pronounced maximum over the city center. Nighttime data indicated
sharp LST decreases with distance from the city center, particularly in the coldest cities, those of Tokyo, Seoul, Osaka and Beijing.

Conclusion:

Daytime latitudinal (E-W) and longitudinal (N-S) Surface Urban Heat Islands (SUHI) have steeper gradients than for nighttime data.
During daytime, the SUHI gradients are largest in Tokyo, Seoul, Osaka and Beijing with values reaching 15oC followed by the cities
of Shanghai and Guangzhou with ~11oC, and Karachi with ~5oC SUHI. Nighttime SUHIs were more moderate, 4-6oC in Tokyo,
Seoul ~5oC, Osaka 5-7oC and Beijing ~7oC. Only in the three largest megacities,  i.e.,  Tokyo, Guangzhou and Shanghai,  did the
nighttime LST trends decline.

Keywords:  Surface  Urban  Heat  Island  (SUHI),  Megacities,  Space  monitoring,  Terra-  and  Aqua-MODIS,  Climate  change,
Temperature,  Population.

1. INTRODUCTION

50% of the world's population now lives in cities, with this percentage projected to increase [1]. Urban areas with
populations exceeding 10 million inhabitants are known as megacities; and such large concentrated populations have
been identified as a major environmental issue,  especially in  developing countries [2]. Although  cities occupy a small
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fraction of land, amounting to  only 2.8 per cent  of  the  Earth’s land  area [3], they  are  considered  to  have  indirectly
triggered  global  climate  change  due  to  their  insatiable  appetite  for  energy  and  materials  [4].  Alpert  et  al.  [5],  for
instance,  found that  in  megacities,  which tend to have high levels  of  aerosol  emissions,  the Aerosol  Optical  Depth
(AOD) indicates significantly increasing levels of anthropogenic pollution. Furthermore, rapidly expanding cities, as
major  consumers  of  energy  and  materials,  have  deteriorating  air  quality,  as  population,  traffic,  energy  use,  and
industrialization grow [2, 6, 7]. Fossil fuels are consumed due to large vehicular populations. Given their very high
population densities and high-rise buildings, cities also absorb a greater amount of solar radiation. Seven of the 10 most
populous countries in the world − China, India, Indonesia, Russia, Pakistan, Bangladesh and Japan − are located in Asia
[8].

The Asian region is  marked by continuing high-level  emissions of greenhouse gases from human activities [9].
IPCC Global Climate Models (GCMs) predict that the increase in annual mean warming could reach about 3°C by the
2050s and about 5°C by the 2080s over selected regions in Asia [4]. A recent study using a Regional Climate Model
(RCM) found that by the end of this century Southwest Asia will be uninhabitable [10, 11].

In light of the burgeoning population, social environment scientists and policy makers have recently begun to take
special notice of urban climate change [12, 13]. Various studies have also argued that significant collaboration between
city planners and climate change scientists is required if  these areas are to continue to maintain their livability and
reduce their effect on global climate change [14 - 19].

Until recently, research on urban warming and its links to regional as well as global warming has been limited to
observational  measurements  taken  in  mature  cities,  the  only  sites  providing  good  sources  of  the  data  required  for
interpreting trends in urban climate change [20]. These in situ data have the advantage of long-term records but the
disadvantage of poor spatial resolution [21 - 24]. More recently, observation from satellites, one of the most novel and
effective monitoring tools developed for recording temperature change phenomena [25] over broad geographic areas
has come into use due to its methodological efficacy in recording local information [4].

Land surface temperature (LST) plays a significant feature of global temperature [20]. The field of remote sensing
lends  itself  well  to  urban  climatology  studies  due  to  its  greatly  improved  spectral  and  spatial  resolution,  which
facilitates tracking the development of the respective phenomena [26]. The advantage it provides in measuring LST as a
feature of global temperature has been noted in several studies that have focused on individual urban areas in China [27
- 30], India [31], and Dubai [32].

Recent studies have linked change in LST with atmospheric circulation; see for example, Zhuo [33] in China and
Zhou  and  Wang  [34]  over  global  deserts.  Lensky  and  Dayan  [35]  attempted  to  quantify  the  impact  of  several
atmospheric circulations on LST patterns over the Eastern Mediterranean for 2000–2012 MODIS data. They found that
the differences between the LST data retrieved from satellites and 2-m air temperature data as reported by land-based
meteorological stations generally increase with stronger sun insolation but decline with the turbulence caused by strong
winds. These parameters also vary according to synoptic-scale circulation, which is affected by horizontal pressure
gradients and cloud cover. Lensky and Dayan [35] have shown that synoptic circulation induces LST patterns, with
variations  in  LST  related,  among  others,  to  vegetation  cover,  clouds,  water  vapor,  surface  heterogeneity,  and
topography [36]. In another study, Lensky and Dayan [37] found that the high spatial variability of surface temperatures
induces similar variability in 2-m air temperatures, hampering representation of these temperatures in numerical models
[38]. As LST differs from 2-m air temperature in terms of physical magnitude, the derivation of 2-m air temperatures
from LSTs is not straightforward [39].

In consequence, methods applying statistical approaches and spatial smoothing are employed when predicting air
temperatures from LSTs even though the outcomes are applicable only to the domain for which they were developed
[40, 41] and are sensitive to station density [42]. Although Blandford [43] adopted a physical approach using surface
data at different altitudes to retrieve the thermal profile of the ~1500 m boundary layer, this method is unable to detect
near-surface (2-m) temperatures.

In  the  last  2-3  decades,  the  number  of  comparative  studies  using  satellite  data  has  grown,  with  the  technology
allowing  coverage  of  large  geographic  areas,  thereby  creating  new opportunities  for  climate  change  research  [20].
Imhoff [44], for example, examined the LST data obtained from MODIS for an average of three years (2003-2005) in
the 38 most populous cities in the United States. The results demonstrated that Urban Heat Island (UHI) amplitude
increases with city size and is seasonally asymmetric at a large number of sites. Peng [45] selected 428 of the world's
largest  cities  when  exploring  the  global  drivers  of  the  Surface  Urban  Heat  Island  (SUHI).  Jin  and  Dickinson  [39],
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analyzed the MODIS skin temperature observations during 9 years (2000-2009) for diurnal, seasonal, and inter-annual
variations at a 0.05◦ latitude/longitude grid over the global land surface. In 2010, Clinton and Gong [14] performed a
composite Aqua and Terra -MODIS analysis (with 5- and 10-km buffers)  of the factors influencing urban vs.  rural
SUHI temperatures, followed by its global analysis and ranking of the urban areas surveyed. Both studies mapped urban
areas while here the focus is given to the individual megacities in Asia. Also, extending time series longer-term LST
trends (2002-2012) as they appeared in all the world's megacities are investigated here, in an effort to explain the inter-
megacity  variations.  Tran  et  al.  [20]  also  employed a  1-km MODIS resolution  for  2001-2003 in  their  study of  the
SUHI's spatial patterns for eight Asian megacities as well as its relationship to land-cover properties such as vegetation,
population and city area. While here, the 1-km MODIS resolution was employed when investigating longer-term LST
trends (2003-2014) over the world's 29 largest megacities (>10 million inhabitants). It should be noticed that there are
many more studies of the UHI of individual cities that are not cited here.

The overall objective of this study is to provide local comparative cross-sectional data of the SUHI for the top 10
megacities in the Monsoon Asian Region, the world's most rapidly growing geographic area. A further goal, for global
comparison, was to provide an overview of trends in global temperature changes for 29 megacities based on MODIS
LST data retrievals. In addition, comparisons between LST trends with different MODIS resolutions, i.e., 1 deg and 1
km, available in the Monsoon Asian Region, were also conducted.

2. MATERIAL AND METHODS

2.1. Data Sets

2.1.1. Population Data

For the purpose of this study, we defined global megacities as such with populations exceeding 10 million, based on
Brinkhoff's recommendations [46]. Agglomerations include a central city and neighboring communities, linked to the
central city by either continuous built-up areas or a predetermined number of commuters. Some agglomerations may
have two or more central cities (e.g., The Ruhr) although the majority have only one. Countries, cities, population and
latitude-longitude coordinates appear in (Table 1 and Fig. 1).

Fig. (1). Global distribution of population (2010), over the world's 233 largest cities (population exceeding 2 million). The largest
cities in the Monsoon Asian Integrated Region are in bold. Population magnitude is designated by circles of different diameters and
colors, as elaborated in the bottom panel.

2.1.2. MODIS Data

MODIS,  the  Moderate  Resolution  Imaging  Spectroradiometer,  is  a  satellite  programmed to  collect  data  for  the
spatial and temporal characteristics of the global LST during daytime and nighttime [47]. The monitor has 36 channels,
spanning the spectral range of 0.41 to 15 µm. MODIS, with its 2330-km viewing swath, provides almost daily global
coverage.  We  employed  Collection  5  (MOD08_M3.050)  of  Terra  -MODIS  and  Collection  5.1  of  Aqua  -MODIS
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(MYD08_M3.051) level-3 monthly data with a global 1°×1° grid for the summer months - June to August – for the ten-
year period 2002-2012.

An  Aqua  and  Terra  -  MODIS  database  was  constructed  to  enable  estimation  of  LST  trends.  Global  and  local
overviews in specific megacities were obtained using the two aforementioned sensors, positioned aboard two NASA
satellites:  Terra  (launched  in  December  1999)  and  Aqua  (launched  in  May  2002).  With  cameras  focused  directly
(straight down) at the earth's surface, MODIS technology records a broad range of global temperature and other data.
The LST trends themselves were calculated for the summer months, when data from the two sensors were available [48
- 51].

2.1.3. Cloudiness Effect

The MODIS expanse becomes limited with increasing cloud cover [52, 53] due to the aerosol effect. This means
that the satellite's data retrieval under overcast conditions is less accurate than when cloud cover is nonexistent or thin
due to aerosols.  According to Remer et  al.  [52,  53],  percent  cloud cover exceeding 0.8,  may lead to overestimated
satellite retrieval of AOD because cloud droplets can become mixed with coarse mode particles. In order to minimize
retrieval uncertainty, the data used was collected only during months characterized by percent cloud cover below 0.7.
The  effect  of  cloudiness  on  land  surface  temperature  may  be  significantly  smaller  (personal  communication  with
MODIS people) still the present analysis screened high-cloudiness months. It is assumed that this screening did not
have a significant influence on our SUHI results.

2.1.4. The MODIS 8-Day 1-km LST

Products in the Giovanni cover the Monsoon Asian Integrated Regional Study (MAIRS) region [50]. The 8-day
product's observation time is a simple average of daily observation time. Terra's daily local equator-crossing times are
10:30 AM and 10:30 PM, whereas Aqua's daily passes occur at local 1:30 AM and 1:30 PM. Orbit width is 2,330 km;
hence, local time at its edge indicates a difference of approximately 1.5 hours. For the SUHI investigation we focused
only on Aqua -MODIS data to ensure that the satellite sensors could differentiate between LST trends over megacities
and the surrounding rural areas at 1:30 PM, the hottest hour of the day. The subsequent data file, which covers the entire
Asian  Monsoon Region,  was  comprised  of  averaged daytime and nighttime LSTs under  cloudless  conditions,  with
quality flags, during the summer months June to August, 2003-2014.

It should be clarified that the Terra and Aqua -MODIS readings obtained to extract trends and mean LST data have
two different resolutions; first, 1°×1° (summer 2002-2012), for the world's 233 largest cities and second employing the
finer 1 km horizontal grid (summer 2002-2014), for the 10 megacities in the Asian Monsoon Region. In addition, it was
assumed here that the detectable temperature differences and/or absolute temperature accuracies of the MODIS sensor
had a small effect on the calculated trends. This, because changes in the MODIS sensor accuracy during the 11-12 years
period were assumed to be small enough.

3. METHODOLOGY

3.1. Temperature Analysis

Our approach to estimating the effect of urbanization on temperature change across the world's top ten megacities
was based on an analysis of long-term variations in LST trends for the chosen sites in the selected time period. The LST
parameters estimated in three stages. First, we investigated the latitudinal and longitudinal spread of each city center
and confirmed our results with Google Earth. In order to compare mean LST distributions between city centers, mean
LST values, labeled “running mean”, acted as a filter for the calculated vectors as follows in Equation (1):

(1) Y (i) = sum(X (j)) / (2*M+1), for j = (i-M): (i+M), and i=1: length(X)

Where Y = RUNMEAN (X, M) calculates a running mean on the elements of vector X, which in this study is the
LST Average, using a window of 2*M+1 data points. M is defined as the length of each city's vector for each city's
latitudinal and longitude distribution.

In the second stage, we created a global map at 1°×1°, day and night, covering the world's 233 largest cities (i.e.,
population exceeding 2 million), including the world's 29 megacities, based on the Terra and Aqua -MODIS readings
obtained during the study period (summer 2002-2012). To ensure that the satellite sensors would differentiate between
LST trends in megacities and the surrounding rural areas, we used Aqua -MODIS (1 km resolution) data exclusively.
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The 1 km resolution is better for understanding the impact of urbanization on local climate. The Aqua data are available
for 10 megacities in the Asian Monsoon Region (counted among the world's 20 largest cities) during June-August,
2003-2014. It should note that cloudiness impedes data collection in tropical climates during the rainy season. Hence,
no data is available for India among other sites. In addition, megacities for which more than six years of data were
missing were deleted from the sample in order to minimize retrieval uncertainty.

3.2. Study Area

The Asian Monsoon Region extends from 0o to 60oN, 60o to 150oE; it includes eastern China, the Japanese islands,
the Korean peninsula, Mongolia, Taiwan (Republic of China), Pakistan and India. Geographically, the region is located
in the eastern segment of the Eurasian continent — the world's largest continent — and borders the Pacific, the world's
largest ocean [4]; (Fig. 1 and Table 2).

Table 1. The world's 29 largest megacities, listed by population (2010) in decreasing order, including latitude, longitude,
available  LST  data  and  population  size.  Note:  The  10  largest  megacities  in  the  Integrated  Asian  Monsoon  Region  are
indicated in bold; and NA = not available.

Country City Continent Lat
(deg)

Lon
(deg)

LST Data
MODIS 8-d,

1 km
Pop (mil)

1 Japan Tokyo Asia 35.43 139.4 2003-2014 34.6
2 China Guangzhou Asia 23.11 113.25 2003-2014 26.3
3 Indonesia Jakarta Asia -6.17 106.82 NA 25.8
4 China Shanghai Asia 31.23 121.47 2003-2014 25.8
5 Republic of Korea Seoul Asia 37.56 126.99 2003-2014 25.6
6 Mexico Mexico City North America 19.50 -99.11 NA 23.5
7 India Delhi Asia 28.66 77.21 2003-2008 nighttime 23.5
8 Pakistan Karachi Asia 24.86 67.05 2003-2011 22.1
9 Philippines Quezon City Asia 14.63 121.03 NA 21.8
10 United States of America New York North America 40.70 -73.91 NA 21.5
11 Brazil São Paulo South America -23.53 -46.61 NA 21.3
12 India Mumbai Asia 18.96 72.82 NA 21.1
13 United States of America Los Angeles North America 34.08 -118.37 NA 17.1
14 Japan Osaka Asia 34.66 135.50 2003-2014 16.8
15 China Beijing Asia 39.90 116.38 2003-2014 16.7
16 Russia Moscow Europe 55.75 37.61 NA 16.2
17 Egypt Cairo Africa 30.05 31.25 NA 15.9
18 Bangladesh Dhaka Asia 23.72 90.40 2003-2013 nighttime 15.9
19 India Kolkata Asia 22.56 88.36 2003-2014 nighttime 15.8
20 Argentina Buenos Aires South America -5.26 -79.96 NA 14.4
21 Thailand Bangkok Asia 13.750 100.517 NA 14.2
22 Turkey Istanbul Asia 41.019 28.965 NA 13.7
23 Iran Tehran Asia 35.672 51.424 NA 13.7
24 United Kingdom London Europe 51.500 -0.117 NA 13.2
25 Nigeria Lagos Africa 6.453 3.396 NA 13.0
26 Brazil Rio de Janeiro South America -22.900 -43.233 NA 12.8
27 France Paris Europe 48.867 2.333 NA 10.6
28 China Shenzhen Asia 22.544 114.110 NA 10.0
29 China Tianjin Asia 39.128 117.185 NA 10.0

4. RESULTS

4.1. The Surface Urban Heat Island 1 km Resolution Cross-Sections

First, the cross-sections of LST for 10 selected megacities according to the latitude (E-W) as shown in Figs. (2, 4)
and longitude (N-S) Figs. (3, 5) of their SUHI averaged for 2003-2014 period, were investigated. The exact location of
the city center was taken from Brinkhoff [46] and confirmed by Google Earth.
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Fig. (2). Latitudinal distribution of 12-year (2003-2014) mean LST for (a) daytime and (b) nighttime, based on 1 km Aqua -MODIS.
The 10 Asian megacities are listed on the panel to the right. Data are limited in time-span for Karachi (up to 2011), Dhaka (up to
2013), Delhi (up to 2008) and Kolkata (nighttime only).

Fig. (3). As in Fig. (2) but for the longitudinal distributions.
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Fig (4). The change in Urban-Rural of the longitudinal distribution of 12-year mean (a) daytime and (b) nighttime LST based on
Aqua -MODIS data sets for 1 km for each megacity.

Figs. (2, 3) compare the Lat and Lon distributions of the SUHI Aqua -MODIS LSTs in the proximity of the city
centers.  They  show  that  the  LSTs  are  on  the  average  decreasing  with  distance  with  an  approximated  bell-shaped
distribution for both day and night, with a pronounced SUHI maximum over the city center. However, it should be
noted  that  our  figures  are  averages  over  a  period  of  12-y  during  which  the  city  fringes  have  probably  undergone
significant  LST changes.  Hence the LST decreases  with distance from city  center  represent  a  12-y average picture
which misses sub-period variations.

It  is  also  interesting  to  note  that  during  daytime,  pronounced  maximum  LST  are  found  especially  over  the
megacities of Tokyo, Seoul and Beijing with a larger decrease for latitudinal (E-W) variation as shown in Fig. (2a) as
compared with the longitudinal (N-S) change in (Fig. 3a).

During nighttime as shown in Figs. (2b, 3b), the LST slopes were found larger in the coldest cities, i.e., Tokyo,

a)(  Latitudinal distribution of 12-year mean during daytime

 (b) Latitudinal distribution of 12-year mean during nighttime 
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Seoul, Osaka and Beijing (the cities with lower temperatures). In addition, a relatively flat LST distribution along both
latitude and longitude was found in Guangzhou, Shanghai, Delhi and Dhaka; it should be noted, however, that SUHI
can still reach ~2-4oC (as particularly noticed in the individual cities' cross-sections in Figs. (4, 5). In Shanghai, the flat
distribution  at  night  is  contrasted  during  the  daytime  by  a  pronounced  bell-shaped  distribution  in  both  latitude/
longitude of ~8-11oC.

Fig (5). The change in Urban-Rural of the longitudinal distribution of 12-year mean (a) daytime and (b) nighttime LST based on
Aqua -MODIS data sets for 1 km for each megacity.

a)(  Longitudinal distribution of 12-year mean during daytime 

(b) Longitudinal distribution of 12-year mean during nighttime 
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4.1.1. Individual LST Cross-Sections

The “Urban minus Rural temperature” differences, ΔTu-r LST Aqua -MODIS data is calculated between the city
center and the nearby urban area for each megacity, in terms of latitudinal as in Fig. (4) and longitudinal in Fig. (5) for
(a) day and (b) night. In Fig. (4), a pronounced distribution was found in Tokyo, Seoul, Osaka and Beijing (arranged in
the decreasing order) with a maximum of 15oC, following with Shanghai (12oC); Guangzhou (8.8oC) and Karachi with
5.1oC SUHI. Fig. (4b) represents the latitude nighttime, the maximum SUHI was found with smaller values (compared
to the daytime), in Beijing (7.6oC); Tokyo (6.4oC), Osaka and Seoul (~5.5oC); Guangzhou and Dhaka (~3.5oC). In the
other megacities, ΔTu-r reaches maximum values of 2.5oC SUHI only.

According to Fig. (5a), for the longitude daytime data, the maximum SUHI found in two cities Osaka and Beijing in
the order of 15oC. Following are Seoul, Shanghai and Guangzhou with ~11oC; and Karachi with 6.5oC SUHI. Fig. (5b)
represents the longitude nighttime data; the maximum temperature differences were also found to be more moderate
compared to the daytime as in Fig. (4). For example, the maximum SUHI was found in Tokyo (6.4oC E-W; 4.1oC N-S),
Seoul (5.2oC E-W; 5.9oC N-S), Osaka (5.7oC E-W; 6.7oC N-S) and in Beijing (7.6oC E-W; 7.9oC N-S).

In all the four graphs Figs. (2, 5), it can be identified the location where the SUHI begins, ends and sometimes starts
again. For example, Figs. (2, 3) shows the SUHI appears very clearly in Tokyo, Beijing and Osaka during the daytime,
while at nighttime the SUHI appears clearly in the tropical megacities of Kolkata and Seoul.

The next  section presents  maps  of  the  day and night  LST trends  with  time for  all  global  megacities  during the
periods 2002-2012 and 2003-2014 for Terra and Aqua, respectively.

4.2. Maps of Global Megacities LST Trends with Time

In order to obtain a global map of day and night LST trends based on Terra and Aqua -MODIS temperatures that are
covering  the  largest  cities  similar  to  the  methodology  employed  by  Alpert  [5]  for  aerosol  trends,  were  employed.
However, here the trends were calculated by the LST time-slopes. The maps in Figs. (6, 7) represent the world's 233
largest cities having populations exceeding 2 million [46]. Circles of various diameters and colors indicate the extent
and sign of the LST tendencies (see bottom panel). The circles radii represent the value of the LST trends, while the
color indicates the sign of the trend, blue/red indicates decrease/increase.

Fig. (6). Global distribution of daytime LST trends for the world's 233 largest cities (populations exceeding 2 million) during the 11-
year  period  2002-2012,  based  on  LST  data  sets  retrieved  from  (a)  Terra  -MODIS  (176  cities)  and  (b)  Aqua  -MODIS  (169
megacities) at 1°×1° horizontal intervals. Months with cloudiness exceeding 0.7 and cities with less than 6 years of data availability
were not included.

Our figures clearly indicate areas where LST slopes are positive or negative during the study period, 2002-2012.
The data also reveal the effect of urbanization on LST, with changes associated with a low/high level of anthropogenic
development. The global data provided by the two sensors (Aqua/Terra) suggest as follows. The Terra -MODIS shown
in Fig. (6a)and Aqua in Fig. (6b) show similar rising LST trends during daytime, were found over the majority of the
selected  sites  in  the  areas  of  the  Mid-East,  the  Asian  Monsoon region  and in  the  S.  & E.  of  the  USA.  In  contrast,
declining LST trends were dominant in Europe, Saudi Arabia, parts of NW America, and the E. part of S. America.

(a)         (b)  
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Based on Terra -MODIS data from the 29 megacities (population over 10 million) in the sample, in Fig. (6a) shows
a significant LST increase in Asian megacities, i.e., Cairo, Jakarta, Istanbul, Seoul, Tehran, Osaka and especially in
Moscow. Increasing LST is also found in Mexico City and New York. In contrast, London and Paris, Los Angeles, São
Paulo, Rio de Janeiro and Buenos Aires, and some Asian areas (Tokyo, Beijing, Tianjin and Karachi), exhibit declining
LSTs. Out of the 29 megacities Terra and Aqua -MODIS (1°×1°) show similar increasing trends in Cairo, Istanbul,
Osaka and Moscow. Similar declining LSTs were found for both Terra/Aqua in London, Paris, Los Angeles, São Paulo,
Rio de Janeiro, Buenos Aires and Tokyo (Fig. 6 and Table 2).

Fig.(7).  As in Fig.  (6)  but  for  nighttime based on LST data  sets  of  (a)  Terra  -MODIS (179 cities)  and (b)  Aqua -MODIS (172
megacities) at 1°×1°.

Fig.  (8).  Aqua  -MODIS  LST  trends  during  daytime  (a-left  panel)  and  nighttime  (b-right  panel),  for  the  June-August  during
2003-2014, based on 1 km Aqua -MODIS. Note that blue/red color indicates negative/positive trends. Cities with incomplete data are
Karachi (2002-2011), Dhaka (2002-2013), Delhi (2002-2008) and Kolkata (no daytime records).

The 10 megacities LST trends in Fig. (8) and Table (3) (based on Aqua -MODIS) are more pronounced due to the 1
km resolution as compared with the previous maps at 1°×1° in Figs. (6, 7). The Aqua -MODIS results for the Monsoon
Asian  Region  clearly  show  dominant  increasing  LSTs  during  daytime.  Furthermore,  declining  nighttime  LST  was
indicated in the three largest megacities, i.e., Tokyo, Guangzhou and Shanghai. The Daily Temperature Range (DTR)
was found to increase except for Osaka. In addition, increases in the LST throughout the day and night were found in
Seoul,  Karachi,  Osaka  and  Beijing.  Our  statistical  estimates  for  the  slopes  during  daytime hours  were  found  to  be
significant at the 95% confidence level (p<0.05) only for Karachi (p<0.03). Note that the Karachi data are for 11 years
only, ending in 2011; (Table 3).

(a)                                                           (b) 

(a)                                                            (b) 

 

 

 

 



MODIS Summer SUHI Cross-Sections Anomalies Over the Megacities The Open Atmospheric Science Journal, 2017, Volume 11   131

Table 2. The world's top 29 megacities, listed by number of inhabitants in decreasing order (see Table 1). The 2002-2012 LST
trends (oC/11y) are for the two MODIS sensors, Terra and Aqua, at 1°×1°; NA = not available. Statistically significant slopes
at a 95% (i.e., P < 0.05). In parentheses, the (R2; P -value) are also indicated.

The top 29 Largest Megacities
Terra -MODIS Trend Aqua -MODIS Trend

Day Night Day Night

1 Japan Tokyo -0.049
(0.2944; 0.2660)

-0.048
(0.1535; 0.5142)

-0.06
(0.1897; 0.4636) NA

2 China Guangzhou NA 0.093
(0.1708; 0.4892) NA NA

3 Indonesia Jakarta 0.067
(0.2126; 0.1798)

0.095
(0.4065; 0.0473)

-0.03
(0.0402; 0.5788)

0.052
(0.1971; 0.1987)

4 China Shanghai NA -0.045
(0.0665; 0.4719) NA -0.129

(0.3545; 0.1584)

5 Republic of
Korea Seoul 0.054

(0.0749; 0.4154)
0.016

(0.0067; 0.8111)
-0.01

(0.0012; 0.9249) NA

6 Mexico Mexico City 0.064
(0.0128; 0.7403)

0.07
(0.1157; 0.3704)

0.23
(0.1411; 0.2847)

0.056
(0.2686; 0.1249)

7 India Delhi NA 0.023
(0.0280; 0.6226) NA 0.067

(0.1514; 0.2369)

8 Pakistan Karachi -0.001
(0.0000; 0.9921)

0.028
(0.0086; 0.7867)

0.10
(0.0429; 0.5411)

0.119
(0.1425; 0.2524)

9 Philippines Quezon City NA NA NA NA

10 United States
of America New York 0.016

(0.0041; 0.8515)
0.012

(0.0044; 0.8461)
-0.03

(0.0067; 0.8104)
0.005

(0.0006; 0.9414)

11 Brazil São Paulo -0.094
(0.1943; 0.1748)

-0.058
(0.0983; 0.3478)

-0.20
(0.2331; 0.1326)

-0.114
(0.1351; 0.2661)

12 India Mumbai NA NA NA NA

13 United States
of America Los Angeles -0.03

(0.0134; 0.7344)
-0.049

(0.0800; 0.3994)
-0.03

(0.0196; 0.6810)
-0.062

(0.1315; 0.2731)

14 Japan Osaka 0.005
(0.0007; 0.9445)

0.088
(0.2444; 0.2130)

0.05
(0.0726; 0.4833)

-0.086
(0.2148; 0.4318)

15 China Beijing -0.048
(0.0164; 0.7075)

0.042
(0.0782; 0.4050)

0.04
(0.0139; 0.7299)

0.024
(0.0364; 0.5741)

16 Russia Moscow 0.183
(0.0803; 0.3985)

0.188
(0.2729;0.0992)

0.30
(0.2123; 0.1538)

0.272
(0.4365; 0.0269)

17 Egypt Cairo 0.099
(0.3589; 0.0515)

0.10
(0.4261; 0.0295)

0.19
(0.4963; 0.0155)

0.078
(0.2730; 0.0992)

18 Bangladesh Dhaka NA NA NA NA
19 India Kolkata NA NA NA NA

20 Argentina Buenos Aires -0.03
(0.0126; 0.7425)

-0.071
(0.0617; 0.4613)

-0.16
(0.1605; 0.2221)

-0.194
(0.2542; 0.1138)

21 Thailand Bangkok NA NA NA NA

22 Turkey Istanbul 0.062
(0.0431; 0.5403)

0.146
(0.3246; 0.0673)

0.12
(0.1123; 0.3137)

0.135
(0.2502; 0.1171)

23 Iran Tehran 0.027
(0.0052; 0.8331)

0.093
(0.1002; 0.3429)

-0.05
(0.0157; 0.7133)

0.051
(0.0336; 0.5896)

24 United
Kingdom London -0.269

(0.3019; 0.0800)
-0.142

(0.4567; 0.0224)
-0.30

(0.4102; 0.0460)
-0.191

(0.6933; 0.0015)
25 Nigeria Lagos NA NA NA NA

26 Brazil Rio de Janeiro -0.089
(0.1744; 0.2013)

-0.039
(0.0492; 0.5120)

-0.20
(0.2543; 0.1137)

-0.076
(0.1068; 0.3267)

27 France Paris -0.256
(0.3255; 0.0668)

-0.166
(0.3162; 0.0718)

-0.32
(0.5257; 0.0177)

-0.188
(0.5331; 0.0107)

28 China Shenzhen NA 0.092
(0.1633; 0.3686)

-0.09
(0.1106; 0.4209)

-0.001
(0.0002; 0.9812)

29 China Tianjin -0.044
(0.0588; 0.4725)

0.058
(0.3035; 0.0790)

0.11
(0.1523; 0.2353)

0.033
(0.0862; 0.4102)

Note: The top 10 megacities in the Monsoon Asian Integrated Region are indicated in bold.
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Table 3. The 10 megacities in the Asian Monsoon Region; LST slope (°C/12y) during June-August 2003-2014, based on 1 km
Aqua -MODIS. Statistically significant slopes at a 95% (i.e. P < 0.05) are in bold. NA = not available.

City
R2 P- Value Trend

Day Night Day Night Day Night ∆ (DTR)
Tokyo 0.0534 7.09E-05 0.4695 0.9792 0.113 -0.002 0.117

Guangzhou 0.1808 0.0308 0.2205 0.5852 0.305 -0.024 0.329
Shanghai 0.0107 0.0413 0.7487 0.5261 0.051 -0.046 0.097

Seoul 0.0718 0.0335 0.3995 0.5689 0.095 0.053 0.042
Delhi (until 2008)** NA 0.4830 NA 0.1253 NA 0.211 NA

Karachi (until 2011)** 0.4142 0.3238 0.0326 0.0676 0.243 0.218 0.025
Osaka 0.0018 0.0233 0.8948 0.6352 0.018 0.039 -0.021
Beijing 0.2600 0.3029 0.0903 0.0637 0.110 0.108 0.002

Dhaka (until 2013)** NA 0.0735 NA 0.3938 NA 0.147 NA
Kolkata** NA 0.0266 NA 0.6123 NA 0.058 NA

Note: **Data for Karachi, Dhaka, Delhi and Kolkata are limited as indicated earlier.

5. DISCUSSION

According to the report issued by the UN’s Department of Economic and Social Affairs [1], the world's human
population  is  expected  to  exceed  10  billion  in  the  near  future.  Countries  with  high  population  densities  will
consequently witness rising pressure on the environment. The pressure in the Asian region is likely to increase even
more when compared to other countries due to the rising demand for grains and economic development [9].

Since  the  beginning  of  the  21st  century,  most  studies  have  examined  climate  change  with  in-situ  data,  usually
collected in one or two cities [20, 51]. Here, in contrast, the use of latitudinal and longitudinal cross-sectional Aqua -
MODIS LST data enabled mapping of 10 Asian megacities during June-August. Based on these data, we found that the
sites  exhibiting  maximum  SUHI  intensity  roughly  coincided  with  the  heavily  built-up  areas  located  in  major  city
centers. Hence, cities with extremely urbanized areas, characterized by low albedo and dense construction, exhibited
significantly higher daytime surface temperatures when compared to the surrounding rural area comprised of relatively
moister vegetated areas [20]. With respect to the LST magnitudes shown in Figs. (4, 5), steeper temperature gradients
were observed during daytime hours, i.e., Tokyo, Seoul, Osaka and Beijing with 15oC gradients, followed by Shanghai
with 12oC and Guangzhou with 8.8o C. This finding fit those in the Tran et al. [20] study, which produced a similar
ordering of cities by temperature gradient, i.e., Tokyo, followed by Beijing, Seoul and Shanghai. Temperatures were
also found to decrease outward from the city center, distributed according to an approximate bell-shaped curve during
the day, a finding that can be explained by the UHI phenomenon. During the night, megacities such as Guangzhou and
Shanghai showed far gentler SUHI, which can be explained by the effect of peripheral cities or industrial centers, a
condition that influences LST. Another factor could be the sun insolation that plays an important contribution to the
increase  of  daily  SUHI.  Tran  et  al.  [21]  also  suggested  that  SUHI  diurnal  variations  are  due  to  differences  in
urban–rural characteristics such as moisture availability and surface cooling rates, further affected by topography, rural
surroundings and the geographic location of cities relative to the sea [20, 52].

In contrast to in-situ UHI studies, in which minimum daily temperatures tend to increase at a higher rate than do
daily temperatures (the latter inducing a decreasing long-term diurnal temperature range; see for example [52, 53]), the
satellite-basedF SUHIs temperatures observed tending to be higher during the day, with peak temperatures reached in
areas  of  large buildings or  paved surfaces,  and lowest  during the night,  due to  difference in  surface properties  and
cooling rates [20, 51]. Therefore, in the current study, in order to monitor the seasonal variations in SUHIs (at a 1 km
resolution), we focused only on Aqua -MODIS rather than Terra data, thus ensuring that the satellite sensors could
differentiate between LST trends observed in megacities and those observed in the surrounding rural areas,  both at
13:30  local  time  (LT),  frequently  observed  to  be  the  hottest  hour  of  the  day  (as  opposed  to  the  10:30  LT  Terra
measurement). Here, the DTR increased during 2002-2014 Table (3), which fit the earlier findings reported by Roth
[51]  and  Tran  [20],  among  others.  Throughout  the  research  period,  a  negative  DTR  was  found  only  in  Osaka.
Furthermore, according to the IPCC's Atmosphere-Ocean Global Climate Model (OGCM) simulations the DTR will
increase over central  Asia and be significantly higher there than in other regions during the summer months of the
2050s and 2080s [54 - 56].

We should stress that, as Roth [57] has already noted, the limited range of urban morphologies characterizing the
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cities, as well as the role of building density and materials, prevented detailed exploration of temperature trends. Hence,
further study is required in order to explore the contribution of these and other parameters, such as population density,
energy consumption, and transportation volume, to urban warming.

CONCLUSION

This  article  has  stressed  the  advantages  provided  by  satellite  remote  sensing  monitoring  techniques  when
performing  quantitative  climatic  observations  worldwide,  an  ability  that  has  significantly  enhanced  our  ability  to
identify long-term trends in climate change [41]. These techniques have made reliable high-quality global coverage at
high  spatial  resolution  available,  thereby  creating  opportunities  for  researchers  to  easily  obtain  improved  global
meteorological data and thus providing significant advantage relative to ground-based measurements. We should recall,
however, that unlike ground-based measurements, satellite data are limited regarding the parameters to be measured;
they likewise cannot provide accurate information on climate variables, which are important for the construction of
human comfort indices.

The 1 km LST data from Aqua -MODIS can distinguish urban from surrounding rural areas, information supporting
statistical  analyses  by  making  it  possible  to  create  bell-shaped  data  distributions  (for  latitude  as  well  longitude
magnitudes), which can indicate changes of trends in LST. By doing so, satellites provide us with the opportunity to
compare global-temperature trends in different cities on the basis of data obtained from the same source and with the
same measurement technology, irrespective of city size.

The  same  Aqua  -MODIS  (1  km)  satellite  source  indicates  that  for  Asia's  three  largest  megacities  --  Tokyo,
Guangzhou and Shanghai -- a recent decrease in nighttime LST trends (2002-2014) has been observed. In contrast, the
LST slope for both day and night was found to increase in Seoul, Karachi, Osaka and Beijing. Further research on the
physical, economical, and social environment is required in order to better understand and evaluate climate change-
induced  vulnerabilities  in  the  Asian  Monsoon  Region.  These  data  are  also  relevant  for  assessing  the  feasibility  of
introducing adaptation measures in other regions. We should also anticipate that given the vital roles played by surface
water and groundwater resources in forestry, agriculture, fisheries, livestock production and industrial activity in the
Asian countries, the agricultural sector will continue to be highly sensitive to climate change impacts in that region [4].

As to the Terra -MODIS and Aqua -MODIS (1°×1°) LST trends, Alpert et al. [5] have suggested that in cases where
the different sensors show similar trends, the results can be considered reliable. This conclusion is supported by our
findings for daytime hours, which were observed as increasing in the Mid-East and the Asian Monsoon region and in
the southeastern US during 2002-2012. In contrast, trends in declining LST appeared to be dominant in Europe sites,
Saudi Arabia, parts of Northwest America, and the Eastern segment part of South America. One suggestion is that those
cities are aware of climate change, therefore implement climate change issues into their policies.

In general, we concluded that the MODIS satellite can be better-utilized if we were to adapt our current technologies
and devise new methodologies. While most climatological studies conducted to date have employed in-situ data, the
current  study incorporated  satellite  data  having global  spatial  coverage  despite  being limited  in  the  variables  to  be
observed.  Furthermore,  despite  the  methodological  limitations  of  the  current  study,  we  suggest  that  the  optimal
direction of future research to involve: (a) Obtaining data with higher resolution MODIS 8-day 1 km LST for additional
regions;  (b)  Expanding  the  list  of  variables,  e.g.,  air  humidity  and  wind  speed,  as  tracked  from  land-based
meteorological stations; and (c) Applying further combinations of high resolution satellite data with Global Climate
Model (GCM) data for evaluation.
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