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Abstract: Trends in the upper atmosphere, together with the global warming of the lower atmosphere, are part of the 

global change of the Earth system. In the present work, which is focused in the upper atmosphere, long-term variations of 

the critical frequency of the ionospheric F2 layer, foF2, are studied in terms of the following possible causes: (1) long-

term variations of the solar EUV radiation shown by the solar cycle length (SCL), (2) long-term variations in geomagnetic 

activity measured by the aa index, (3) the increasing greenhouse gases concentration in the lower atmosphere which 

would be producing a temperature decrease in the upper atmosphere, and (4) the Earth’s main magnetic field secular 

variation, which implies changes in the dip angle (I) affecting the thermospheric neutral winds that move the conducting 

plasma of the ionosphere. For this purpose, foF2 time series of four mid-latitude stations were processed. After filtering 

the solar activity effect, the long-term variability of these time series and that of the mentioned possible trend sources, 

were analyzed. The study of trends in the upper atmosphere is an important contribution to one of the present focus of 

climate science that is the determination of the extent to which human activities are altering the planetary energy balance 

through the emission of greenhouse gases and pollutants. 
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INTRODUCTION 

 Long-term changes in ionospheric parameters of time-
scales longer than the 11 year solar activity cycle were 
analyzed by many authors that, after filtering the effects of 
solar activity, found long-term variations, or trends. These 
trends were attributed to solar EUV radiation changes [1, 2], 
geomagnetic activity variations [3-8], the increase of 
greenhouse gases concentration [9-14], and/or secular 
variations of the Earth’s main magnetic field [15-19]. A 
description of these possible trend sources of the ionosphere is 
given in the following sections of the paper. Then, the data 
analysis is carried out using annual data of ionospheric F2 
layer critical frequency, foF2, at 12 LT, together with solar 
and geomagnetic indices. Seasonal and diurnal variations will 
not be examined in the present paper. The last section includes 
the discussion and conclusions, stating the importance of 
atmosphere trend studies for the climate science. 

SOLAR EUV RADIATION LONG-TERM VARIATION 

 The dependence of foF2 on solar EUV solar radiation is 
almost linear. It is well known the direct association of this 
ionospheric parameter to solar EUV proxies such as, the 
sunspot number, Rz, or the 10.7 cm solar flux, F10.7, with 
minor departures such as the saturation effect and the 
hysteresis [20-24]. 
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 Friis-Christensen and Lassen [25] used SCL as a proxy of 
long-term total solar irradiance variations not shown by Rz 
or F10.7. Increasing SCL would correspond to decreasing 
solar irradiance and decreasing SCL, to increasing solar 
irradiance. 

 Adler et al. [1] argued that these variations shown by 
SCL should also appear in the solar radiation range 
responsible for ionization in the ionosphere, that is the EUV, 
so changes in the ionosphere related to SCL should also be 
seen. They found a close association between SCL and 
NmF2 after filtering the solar activity effect through Rz, and 
infer that SCL may provide also a measure of long-term 
EUV solar variability, but in this case increasing SCL would 
correspond to increasing EUV and decreasing SCL, to 
decreasing EUV. After this result SCL is used here as a 
proxy EUV trends not shown by common EUV indices (i.e. 
Rz and F10.7). 

 SCL is a parameter of long-term variation which has a 
periodicity of approximately 88 years that is the periodicity 
also observed in the magnitude of the maximum sunspot 
number named the Gleissberg period. The SCL series (see 
Fig. 1) was obtained from Lassen and Friis-Christensen [26], 
and is available at http://web.dmi.dk/fsweb/solarterrestrial/ 
sunclimate/SCL.txt. The assessment of the SCL time series 
is explained in Thejll and Lassen [27] and is briefly as 
follows: 

 SCL is assessed from the list of Rz. The cycle length is 
measured from minimum to subsequent minimum dates and 
also from maximum to subsequent maximum dates, resulting 
two lists of solar cycle duration. These measures are 
associated to the mid-cycle date. Following the procedure 
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introduced by Gleissberg [28] a 5-point filter is applied with 
the consecutive weights (1/8; 2/8; 2/8; 2/8 and 1/8) to each 
list of cycle lengths. This filter is usually referred to as the 
12221 filter. Finally, the two lists of weighted cycle lengths 
are intercalated. 

 We choose this SCL record since, although different 
smoothing of SCL give different results, SCL determination 
by other methods [29-31], is in general good agreement with 
the record used here. 

GEOMAGNETIC ACTIVITY LONG-TERM VARIATION 

 During geomagnetic storms a large amount of energy is 
deposited into the thermosphere at high latitudes. This leads 
to an increase of the neutral gas temperature and variations 
of the neutral composition with a decrease of the atom-to-
molecule ratio at heights of the F2 region. Both factors 
contribute to a decrease of the electron concentration in the 
high latitude ionosphere [32, 33]. The energy deposition 
produces also an equatorward circulation. When it coincides 
with the quiet-time circulation, the gas with depleted atom-
to-molecule ratio is brought toward low latitudes and so the 
negative phase extends equatorward. At middle latitudes, the 
storm-induced circulation increases the plasma upward 
vertical drift in the F2 layer and so leads to an uplifting of 
the layer [34, 35]. At lower latitudes, sometimes, the 

downwelling of the circulation leads to an increase of the 
atomic oxygen concentration and so to an increase in 
electron density [35]. It should be expected then that 
increasing geomagnetic activity would produce an foF2 
decrease at high latitudes, with a lesser effect towards lower 
latitudes, and even a reversal at low latitudes with an foF2 
increase final effect. 

 As a geomagnetic activity index, aa is used in the present 
work. This is a global geomagnetic activity index which 
measures the disturbance level of the Earth’s magnetic field, 
and it is derived by two approximately antipodal 
observatories, originally Greenwich and Melbourne. At 
present these are Hartland observatory in the UK and 
Canberra observatory in Australia. The index, in nT units, is 
available back to 1868 from http://www.wdcb.ru/stp/data/ 
geomagni.ind/aa/ and also http://isgi.cetp.ipsl.fr/source/indices/. 

 An 11-year running mean was applied to the annual aa 
values in order to filter out short-term variations. As can be 
seen in Fig. (1), and focusing on the period of the 
ionospheric data here analyzed, geomagnetic activity 
increased during 1940-1955, followed by a decrease until the 
end of 1960’s, then an increase until the middle 1980’s, and 
has been decreasing since then. The long-term variation of aa 
is similar to that of Rz, and shifted around 10 years with 
respect to SCL, as can be seen in Fig. (1). 

 

Fig. (1). Solar cycle length (SCL) in years after a 1-2-2-2-1 running mean (red line with solid circle – empty circles correspond to 

preliminary values), aa geomagnetic index after an 11-year running mean (black line) in nT, and Rz 11-year running mean (blue line) scaled 

to fit the aa axis. 
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INCREASING GREENHOUSE GASES CONCEN-

TRATION 

 The amount of greenhouse gases in the atmosphere, such 
as CO2 and CH4, has been increasing during the past few 
decades [36, 37]. Current modeling studies indicate that the 
upper atmosphere may be sensitive to this increase. Brasseur 
and Hitchman [38] used a two-dimensional numerical model 
of the stratosphere and found that the net effect of increasing 
greenhouse gases is a cooling of the entire stratosphere and 
lower mesosphere, between 20 and 60 km. Roble and 
Dickinson [39], with a global mean model of the 
mesosphere, thermosphere and ionosphere between 60 and 
500 km, estimate a mesosphere and thermosphere cooling of 
10 K and 50 K respectively as the CO2 and CH4 mixing 
ratios are doubled. 

 Compositional redistribution and ionospheric structure 
alterations also occur in association with changes in the 
temperature profile. Theoretical studies examining the 
consequences of increasing greenhouse gases for the 
ionosphere, coincide that the F2 layer peak height, hmF2, 
and foF2 should decrease [40, 41]. Particularly, the decrease 
estimated for foF2 [41] is 0.2 - 0.5 MHz for a doubling of 
CO2. Since the greenhouse gases increasing concentration 
consists of a monotonic upward trend, this hypothesis is 
checked experimentally estimating, after a proper filtering, 
the linear trend of the data, 

SECULAR VARIATIONS OF THE EARTH’S MAIN 
MAGNETIC FIELD 

 The possibility of ionospheric trends induced by the 
Earth’s magnetic field secular variations was first suggested 
by Foppiano et al. [15], and followed then by other papers 
[16-19]. In fact, Earth’s magnetic field, generated in the 
Earth’s core, presents long term variations in the field’s 
strength and orientation [42, 43]. 

 A simple mechanism through which trends in the Earth’s 
magnetic field may affect the ionosphere is through changes 
in the dip angle (I) [15]. The sin(I)cos(I) factor, associated 
with the effects of neutral winds on hmF2 [33, 44, 45] will 
also change. The horizontal thermospheric wind U drives 
ions and electrons, up during the night and down during the 
day, along the geomagnetic field lines at speed Ucos(I). The 
vertical component Usin(I)cos(I) raises the F2-peak during 
night time (when U blows from Pole to Equator) and lowers 
it during daytime (when U blows from Equator to Pole), 
increasing or decreasing the peak electron density. An 
increase in the sin(I)cos(I) factor would produce an 
additional lowering of the F-region with a decrease in foF2, 

during daytime, and an additional raise of the region with an 
increase in foF2 during the night. A decrease in the 
sin(I)cos(I) factor would produce the opposite effect. 

 Using simple theoretical considerations, and with the 
help of empirical models, the expected foF2 trends were 
assessed worldwide by Elias and Adler [16] and Elias [17]. 
The region of strongest variations of foF2, lies between 10ºN 
and 30ºS in latitude and between 20ºE and 80ºW in 
longitude, which is also the region of strongest changes in I 
and sin(I)cos(I) factor. At the mid-latitude zone, 
corresponding to the locations of the ionospheric stations 
here analyzed, the expected trends due to changes in I, is not 
statistically significant different from cero. 

DATA ANALYSIS 

 The ionospheric parameter foF2 of four mid-latitude 
stations, listed in Table 1, were analyzed. The data was 
obtained from the World Data Centre for Solar-Terrestrial 
Physics at the Rutherford Appleton Laboratory (http://www. 
wdc.rl.ac.uk). 

 The solar activity effect was filtered out estimating the 
foF2 residuals from the regression between the experimental 
values and solar activity measured through the sunspot 
number, Rz, that is 

foF2res = foF2exp – (a Rz + b) 

 The suffixes exp and res mean experimental and residual 
respectively. a and b are the coefficients of the linear 
regression between foF2exp and Rz. A 5-year running was 
applied then to the annual foF2 residual series in order to 
filter out short-term variations, which still persist. 

 Fig. (2) shows foF2res together with SCL and aa 11-year 
running mean. The linear trend of foF2res, also shown in the 
figure, is (-0.11 ± 0.04) MHz/year for Sodankyla, (-0.06 ± 
0.03) MHz/year for Uppsala, and not statistically significant 
different from cero for Moscow and Ottawa. 

 The expected foF2 trend value due to CO2 increase can 
be estimated by linearly interpolating the value assessed by 
Rishbeth [40] and Rishbeth and Roble [41] for a doubling of 
CO2. For a 20% increase in CO2, which occurs for the 
period here analyzed, the theoretical decrease of foF2 due to 
greenhouse effect results then 0.001 - 0.003 MHz/year. To 
obtain values of this order with statistical significance, 
longer time series than those now available are needed. 
However, two of the four stations, Sodankyla and Uppsala, 
present foF2 significant decreasing trends but much stronger 
than those expected from the greenhouse gases effect. 

 

Table 1. Geographic and Geomagnetic Coordinates of the Studied Ionospheric Stations, and Available Period of foF2 Data 

 

Geographic Geomagnetic 
Station 

Latitude (N) Longitude (E) Latitude (N) Longitude (E) 
Period of Data 

Sodankyla 67.4  26.0 63.6 120.8 1958-89 

Uppsala 59.8  17.6 58.3 106.9 1957-98 

Moscow 55.5  37.3 50.4 123.2 1957-98 

Ottawa 45.4 284.1 56.4 352.7 1957-95 
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

Fig. (2). SCL in years (red line), aa 11-year running mean (green line) rescaled to fit the SCL axis, foF2 residuals (foF2res) in MHz after a 5-

year running mean (black line with filled circle), and foF2res linear trend (dotted line) for (a) Sodankyla (67.4ºN, 26.6ºE), (b) Uppsala 

(59.8ºN, 17.6ºE), (c) Moscow (55.5ºN, 37.3ºE), and (d) Ottawa (45.4ºN, 284.1ºE). 
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 Regarding the EUV long-term variation shown by SCL, 
an in-phase relation is apparent from Fig. (2), as shown by 
Adler et al. [1] for three other ionospheric stations. For 
Sodankyla and Uppsala, the correlation coefficient between 
foF2res and SCL is 0.52 and 0.56 respectively. However, for 
the other two stations, the correlation coefficient is only 

0.15. 

 In the case of geomagnetic activity, the expected anti-
correlation is noticed from Fig. (2). The correlation 
coefficient between foF2res and aa 11-year running mean is -
0.64 for Sodankyla and Uppsala, -0.45 for Ottawa, and -0.19 
for Moscow. An explanation for the decrease of the 
correlation coefficient for decreasing latitudes may be that 
the strongest effects of geomagnetic storms are seen at 
higher latitudes. 

DISCUSSION AND CONCLUSIONS 

 In this study, trends in the ionospheric parameter foF2 
are analyzed, through the study of foF2res which consists in 
the deviations of the real data from a model which takes into 
account only the changes described by Rz. Four liable 
factors, leading to deviations from the model and to long-
term variations, are changes in solar EUV not properly 
presented by Rz variations, long-term changes of 
geomagnetic activity resulting in long-term trends of 
aeronomical parameters, increasing greenhouse gases 
concentration leading to a cooling at ionosphere heights, and 
secular variations of the Earth’s main magnetic field. 

 Rz, usually used in empirical ionospheric models, does 
not allow to completely eliminate the dependence of 
ionospheric parameters on solar activity. So it seemed 
reasonable to think of a remaining dependence on SCL as a 
proxy of solar activity variations not shown by Rz. However, 
from the cases here analyzed, any concluding remark was 
obtained regarding SCL. Probably the remaining effect of Rz 
on foF2 masks other variation patterns. In fact, the filtering 

process here applied to foF2, do not completely remove the 
Rz effect, as can be seen in Fig. (3) which shows foF2res and 
the annual Rz. Some decadal variation linked to the solar 
cycle is still present in foF2res. 

 Regarding geomagnetic activity, according to Mikhailov 
and Marin [4] and other papers by Mikahailov and Danilov 
[3, 5-8], periods with negative and positive foF2 trends 
correspond to the periods of increasing or decreasing 
geomagnetic activity with the turning points around 1955, 
and the end of the 1960s and 1980s, where foF2 change their 
trend signs. This behavior is seen in all the stations here 
analyzed (see Fig. 2). So, it can be concluded that 
geomagnetic activity trends do induce detectable trends in 
foF2. And the linear downward trend detected for two 
stations may be the result of the general increasing trend of 
aa. 

 With relation to greenhouse gases, many authors have 
estimated foF2 long-term trends for different ionospheric 
stations [3, 5, 8, 11-14]. They found a variety of different 
values ranging from -0.029 to 0.017 Mhz/year, and arrived to 
the conclusion that a change of greenhouse gases 
concentration is not sufficient to explain these different 
trends, which in addition are characterized by alternation of 
phases of decay and rise against the background of its 
general increase (or decrease). It seems that, in addition, the 
trend values depend on the estimation method, as stated by 
Jarvis et al. [46] and Lastovicka et al. [47]. From the data 
here analyzed, it can be said that Sodankyla and Uppsala, 
present foF2 decreasing trends in agreement, but much 
stronger, than trends expected from the greenhouse gases 
effect. Moscow and Ottawa do not present detectable trends, 
which does not contradicts the hypothesis of ionosphere 
trends induced by greenhouse gases. In fact, as already 
stated, the expected trends are really small and need much 
longer time series in order to be detected with a desirable 
statistical significance. 

 

Fig. (3). foF2 residuals (foF2res) in MHz after a 5-year running mean for Sodankyla (filled circle), Uppsala (cross), Moscow (filled triangle), 

and Ottawa (empty circle), together with the annual sunspot number, Rz (red line). 



14    The Open Atmospheric Science Journal, 2011, Volume 5 Ana G. Elias 

 In conclusion, although the sources of long-term 
variations considered here are all capable of inducing 
ionospheric trends, any of them fully explain the observed 
trends in the experimental data considered. There might be 
other factors such as trends in thermospheric winds and 
neutral constituent variations affecting the ionosphere which 
were not considered. The subject of trends in the ionosphere 
is still under debate and there is not yet any agreement about 
the main mechanism responsible for the trends observed. 

 Why is it important to understand and measure the low, 
middle and upper atmosphere trends during the last decades? 
We live in the Earth and we want to understand and predict 
the atmosphere behavior which is essential for human life. 
And, in the present context, an understanding of the 
atmosphere variations is an essential focus of climate 
science, which is seeking to determine the extent to which 
human activities are altering the planetary energy balance 
through the emission of greenhouse gases and pollutants 
[48]. 
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