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Abstract: The distributed lag effect of ambient particulate air pollution that can be attributed to all cause mortality in 

Kathmandu valley, Nepal is estimated through generalized linear model (GLM) and generalized additive model (GAM) 

with autoregressive count dependent variable. Models are based upon daily time series data on mortality collected from 

the leading hospitals and exposure collected from the 6 six strategically dispersed fixed stations within the valley. The 

distributed lag effect is estimated by assigning appropriate weights governed by a mathematical model in which weights 

increased initially and decreased later forming a long tail. A comparative assessment revealed that autoregressive semi-

parametric GAM is a better fit compared to autoregressive GLM. Model fitting with autoregressive semi-parametric GAM 

showed that a 10 μg m
-3 

rise in PM10 is associated with 2.57 % increase in all cause mortality accounted for 20 days lag 

effect which is about 2.3 times higher than observed for one day lag and demonstrates the existence of extended lag effect 

of ambient PM10 on all cause deaths. The confounding variables included in the model were parametric effects of seasonal 

differences measured by Fourier series terms, lag effect of mortality, and nonparametric effect of temperature represented 

by loess smoothing. The lag effects of ambient PM10 remained constant beyond 20 days. 

Keywords: Ambient air pollution, autoregressive GAM, extended lag effect, Kathmandu valley, loess smoothing, mortality, 
statistical modeling. 

1. INTRODUCTION 

 Particulate air pollution is a major environmental risk 
factor that can aggravate many health hazards to human 
population. This has been established in many studies 
conducted across the globe. Ambient particulate air pollution 
mainly in urban centers and industrial areas and indoor 
particulate air pollution mainly in rural areas of 
underdeveloped countries pose serious health threats to all 
those exposed. Various studies conducted at different parts 
of the world have demonstrated significant associations 
between different air pollutants mainly particulate matter 
(PM) and health effects such as mortality, lung cancer, 
hospitalization for respiratory and cardiovascular diseases, 
emergency room visits, asthma exacerbation, respiratory 
symptoms, restrictive activity days, loss of schooling, etc. 
[1]. 

 Many studies have been published on the association 
between daily exposure to PM and mortality. In the study of 
10 USA cities, Schwartz examined the daily effects of PM10 
(particulate matter with diameter less than 10 micrometer) 
and reported that a 10 μg m

-3
 increase in the pollutant was 

associated with a 0.7% increase in daily mortality [2]. A 
study involving 29 European cities reported an association of 
0.6 % increase in mortality per 10 μg m

-3
 increase in PM10 

[3]. Combined results of 88 largest cities study of USA and 
20 largest cities study of USA indicated an association 
between mortality and PM of approximately 0.5% change 
per 10 μg m

-3
 of PM10 [4]. More recent studies used an 
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alternative statistical model and found an association of 
0.27% per 10 μg m

-3
 of PM10 [5]. Some of the studies have 

also been conducted in cities outside of the US and European 
cities and in developing countries and reported the effect 
estimates similar to those found for US and European cities. 
Combined results of the studies conducted in Asia showed 
an association of 0.41% increase in all cause mortality per 10 
μg m

-3
 increase in PM10 [6]. Similarly, a study on fine 

particulate pollution assessed by PM2.5 (particulate matter 
with diameter less than 2.5 micrometer) and mortality in 9 
California counties based upon time series data from 1999 
till 2002 showed that a 10 μg m

-3
 increase (two day average) 

in PM2.5 was associated with 0.6% increase in all cause 
mortality [7]. A more recent study on association between 
fine particulate pollution and mortality through extended 
follow up examination for 9 years in different cities of USA 
showed that increase in 10 μg m

-3
 of PM2.5 was associated 

with 1.16 relative risk in overall mortality using Cox 
proportional hazards model after controlling for individual 
risk factors [8]. A cohort study in New Zealand urban areas 
for 3 years found the odds of all cause mortality in adults 
aged 30 to 74 years increased by 7% per 10 μg m

-3
 increase 

in average PM10 exposure using logistic regression model 
after controlling for age, sex, ethnicity, social deprivation, 
income, education, smoking history and ambient temperature 
[9]. A recent Health Effect Institute (HEI) research report 
(2010) on Public Health and Air Pollution in Asia (PAPA): 
Coordinated studies on short term exposure to air pollution 
exposure and daily mortality in four Asian cities showed that 
percent increase in mortality per 10 μg m

-3
 rise in PM10 was 

found to be 1.25 (0.8 – 3.01), 0.53 (0.26 – 0.81), 0.26 (0.14 – 
0.37), and 0.43 (0.24 – 0.62) for Bangkok, Hong Kong, 
Shanghai, and Wuhan, respectively [10]. 
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 Many studies have also been conducted where extended 
distributed lag effect of ambient particulate air pollution has 
been associated with health effects such as hospitalizations 
and mortality. In an analysis using data from 10 US cities, 
Schwartz has shown that if distributed lag effects are 
considered continued over several days, the relative risk of 
premature mortality that can be attributed to particulate 
pollution roughly doubles [11]. In a study by Goodman etal., 
showed that when 40 days lag effect was considered on total 
mortality due to black smoke, the effect was 2.75 times 
higher as compared to acute effect (3 day mean) [12]. A 
study conducted in Bangkok, Thailand and reported in 2008 
demonstrated the effect due to extended lag from particulate 
air pollution on mortality. Effect on all cause mortality per 
10 μg m

-3
 increase in average PM10 was associated with 

increase in 1.2% for single day lag and 1.5% for 4 lagged 
days mean. Similarly, cardiovascular mortality increased 
from 0.5% to 1.9% and respiratory mortality increased from 
1% to 1.9% [13]. 

 Kathmandu valley’s ambient air is also found to be 
polluted with particulate air pollution. Air quality monitoring 
of ambient air within Kathmandu valley in the past have 
shown this with majority of the days of a year exceeding the 
Nepal ambient air quality standard for 24 hour average PM10. 
In the year 2004, altogether 193 days passed with 24 hour 
average concentrations exceeding the standard which is 120 
μg m

-3
 with most of the days falling in winter days. 

Monitoring of gaseous pollutants such as nitrogen dioxide, 
sulfur dioxide, carbon monoxide did not show such results 
with concentrations falling within national and WHO 
guidelines. Ambient air quality monitoring was done through 
6 strategically fixed monitoring stations within the valley 
covering urban as well as rural areas installed by the then 
Ministry of Population and Environment (MOPE) of Nepal 
[14]. The major sources of particulate air pollution in the 
valley include dust re-suspension from vehicular movement 
and human activity, emissions from old vehicles, and cement 
and brick factories within the valley [15]. Several studies 
have also shown association between PM pollution and 
health effects in Nepal. A study conducted in Kathmandu 
valley has found that distributed lag effect of ambient 
particulate air pollution on respiratory morbidity is very 
high. Statistical analysis of the study showed that percent 
increase in chronic obstructive pulmonary disease (COPD) 
hospital admissions and respiratory admissions including 
COPD, asthma, pneumonia, and bronchitis per 10 μg m

-3 
rise 

in PM10 are 4.85 % for 30 days lag effect, about 15.9 % 
higher than observed for same day lag effect and 3.52 % for 
40 days lag effect, about 28.9% higher than observed for 
same day lag effect, respectively [16]. However, such studies 
conducted in Nepal have been very few. Moreover, most of 
the studies have extrapolated health effect coefficients 
derived from exposure response models of the studies 
conducted at other parts of the world [17]. 

 The objective of this paper is to explore and model 
distributed lag effect of ambient particulate air pollution 
exposure in Kathmandu valley on all cause mortality using 
daily time series data. The extended exposure to PM10 is 
accounted by assigning weights to daily average PM10 based 
upon a suitable mathematical model. For statistical 
modeling, generalized linear model (GLM) and generalized 
additive model (GAM) are explored and applied. Data 

analysis for model building is carried out by SPLUS and 
Statistical Analysis System (SAS) software. 

2. METHODOLOGY 

2.1. Data 

 Analysis is based upon the data collected jointly in the 
Nepal Health Research Council (NHRC), Nepal study on 
‘Development of procedures and assessment of 
environmental burden of disease (EBD) of local levels due to 
major environmental risk factors’, a World Health 
Organization (WHO) / Nepal funded project conducted in 
the year 2005 and the data compilation conducted by the 
author for individual research. Models could not be built 
from recent past data since daily monitoring of PM pollution 
has not been conducted through fixed monitoring stations in 
a regular basis. 

2.1.1 Health Effect Data 

 Data on all cause mortality recorded as total daily deaths 
compiled from the leading hospitals in Kathmandu valley for 
one year during 2003/2004 is used. The hospitals are Bir 
Hospital (Kathmandu), TU Teaching hospital (Kathmandu), 
Patan hospital (Lalitpur) and Bhaktapur hospital 
(Bhaktapur). During the time of data compilation apart from 
these leading hospitals there were only small health centers 
and nursing homes / small hospitals which are excluded from 
the current analysis since major and serious cases which can 
lead to death of patients were ultimately referred to these 
hospitals for further treatment and almost all death cases 
were reported in these hospitals during that period of time in 
Kathmandu valley. Thus, exclusion of other health service 
providers from the current analysis can only have small 
impact on mortality coefficient which is ignored. All cause 
deaths include all deaths as mentioned in International 
Classification of Disease (ICD) codes (A00 – Z98) taken 
from the Department of Health Services, Nepal, 2003/2004 
[18]. 

2.1.2 Exposure Data 

 Data compiled for PM10 on daily basis monitored from 
the 6 fixed stations installed within Kathmandu valley for the 
year 2003/2004 is used. For the same time period, daily 
average temperature data collected in Kathmandu valley 
monitored at the Tribhuvan International Airport are used. 
The six monitoring stations were set up at strategic locations 
to bring out the overall picture of the status of air quality in 
the valley. These comprise of one valley background station 
(Matsyagaon), two urban background stations (Bhaktapur 
and Kirtipur), two urban traffic area stations (Putalisadak 
and Patan) and one urban residential area station (Thamel). 
Daily PM10 was measured by medium volume sampler 
(MVS) through 24 hrs sampling which automatically 
measures PM10 continuously round the clock. The method of 
determination was gravimetric. It basically comprises of 
determination of the weight gained after a definite volume of 
ambient air has been sucked at a constant rate (2.3 m

3
h

-1
) 

through a pre-weighed filter paper. The filter papers were 
allowed to expose in a temperature and humidity controlled 
room before weighing and recorded before and after the 
sampling. The monitoring systems were calibrated once 
every month by a flow meter to check the flow rate. The 
flow meter itself was calibrated by a water flow meter [19]. 
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2.2. Statistical Modeling 

 Statistical modeling is based upon autoregressive 
generalized linear model (GLM) and autoregressive semi-
parametric generalized additive model (GAM) with log link 
function [20, 21]. In the models dependent variable is a 
count variable measuring daily hospital deaths and 
explanatory variables consist of a variable accounting for 
distributed lag effect of ambient particulate air pollution, a 
lagged variable and several confounding variables [22]. The 
semi-parametric GAM extends GLM by fitting both 
parametric terms as well as non-parametric functions fi to 
estimate relationships between a response variable and 
predictor variables. Because fi’s are generally unknown, they 
are estimated using some kind of scatter plot smoother [23]. 
Estimation of the additive terms in GAM is accomplished by 
replacing the weighted linear regression in GLM by the 
weighted back-fitting algorithm, known as the local scoring 
algorithm [24]. Two types of smoothers have been used 
namely, smoothing spline and locally weighted regression 
smoother (LOESS). 

2.2.1. Model for Extended Lag Effect of Ambient 

Particulate Air Pollution 

 Under the initial screening of the lag effects on all cause 
mortality, it was detected that the value of the lag effect 
increased initially to a certain lag length and then decreased 
later. Consequently, the following mathematical model 
found suitable was taken for estimating weights for different 
lags. 

Wt = c t +1( )e t+1( )
            (1) 

where Wt is the weight assigned for t
th

 lag period,  is a 

constant and c is chosen such that     Wt = 1
t=0

k

, k is a 

constant. Wk is the weight for maximum observed lag length. 

2.2.2. Confounding Variables 

 Several confounding variables were considered for 
statistical modeling. These are weather, season, trend and 
day of week. Weather related variables such as average daily 
temperature and humidity are confounding variables in the 
study of air pollution epidemiology. In the present data 
analysis temperature is considered as one of the confounding 
variables. Humidity could not be considered as a 
confounding variable since its time series data was 
unavailable. Hospital admissions are also affected by 
seasonal changes. Consequently, Fourier series expansions 
were used to account for a seasonal effect. The daily time 
series data may also exhibit a long term trend. Therefore, a 
variable accounting for trend is also considered to see 
whether this is true or not. To distinguish between public 
holidays and working days, a dummy variable for holidays is 
additionally considered in the model. 

2.2.3. De-Trended and De-Seasonalized Pollutant and 

Weather Variables 

 Though the seasonal effect and trend effect on the 
dependent variable are accounted for by inclusion of Fourier 
series terms and a trend variable, these variables can be 
correlated with the rest of the independent variables included 
in the model. This can result in multicollinearity between 

explanatory variables. PM10 and temperature are two such 
variables which contain seasonal / trend effects in 
themselves so that they could be correlated with seasonal 
variables included in the model. As a result, it becomes 
necessary to eliminate these effects which are accomplished 
by the following methodological procedure. 

 The effects of air pollution and temperature on mortality 
were separated from seasonal and trend effects by running 
linear regressions with the above variables as the dependent 
variables on seasonal variables and a trend variable as 
independent variables (trend variable was later excluded as it 
was not statistically significant). The resulting error 
components which could not be explained by regressions 
were indeed air pollution and temperature effects completely 
separated from seasonal effect. These separated effects 
representing air pollutant and weather effects on mortality 
were then included in the model as independent variables. 

2.2.4. Model Adequacy Tests 

 Several measures have been considered for the test of the 
reliability of the models. These include overall goodness of 
fit, statistical significance of the estimated coefficients, 
accounting for overdispersion, residual analysis, and 
multicollinearity diagnostics. 

 The overall goodness of fit test is carried out by 
computation of deviance residual and Pearson generalized 
chi-square. The statistical significance of the estimated 
coefficients is done by Wald test. Similarly, presence of 
over-dispersion is assessed by estimating dispersion 
parameter . If >1, then there is the problem of over-
dispersion in the estimated model. Residual analysis is 
carried out through deviance and Pearson residuals. PP plots 
are used to assess normality of residuals. Autocorrelations 
are computed for an adequate large number of lags. Residual 
plots such as residuals in time sequence plots are also 
examined to detect model inadequacies. Multicollinearity is 
assessed through computation of variance inflation factors 
(VIF) [25]. 

2.2.5. Model Selection Criteria 

 Akaike’s Information Criterion (AIC) is used to 
determine relevant explanatory variables that should be 
included in the final model. The model with minimum AIC 
was chosen. 

3. RESULTS 

3.1. Weights for Distributed Lag Effects of Ambient 

Particulate Air Pollution 

 The mathematical model expressed in Equation 1 is used 

to estimate weights for distributed lag effects of ambient 

particulate air pollution. For a predetermined lag length, a 

positive value of  is chosen such that the weights increase 

initially and then decrease resulting in a long tail. Thereafter, 

value of c is chosen such that the total weights sum up to 

unity. Several values are tested for  in between 0.1 to 0.4 

since the curves showed an increase in weights initially and 

then decreased later. The Poisson model was fitted with 

other confounding variables and it was found that the 

deviance residual was minimum for  =0.3. The procedure is 

repeated for different lag lengths and similar results were 
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obtained. Hence, values for  = 0.3, C = 0.091765 were 

chosen such that     Wt = 1
t=0

k

. 

 The cumulative effect of ambient air pollution is 
examined for different lag periods in increasing order of lag 
lengths and corresponding pollutant coefficients were 
obtained. The procedure was repeated until the pollutant 
coefficient did not increase significantly. The corresponding 
distributed lag length was accepted for the final model which 
is 20. 

 The table (Table 1) and corresponding figure (Fig. 1) of 
weights for maximum lag length 20 is shown below. 

Table 1. Weights for Distributed Lag Effects 

 

Lag Weight Lag Weight 

0 0.067981 11 0.030088 

1 0.100723 12 0.024147 

2 0.111927 13 0.019265 

3 0.110556 14 0.015291 

4 0.102378 15 0.012083 

5 0.091012 16 0.009511 

6 0.078660 17 0.007460 

7 0.066598 18 0.005834 

8 0.055504 19 0.004549 

9 0.045687 20 0.003539 

10 0.037230   

 

Fig. (1). Weights for Distributed Lag Effects. 

3.2. De-Trended and De-Seasonalized Pollutant and 
Weather Variables 

 De-trended and de-seasonalized pollutant and weather 
variables are modeled through the following linear models 
since several model adequacy tests including residual 
analysis showed that linear models were more suitable than 
nonlinear models. Different sets of independent variables 
found statistically more significant for adjusted temperature 
series and adjusted PM10 series models were used to obtain 
de-trended and de-seasonalized pollutant and weather 
variables. Adjusted series was obtained as the difference 

between unadjusted and estimated values plus the average of 
the unadjusted series. Since mean values of unadjusted series 
were added to the deviation between unadjusted series and 
estimated series, the adjusted series is not just the deviation 
alone. 

3.2.1. Model for Adjusted Temperature Series 

 Model for adjusted temperature series is: 

tadj = tunadj t̂lm + tmean             (2) 

where tunadj  is unadjusted temperature, t̂lm is estimate of 

temperature from the fitted linear model and tmean  is the 

mean of unadjusted temperature series. t̂lm is obtained from 

the following linear model: 

t̂lm = ˆ
0 +

ˆ
kSin

2 kt

m
+
ˆ
kCos

2 kt

m
          (3) 

where k is the number of oscillations in a year so that 
k=1,2,3,4 and t=1, 2, 3, ……, m; m is the total number of 
days in a given year. The fitted model produced significant 
estimates (p<0.1) as follows: 

ˆ
0 = 19.56;  ˆ

1 = 7.32;  ˆ
1 = 0.21;  ˆ

2 = 0.21;  

ˆ
2 = 2.02;  ˆ

3 = 0.44;  ˆ
4 = 0.3;  ˆ

4 = 0.26
 

 Here, tmean =19.6 
°
C. It is to be noted that cos(6 t/365) is 

not included in the model since it is found to be statistically 

insignificant. For the fitted model, residual standard error is 

found to be 1.712 at 357 degrees of freedom with multiple R-

Square: 0.9102, F-statistic: 517.1 at 7 and 357 degrees of 

freedom and p-value:  0. 

3.2.2. Model for Adjusted PM10 Series 

 Model for adjusted PM10 series is: 

PMadj = PMunadj PMEstimate + PMMean           (4) 

where PMadj is adjusted PM10, PMEstimate is estimate of PM10 

from the fitted linear model and PMMean is the mean of the 

unadjusted PM10 series. PMEstimate  is obtained from the 

following linear model. 

PMEstimate = ˆ
0 + ˆ1 Autumn( ) + ˆ 2 W int er( )

+ ˆ 3 Spring( ) + ˆ 4 Temperature( )

+ ˆ 5 Temperature
2( )

         (5) 

where i’s are estimated coefficients. The fitted model 
produced significant estimates (p<0.0.01) as follows: 

ˆ
0 = 574.8;  ˆ

1 = 26.25;   ˆ
2 = 54.25;   

ˆ
3 = 88.50;  ˆ

4 = 49.15;   ˆ
5 = 1.29

 

 Here, PMMean  = 136.49 μg m
-3

. For the fitted model, 

residual standard error is found to be 29.44 at 359 degrees of 

freedom with multiple R-Square: 0.7052, F-statistic: 171.8 at 

5 and 359 degrees of freedom and p-value:  0. It is to be 

noted that seasonal variables are dichotomous contrast 

variables. 
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3.3. Distributed Lag Effects of Ambient Particulate Air 
Pollution 

 Analysis by autoregressive GLM showed that the effect 
of PM10 on all cause deaths increased as lag length increased 
from one day lag to 20 days lag. Thereafter, the effect 
remained approximately constant. If we examine Fig. (2), it 
is seen that mortality effect rose sharply till about 12 days 
lag effect and increased slowly and in small quantity up to 
20 days. The difference of mortality effect between the two 
lags is very small. Even though statistical modeling can be 
done for 12 days lag effect, it is ultimately done for 20 days 
lag effect in the current analysis to maintain more precise 
estimate of extended lag effect of PM10. 

 The percent increase in all cause deaths per 10 μg m
-3

 
rise in PM10 is found to be 1.09 % for one day lag and 2.44 
% for 20 days lag. The extended effect for 20 days lag is 
about 2.24 times higher than observed for one day lag which 
is a substantial increment and demonstrates the existence of 
extended and cumulative lag effect PM10 on all cause deaths. 
Estimation of all cause deaths and subsequent model 
building is therefore done for 20 days lag effect since 
distributed lag effect is effective up to this maximum lag and 
negligible for more extended lags i.e. more than 20 lagged 
days (Fig. 2). 

 

Fig. (2). Distributed Lag Effects of Ambient Particulate Air 

Pollution. 

3.4. Autoregressive Models 

 Residual analysis of fitted GLM and GAM showed that 
deviance and Pearson residuals were slightly autocorrelated 
at 5

th
 lag which can be normally ignored since it cannot have 

a significant impact on model coefficients. The detailed 
analysis of GLM and GAM developed by excluding lagged 
term of the dependent variable has been shown in the 
author’s earlier research work in this area [25]. However, the 
current analysis is carried out mainly to account errors due to 
ignoring marginally significant residual autocorrelations as 
observed in autocorrelation and partial autocorrelation plots. 
Thus, to maintain greater accuracy in the fitted models, the 
current model building process has developed more refined 
autoregressive GLM and autoregressive GAM with the 
inclusion of lagged parametric term of the dependent 
variable as an independent variable in the developed 
autoregressive models. The models, therefore, can also be 
viewed as modified forms or extensions of GLM and GAM 
without lagged terms. 

3.5. Estimation of All Cause Deaths using Autoregressive 
GLM 

3.5.1. Selection of Regressors with Minimum AIC 

 Among independent variables considered for modeling, a 
subset of the variables is chosen using Akaike’s information 
criterion (AIC). The variables taken under consideration for 
modeling were seasonal variables, trend variable, day of 
week, temperature, air pollution, and the lagged term of the 
dependent variable. In the process of selection using AIC, 
trend, day of week and several sine and cosine terms are 
excluded from the model with minimum AIC = 1298.022. 
Since inclusion of the above variables as independent 
variables in the model generated higher AIC value, they 
were excluded from the final model. 

3.5.2. Autoregressive GLM Estimates 

 The fitted model showed that all estimates of parameter 
coefficients are statistically significant with p values less 
than 0.05. Both PM10 and temperature are found to be 
positively associated with mortality. An increase of 2.6% of 
all cause mortality is estimated with 10 μg m

-3
 increase in 

ambient PM10 value with 95% confidence interval equal to 
0.7% - 4.6%. The quadratic effect of temperature is also 
found to be statistically significant implying quadratic 
nonlinear association between the dependent variable and 
temperature. As far as seasonal and cyclic effects are 
considered, only sin(8 t/365) and cos(8 t/365) are included 
in the model. It implies that seasonal variations are 
significant with k = 4 meaning that cyclic variations with 4 
complete oscillatory movements throughout a year with each 
cycle having only a quarter of a year as period are found to 
be statistically associated with mortality variations. The 
result signifies that cyclic patterns representative of seasonal 
variations are also statistically significant (Table 2). 

Table 2. Autoregressive GLM Parameter Estimates for All 

Cause Deaths 

 

Parameter Coefficient Standard Error t Value p Value 

Intercept -6.3923 2.8136 5.1618 0.0231 

Sin(8 t/365) 0.0834 0.0421 3.9241 0.0476 

Cos(8 t/365) -0.1097 0.0428 6.5832 0.0103 

Temperature 0.7325 0.2891 6.4201 0.0113 

Temperature2 -0.0182 0.0074 6.9066 0.0145 

Lag 5 -0.0489 0.0175 7.8191 0.0052 

PM10 0.0026 0.0010 2.427 0.0086 

 

 Model adequacy tests for the GLM model are provided in 
Appendix A. 

3.6. Estimation of All Cause Deaths Using Autoregressive 
GAM 

 Two nonparametric smoothers are considered for 
generalized additive modeling namely smoothing spline and 
locally weighted regression smoother (LOESS). Since use of 
LOESS resulted in smaller residual deviance as well as more 
statistically significant nonparametric smoother, it was 
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preferred against smoothing spline in the current model 
building process. A semi-parametric GAM (with 
autoregressive dependent variable) is fitted by using a 
nonparametric smooth function for temperature and 
parametric terms for the other variables. 

3.6.1. Model Parameter Estimates and Summary Statistics 

 The fitted autoregressive semi-parametric GAM showed 

statistically significant coefficient estimates for parametric as 

well as nonparametric effects. Sine and cosine terms are 

found to be statistically significant with tri-monthly 

oscillatory period. A 10 μg m
-3

 increase in PM10 is found to 

be associated with 2.57 % increase in all cause deaths (Table 

3). The value is approximately same as obtained in 

autoregressive GLM which is 2.60%. Moreover, a Loess 

smoother of temperature with 3.5 degrees of freedom is also 

found to be statistically significant with = 0.01  (Table 4). 

This statistical significance of the nonparametric smoother 

justifies the application of GAM and demonstrates the 

existence of a nonlinear association for temperature (Table 

5). 

Table 4. Fit Summary for Smoothing Component 

 

Component Smoothing Parameter df 

Loess (Temperature) 0.534722 3.50015 

 

 Model adequacy tests for the GAM model are provided 
in Appendix B. 

4. DISCUSSION AND CONCLUSION 

 For estimating all cause deaths GLM and GAM with 

inclusion of lagged term of the dependent variable as 

independent variable are explored for their suitability as 

statistical models for associating mortality with ambient 

particulate air pollution. A comparative assessment revealed 

that autoregressive GAM is more suitable in modeling all 

cause deaths in Kathmandu valley compared to fully 

parametric autoregressive GLM. This is mainly because 

nonlinear effect of temperature assessed by Loess smoother 

is found to be statistically significant with = 0.01 . 

Moreover, a semi-parametric autoregressive GAM is found 

to be more suitable instead of fully non-parametric 

autoregressive GAM since though temperature is found to 

have nonlinear effect on the dependent variable same is not 

found to be true for PM10. Therefore, a semi-parametric 

model with parametric effects of PM10 and other 

confounding variables and a nonparametric smoother of 

temperature are included in the final GAM. However, the 

effect of PM10 is found to be only marginally different 

between GLM and GAM. The goodness of fit is marginally 

better in autoregressive GAM compared to autoregressive 

GLM and examination of residual autocorrelations and 

partial autocorrelations show marginally lower values as 

compared to GLM. Examination of standardized deviance 

residuals showed only a single significant outlier in both 

fitted models. Fitted models include the following 

characteristics. 

• Fitted models contain trend and seasonally adjusted 
series for distributed lag effect of ambient particulate 
air pollution which verified that short term effect 
grossly underestimates the actual effect on all cause 
mortality that can be attributed ambient particulate air 
pollution as demonstrated in Kathmandu valley, 
Nepal. 

• Elimination of trend and seasonality in daily time 
series data of PM10 greatly reduced the problem of 
multicollinearity. Several confounders such as 
trigonometric (sine and cosine) terms with k=4 for 
seasonal representation and temperature are also 
found to be statistically significant. 

• The fitted GLM revealed that the percent increase in 
all cause deaths per 10 μg m

-3
 rise in PM10 increased 

up to 20 lagged days and remained constant 
thereafter. As estimated by autoregressive GAM, an 
increase in 2.57 % all cause deaths is estimated for 10 
μg m

-3
 rise in PM10 which is marginally higher than 

observed for GAM without lagged variable (2.44%). 

 Developed models are based upon one year daily time 
series data on mortality and exposure. Mortality data was 
collected from records of the leading hospitals within 
Kathmandu valley. Some small scale nursing homes and 
hospitals were left out since major and serious cases which 

Table 3.  Parameter Estimates of All Cause Deaths Using Autoregressive GAM 

 

Parameter Estimate Standard Error t value Pr > |t| 

Intercept 0.94162 0.14785 6.38 < 0.0001 

Sin (8 t/365) 0.08570 0.04217 2.02 0.0442 

Cos (8 t/365) -0.10570 0.04264 -2.50 0.0136 

Lagged Term of Mortality -0.04641 0.01749 -2.65 0.0084 

PM10 0.00257 0.00100 2.56 0.0108 

Table 5. Analysis of Deviance 
 

Source df Sum of Squares Chi-Square Pr > Chi-Square 

Loess (Temperature) 3.50015 13.272890 13.5368 0.0058 
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may lead to deaths of patients were usually referred to these 
hospitals. Consequently, reported deaths were mostly from 
these hospitals. Under the assumption that this will not have 
significant bias on the mortality estimate only the leading 
four hospitals were taken for data compilation. However, the 
permanent residencies of died patients were not recorded as 
it was relatively difficult to retrieve information due to poor 
database system that prevailed at that time in the hospitals. 
As a result, misclassification of some died patients may have 
occurred which can be regarded as a limitation of the study. 

 Finally, the extent of effects on all cause mortality from 
exposure to ambient particulate air pollution is found to be 
substantial in Kathmandu valley. Estimate of all cause 
mortality is also higher compared to the findings of other 
studies at different parts of the world based upon only few 
days lag effect. However, similar to the findings of 
distributed lag effects studies at other parts of the world, the 
current analysis also showed that extended lag effect of air 
pollution on mortality is much higher (slightly higher than 
double) than single or few days lag effects. For instance, 
Schwartz has shown that if distributed lag effects are 
considered continued over several days, the relative risk of 
premature mortality that can be attributed to particulate 
pollution roughly doubles. The results, therefore, raise health 
concerns to all valley inhabitants caused by particulate air 
pollution. Even though efforts have been made in the 
direction of reducing the particulate levels in the valley, its 
urban air is still highly polluted. Therefore, this is a matter of 
serious concern and further steps are required to reduce 
pollutant levels in coming years. 
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APPENDIX A 

Model Adequacy Tests for GLM 

Overall Goodness of Fit 

 The overall goodness of fit of the fitted model is judged 
by deviance residual and Pearson chi-square. Deviance 
residual is found to be 356.35 at 353 degrees of freedom and 
Pearson chi-square is found to be 331.14 at 353 degrees of 
freedom. Both are statistically insignificant with p values  
 

0.44 and 0.79, respectively. The statistical insignificance of 
the statistics suggests that the Poisson model fits well for the 
given data set. 

Residual Analysis 

Normality Tests of Residuals 

 Kolmogorov-Smirnov nonparametric test and the P-P 
plots of the residuals (Figs. 3, 4) show that the distribution of 
the deviance residual and Pearson residual may be regarded 
as normally distributed with p values greater than 0.05 
(p=0.43 for Pearson residual and p=0.49 for deviance 
residual ). It is to be noted that p values are much higher than 
0.05 which is preferable. 

Fig. (3). Normal P-P Plot of Pearson Residuals. 
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Fig. (4). Normal P-P Plot of Deviance Residuals. 
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Autocorrelations and Partial Autocorrelations of Residuals 

 In time series models, it is necessary to observe 
autocorrelation and partial autocorrelation plots of the 
residuals to examine if there are some statistically significant 
autocorrelations. Examination of the plots shows 
nonexistence such correlations up to a sufficiently large lag 
(15) for deviance and Pearson residuals. 

Examination of Residual Plots 

 The partial residual plots show linear associations which 
includes quadratic transformation of temperature. This would 
imply nonlinear association between transformed dependent 
variable and temperature. The standardized deviance residual 
plot in time sequence does not show any pattern or trend and 
looks like errors are randomly distributed. This implies that 
variance of the residuals is fairly constant. In addition, the plot 
shows only one significant outlier (>3) (Fig. 5). 

 

Fig. (5). Scatter Plot of Standardized Deviance Residual. 

Variance Inflation Factor (VIF) 

 Examination of variance inflation factor (VIF) which is 
an important indicator of multicollinearity showed that the 
values are close to one except for temperature and its square 
term which are obviously high (Table 6). 

Table 6. Variance Inflation Factors 

 

Variable VIF 

Sin(8 t/365) 1.03 

Cos(8 t/365) 1.01 

Temperature 208.4 

Temperature2 208.4 

Lagged Term of Mortality 1.03 

PM10 1.02 

 

APPENDIX B 

Model Adequacy Tests for GAM 

Goodness of Fit 

 Deviance residual is found to be 352.0 for 353.0 degrees 
of freedom which is statistically insignificant with 0.51 p-

value. The value is higher than the corresponding p value in 
GLM (0.44) which implies the goodness of fit is marginally 
better in GAM compared to GLM. 

Residual Analysis 

 Kolmogorov-Smirnov nonparametric test and the P-P 
plots of the residuals show that the distribution of the 
deviance residual and Pearson residual can be regarded as 
normally distributed with p values greater than 0.05 (p=0.32 
for Pearson residual and p=0.51 for deviance residual). 
Examinations of autocorrelations and partial autocorrelations 
show insignificant correlations (<0.07) up to a sufficiently 
large lag (15) for deviance and Pearson residuals. This 
suggests that the errors are approximately independently 
distributed (Figs. 6, 7). Examination of partial residual plots 
shows nonlinear association between the dependent variable 
and temperature. Considering standardized deviance 
residuals for the detection of outliers, only one of them is 
found with value greater than 3 (Fig. 8). Estimated 
coefficients remained approximately same after elimination 
of the outlier. Consequently, it is retained in the model. The 
partial residual plot of temperature is also shown (Fig. 9). It 
shows the existence of nonlinear association between 
temperature and mortality. 

 

Fig. (6). Autocorrelation Plot of Deviance Residual. 

 

Fig. (7). Partial Autocorrelation Plot of Pearson Residual. 
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Fig. (8). Scatter Plot of Standardized Deviance Residual. 

 

Fig. (9). Partial Residual Plot of Temperature. 
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