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Abstract: Recently, utilization of renewable resources to replace petroleum as a primary feedstock for liquid fuels, 

chemicals and materials has become a topic of interest around the world. It is intriguing due to rising oil prices, the nega-

tive effects of petroleum on the environment and the advantages of renewable resources, such as their abundance and 

sustainability. Herein, the possibilities for biobased chemicals prepared from renewable resources are reviewed. The most 

popular feedstocks for commodity and specialty chemicals are carbohydrates as they account for approximately 95% of 

the biomass produced annually. The conversion routes, including chemical and biological routes, direct extraction, and se-

lected technical advancements are discussed. Examples of select biochemcials, their conversion pathways from biomass, 

and their derivatives and potential applications are indentified. 
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INTRODUCTION 

 Organic chemicals play important roles in our everyday 
lives. The United States is the largest producer of chemicals 
in the world, and represents approximately 25% of the 
worldwide chemical market [1]. Since the middle of the 20

th
 

century, fossil oil and natural gas have served as the main 
raw material resources for chemicals production [2]. Cur-
rently, almost all organic compounds can be derived from 
seven basic building blocks, including syngas from methane, 
ethylene, propylene, butanes, butylenes, butadiene, and BTX 
(which is a mixture of benzene, toluene, and xylene). These 
building blocks are obtained from natural gas, petroleum and 
coal [1]. Currently, in the United States, ~13% of the crude 
oil is used to produce nonfuel chemicals [3]. There is a 
growing interest in the replacement of fossil-based chemicals 
with biochemicals. Biochemicals refer to the chemicals pro-
duced from biomass. Several factors, including awareness of 
finite petroleum resources, availability of renewable re-
sources, environmental imperatives and recent advances in 
processing technologies, are driving chemical industries to 
shift their feedstocks from petroleum to renewable counter-
parts for production of organic chemicals. 

 It is well known that the reserves of oil, natural gas and 
coal are vast but still limited. Fossil energy sources will be 
depleted with their continuous exploitation. In contrast, bio-
mass is a reliable resource for fuels and chemicals in the 
long term [4]. Supplementing petroleum consumption with 
renewable biomass resources is of critical importance in sus-
taining the growth of the chemical industry. The advantages 
of using biomass rather than petroleum to manufacture 
chemicals include opportunities for less pollution, no net 
CO2 contribution to the atmosphere, more biodegradable and 
sustainable products and, in some cases, lower cost [5]. It 
has been found that many biomass derived chemicals have 
economical advantages, particularly for some functionalized  
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chemicals [6]. In addition, recent advances in process tech-
nologies, especially in fermentation technologies such as 
enzymatic engineering, metabolic engineering and genetic 
manipulation, provide new opportunities for producing a 
wide variety of industrial products from renewable plant 
resources [7-8]. A key to the chemical industries gradual 
shift toward the use of renewable biomass resources for in-
dustrial chemical manufacturing is the implementation of the 
biorefinery concept [9]. Similar to a petroleum refinery, a 
biorefinery integrates a variety of processing technologies to 
produce multiple bioproducts from various biomasses. Such 
an approach will help maximize the value of the biomass and 
minimize low or no value byprodcuts [1, 10]. 

 Production of green chemicals from renewable resources 
is a very broad topic. This mini-review focuses mainly on 
developments in the last couple decades in the areas of re-
newable biomass as a source of chemicals, possible conver-
sion pathways and products. 

POTENTIAL RENEWABLE RESOURCES 

 Renewable resources, generally known as biomass, refer 
to any material having recent biological origin, including 
plant materials, agricultural crops, and even animal manure 
[11]. As a naturally abundant resource, biomass is a desir-
able alternative to petroleum for production of chemicals 
because of its sustainability and often low cost. Further, 
biomass, comprised of C, H, O, and N, has a chemical com-
position similar to fossil feedstocks which contain C and H. 
As a consequence, products produced from petroleum can be 
produced from biomass [1]. Currently, the annual worldwide 
production of biomass is estimated to exceed 100 trillion 
kilograms. In the United States, the 250 billion kilograms of 
wasted plant biomass produced each year far exceeds the 
current total consumption of 100 billion kilograms for or-
ganic chemicals, plastic resins, and fibers [7]. However, 
presently, only 5% of chemicals are derived from renewable 
resources [12]. Therefore, there is huge potential for 
biobased chemicals to share markets with their fossil based 
counterparts. 
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 The most popular biomass feedstock for commodity and 
specialty chemicals production are carbohydrates. Carbohy-
drates are, by far, the largest bulk of organic compounds on 
earth and account for approximately 95% of the biomass 
produced annually. Carbohydrates exist primarily in the form 
of polysaccharides, including starch and cellulose [13]. Tra-
ditionally, starch has been used as a basic organic raw mate-
rial by chemical industries. Many bulk chemicals and poly-
mers can be produced by chemical modification or fermenta-
tion of starch and its monosaccharide derivative (D-glucose) 
[14-16]. However, there is a concern about the competition 
between industrial and food applications of starch. Therefore, 
in the medium to long term, conversion of lignocellulosics 
biomass into glucose and xylose using microbes and other 
biological systems for fuel and biochemical production is 
more attractive. Cellulosic biomass, or lignocellulosics, re-
fers to woody and herbaceous plants and major crop residues 
such as sugar cane bagasse, wheat straw, rice straw and corn 
stover [7]. Lignocellulosic materials are composed mainly of 
cellulose, hemicellulose and lignin. Most of the biomass on 
earth is in the form of lignocellulose. Theoretically, lignocel-
lulosic material is an ideal source of raw sugars for industrial 
processes since it does not affect food supplies and price. 
Many efforts have been made to utilize biological, thermal, 
and chemical conversion technologies to convert lignocellu-
losic biomass to ethanol and chemicals [17-19]. In addition, 
lignocellulosic materials could be liquefied into chemical 
intermediates rich in hydroxyl groups [20]. However, differ-
ent from its starch counterpart, the highly ordered crystalline 
structure of cellulose itself, together with the protective 
sheath (lignin and hemicellulose layers) around it, requires 
some form of pretreatment to open up the structure to effec-
tively convert it to glucose. Pretreatment processing gener-
ally includes treating lignocellulosic materials with dilute 
sulfuric acid, followed by delignification with various or-
gano-solvents, combined dilute alkaline treatment and ho-
mogenization, autohydrolysis, and steam explosion [21-25]. 
Recently, National Renewable Energy Laboratory research-
ers developed an advanced pretreatment technology that uses 
a mixture of an organic solvent and water to cleanly frac-
tionate chemical-grade cellulose, hemicellulose sugars, and 
lignin [26]. Nevertheless, under current conditions, due to 
technological disadvantages and economic hurdles, including 
low specific activity and cost of current commercial cellu-
lose enzymes, the use of lignocellulosic materials as a raw 
material for chemical production has been a distant second 
contender compared to its starch counterpart. 

 Besides the above mentioned carbohydrates, oils and fats 
of vegetable and animal origin are important renewable raw 
materials for “green” lubricants, surfactants, and alkyd resins 
in many industrial and pharmaceutical applications. Differ-
ent non-ionic surfactants have been produced by changing 
the length of the hydrophobic fatty acid moiety and the de-
gree of polymerization of the hydrophilic part [27]. In addi-
tion, a variety of plants, including some flowers such as pop-
pies and rosemary which provide drugs, fragrances and fla-
vors, have been used as a source of fine and specialty chemi-
cals [28]. 

 In order to expand the use of abundantly available re-
newable resources as the raw materials for chemical produc-
tion, to reduce our dependence on foreign oil and environ-

mental pollution, a detailed examination of conversion path-
ways is required. 

POSSIBLE CONVERSION PATHWAYS 

Chemical Conversions 

 Chemical conversions refer to processes which directly 
convert biomass to chemicals at high temperature and pres-
sure and in the presence of a catalyst. Some bulk chemicals, 
including levulinic acid and furfural, can be produced by 
treating biomass at high temperature for specific times in the 
presence of conventional mineral acid catalysts, such as hy-
drosulfuric, hydrochloric, and phosphoric acids [29-31]. 
However, low yield and significant volumes of side products, 
together with the use of corrosive chemicals, are challenging 
commercialization and environmental issues. 

 A thermochemcial process, generally referred to as gasi-
fication, partially oxidizes biomass into syngas, a fuel gas 
mixture consisting of hydrogen, carbon dioxide, nitrogen and 
carbon monoxide [32]. The syngas can be converted to im-
portant chemical intermediates, including methanol, ammo-
nia and oxy-alcohols [33]. However, this route is relatively 
slow and typically requires large, complicated and expensive 
equipment [34]. 

 Many efforts have been made to design innovative alter-
native pathways to effectively convert biomass to chemicals. 
One area of research has focused on improving the efficiency 
of catalysts. A novel aqueous phase catalysis process uses 
robust catalysts and modified carbon supported catalysts 
developed to convert sugar and organic acids to industrial 
chemicals at the Pacific Northwest National Laboratory [35-
36]. McKoon et al. [37] investigated the stability of silica-
support Ru catalysts in an aqueous phase conversion of glu-
cose to sorbitol. Size and shape-selective zeolites were found 
to be very valuable catalysts in conversion of biomass to 
numerous chemicals [38]. These catalysts significantly in-
crease the efficiency of reactions by immobilizing reactants 
in their matrix structure. Besides research on catalysts, ad-
vancement of efficient conversion processes have been re-
ported. A cost-effective two-phase route for the selective 
dehydration of fructose to remove excess functional groups, 
and thereby produce hydroxymethylfurfural, a valuable 
chemical intermediate, were reported by Roman-Leshkov et 
al. [39]. 

 Jin et al. [40] found that hydrothermal processing was the 
most promising for the conversion of biomass into acetic 
acid using supercritical water as a reaction medium. In addi-
tion, chemical conversions have been used to convert the 
chemical intermediates, which were produced from biologi-
cal conversion, to final chemical products, including tetrahy-
drofuran and gamma-butyrolactone from 1, 4-diacids (suc-
cinic, fumaric, and malic), and 1,3-propanediol from 3-
hydroxypropionic acid [41-42]. 

Biological Conversions 

 Biological conversions involve the utilization of biologi-
cal enzymes or living organisms to catalyze the conversion 
of biomass into specialty and commodity chemicals. Overall, 
it is considered to be the most flexible method for conversion 
of biomass into industrial products [7]. Compared to chemi-
cal conversions, where high temperatures and pressures are 



56    The Open Agriculture Journal, 2008, Volume 2 Xu et al. 

involved, operating conditions for biological conversions are 
relatively mild. Actually, biological conversions are not a 
new topic, but rather some commercial bulk chemicals, such 
as ethanol, lactic acid, citric acid and acetone-butanol, have 
been produced via yeast and bacterial fermentation processes 
[43-45]. Recently, there has been growing interest in utiliza-
tion of biocatalysts to convert renewable resources into 
chemicals, due to high yield and selectivity, and fewer by-
products. However, because of the metabolic restriction in 
microorganisms, only a few bulk products currently are pro-
duced via fermentation [8]. Therefore, development of new 
technologies to broaden the product spectrum is necessary. 
Genetic engineering has emerged as a powerful tool for ge-
netic manipulation of multistep catalytic systems involved in 
cell metabolism [46]. Recombinant DNA technology is used 
to clone and manipulate gene encoding enzymes in organ-
isms. Recombinant microorganisms, with altered sugar me-
tabolism, are able to ferment sugar to some specialty chemi-
cals, which cannot be produced by the corresponding origi-
nal stain [8]. For example, catechol and adipic acid were 
produced from glucose using genetically modified Es-
cherichia coli. Both glucose and xylose, in cellulosic bio-
mass, have been converted into ethanol by recombinant Sac-
charomyces yeast [47]. In addition, immobilized enzyme and 
whole cells have been used to produce biomass-derived 
chemicals. Huang and Yang [48] produced fumaric acid 
from glucose and cornstarch by immobilizing Rhizopus 
Oryzae cells on a rotating fibrous matrix. Hames et al. [49] 
patented a microbioal process for converting biomass hydro-
lyzate into fuels and chemicals by absorbing biomass hydro-
lyzate on solid metal oxide support to fractionate it with fer-
mentation inhibitors, such as lignin-derived compounds, thus 
improving the products yield. Currently, efforts are continu-
ing to identify, characterize, and even modify enzymes and 
living organisms and processes so they can better utilize re-
newable resources to produce structurally diverse and com-
plex chemicals. High yield and selectivity, as wells as mini-
mum waste streams, favor biological conversions as path-
ways to transform biomass to higher-value chemicals. How-
ever, there are still problems with current biological conver-
sions technologies. Sterilization, fermentation stirring, and 
separation of target products from aqueous systems with low 
production concentration entail high energy requirements [8]. 
Further, considerable investment is required to make proc-
esses highly efficient and continuous [3]. Therefore, there 
are research opportunities in the development of new low 
cost biological conversions technologies to effectively trans-
form biomass into chemicals. 

Direct Extraction 

 Some commodity and fine chemicals can be extracted 
directly from biomass. Ferulic acid, a precursor for vanillin, 
occurs in a relatively high concentration in the form of xylan 
polysaccharide ester in corn fiber. Shin et al. [50] extracted 
ferulic acid from corn fibers using novel fungal and bacterial 
feruloyl esterases. Arabinogalactan and quercerin dehydrate 
were isolated from larch wood [51]. Vanillin, used in the 
flavor and fragrance industries, can be recovered by alkaline 
oxidation of lignin in the presence of a copper catalyst [52-
53]. Derouane and Powell [54] patented a novel extraction 
process that used large pore, high silica/alumina ratio zeo-
lites as selective sorbents to remove vanillin from various 

liquid solutions. Eckert et al. [55] explored a more benign 
and cost-efficient way to extract vanillin from lignin using a 
gas-expanded liquid. Gas, typically CO2, was added to an 
organic solvent, providing the solvent with different and 
tunable properties such as solubility, transportability and 
polarity. Compared to traditional solvents, the advantages of 
using gas-expanded liquids include low operating cost, ease 
of separation and reduction of the amount of solvent needed. 
Direct extraction is a promising pathway for utilizing renew-
able resources, irrespective of scale [2]. From an economic 
point of view, the extraction of high-value added chemicals 
from biomass can be the most profitable, but the availability 
and variety of chemicals are limited. 

POTENTAIL PRODUCTS 

 Werpy et al. (2004), at the Pacific Northwest National 
Laboratory and National Renewable Energy Laboratory, 
identified the potential top 12 value added building-block 
chemicals from biomass, actually from sugar [56]. They are 
1,4-diacids (succinic, fumaric and malic acids), 2,5-furan 
dicarboxylic acid, 3-hydroxy propionic acid, aspartic acid, 
glucaric acid, glutamic acid, itaconic acid, levulinic acid, 3-
hydroxybutyrolactone, glycerol sorbitol, and xylitol/arabini-
tol. Based on the different conversion pathways, these build-
ing-block chemicals, and their derivatives and potential ap-
plications, are summarized in Tables 1 and 2. From the ta-
bles, the 12 building-blocking chemicals were converted 
either biologically or chemically from sugar. All building-
block chemicals were further converted to a wide spectrum 
of derivatives through chemical processes, such as reduction, 
oxidation, dehydration, hydrogenolysis and direct polymeri-
zation. Those chemicals can be used widely as solvents, fiber, 
antifreeze, and new polymers (such as polyesters, polyam-
ides, and polyurethane) with better polymeric properties, 
than those currently derived from petroleum. 

 Further, Frost’s group at the Michigan State University 
conducted research on synthesis of benzene-free aromatic 
chemicals and their derivatives from glucose, which tradi-
tionally have been derived from benzene. These aromatic 
chemicals include phenol [57], catechnol [58], quinic acid 
and hydroquinone [59], pyrogallol [60], hydroxyhydroqui-
none [61], phloroglucinol [62], caprolactam [63] and (deriva-
tive) adipic acid [64]. Fig. (1) summarizes the synthesis 
routes of these chemicals from glucose and their possible 
derivatives. It was found that two steps were involved in 
preparation of aromatic chemicals from glucose. Typically, 
glucose first was converted to chemical intermediates by 
microbial synthesis, followed by chemical conversion of 
these intermediates into ideal end chemicals. 

 It is worthy of note that many of the intermediates, whose 
syntheses generally require some special enzymes which 
cannot be found in conventional microbes, can be synthe-
sized at this point because DNA recombinant technology 
allows the transfer of genes for specific chemical forming 
enzymes in traditional microbial strains. 

 Beside synthesis of aromatic chemicals from glucose, as 
discussed above, Haveren et al. [4] discussed the possibility 
of production of aromatic chemicals from lignin due to the 
presence of large quantities of aromatic structures in its 
molecule as well as it being a simple and economic process. 
A complex mixture of polyhydroxylated and alkylated phe-
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nol compounds were formed by cracking lignin with a high 
temperature thermal process. Although currently there is a 
challenge in upgrading these mixtures to a higher content of 
phenol, production of phenol from lignin still is a long-term 
option. 

 Currently, there is also a growing interest in synthesis of 
ethylene from renewable resources. Arenamnart and Tra-
karnpruk [65] and Takahara et al. [66] converted ethanol to 
ethylene using dealuminated mordenite, zeolites and silica–
alumina catalysts. Further, photosynthetic conversion of 
carbon dioxide to ethylene by recombinant cyanobacterium 
Synechococcus sp. PCC 7942 was reported by Sakai et al. 
[67]. 

 The products listed here represent only a small portion of 
the biochemicals made by different research groups around 

the world. Efforts to expand the spectrum of chemicals 
derived from renewable resources are continuing. 

CONCLUSIONS 

 The fossil fuel crisis and environmental concerns have 
encouraged scientist to explore new resources and pathways 
for chemicals production. Low cost and sustainability, to-
gether with chemical compositions similar as fossil feed-
stocks, render biomass a promising raw material for produc-
tion of biochemicals. Technological advancements, includ-
ing biorefineries, heterogeneous catalysts and genetic engi-
neering, guarantee development of green chemicals from 
biomass. In the mid- to long- term, biochemicals will share 
markets with petroleum-based chemicals and ultimately re-
place them as biochemicals become price competitive. 

 

 

Table 1. Biological Conversion for Chemical Building Blocks, and their Derivates and Potential Application
1
 

 

Building Block Chemicals  Pathway from Sugar Derivatives or Derivative Family Pathways to Derivatives Potential Application 

 

 

1,4-diacids  

(Succinic, fumaric, malic) 

 

 

 

 

 

 

Fermentation from 
Krebs cycle pathways 

 

 

 

 

Butanediol  

Tetrahydrofuran (THF) 

-butyrolactone (BL) 

 

Pyrrolidinone 

N-methylpyrrolidinone (NMP) 

 

Straight chain polymers 

 

Reduction 

 

 

Reductive aminations 

 

 

Direct polymerization 

Solvents  

Fiber 

 

 

Green solvent 

Water soluble polymers 

 

Fiber 

 

3-Hydroxypropionic acid  

 

Fermentation 

1,3-propane diol 

 

Acrylate Family 

acrylic acid, acrylamide 

Reduction 

 

Dehydration 

Sorona Fiber 

 

Contact lenses 

Diapers 

 

 

Aspartic acid* 

 

 

Fermentation or  

Enzymatic conversion of  

oxaloacetate in the  

Krebs cycle 

 

 

 

Amine butanediol  

Amine tetrahydrofuran 

Amine- -butyrolactone 

 

Aspartic anhydride 

 

Polyaspartic  

Reduction 

 

 

 

Dehydration 

 

Direct polymerization 

Amino analogs of C4  

1,4 dicarboxylic acid 

 

 

New area 

 

New area 

 

Glutamic acid  

 

Fermentation 

 

 

Diols (1,5-pentandiol) 

Diacids (Glutaric acid) 

Aminodiol (5-amino-1- 

butanol, glutaminol ect) 

 

 

Reduction 

Monomers for  

polyesters and  

polyamides 

 

 

 

Itaconic acid  

 

 

Aerobic fungal fermen-

tation 

 

 

 

 

Methyl butanediol  

Methyl THF 

Methyl- -BL 

Methyl Pyrrolidinone 

Methyl NMP 

 

Polyitaconic  

 

 

Reduction 

 

 

Direct  

polymerization 

New useful properties  

for butanediol, THF,  

and butyrolactone 

 

 

New Polymers 

 

 

 

Glycerol* 

 

 

 

 

 

 

Enzymatic transesterifi-
cation 

 

 

 

 

 

Glyceric acid  

PLA analogs 

 

 

 

Propylene glycol  

1,3-propanediol  

 

Branched polyesters and polyols 

Oxidation 

 

 

 

 

Hydrogenolysis 

 

 

Direct polymerization 

Polyerster fibers with  

new properties 

PLA with better  

polymeric properties 

 

Antifreeze,  

humecrtant 

Sorona fiber 

Unstaturated polyure-
thane resin for  

Insulation 
1From Werpy et al. (2004). 
*Indicates the building block chemicals also are produced by chemical conversion shown in Table 2. 
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Table 2. Chemical Conversion for Building Blocks Chemicals, their Derivates and Potential Application
1
 

 

Building Block Chemicals  Pathway from Sugar Derivatives or Derivative Family Pathways to Derivatives Potential Application 

 

 

 

2,5-furan dicarboxylic acid 
(FDCA) 

 

 

 

 

Oxidative dehydration 
of C6 sugars 

 

 

 

Diols and aminations 

Levulinic and succinic acids  

 

Polyethylene 

Terephthalate analogs  

Furanoic polyamines 

 

Reduction 

 

 

Direct polymerization 

 

New polyester and nylon  

All uses of succinic and  

levulinic 

 

Furanoic polyesters for  

bottles and films 

Polyamide for nylons 

 

Glucaric acid 

 

 

Nitric acid oxidation 
of starch 

Catalytic oxidation of 

starch with bleach 

Lactone  

 

Polyglucaric ester  

and amides 

Dehydration 

 

 

Direct polymerization 

Solvents 

 

Nylons or different  

properties 

Aspartic acid* Amination of fumaric 
acid with ammonia 

 Same as Table 1 Same as Table 1 Same as Table 1 

 

 

Levulinic acid 

Acid catalyzed dehy-
dration and decompo-

sition of cellulosics 
and sugars 

 

 

Methyl tetrahydrofuran 

-butyrolactone 

 

Actetyl acrylates 

Acetic-acrylic succinic  

acids 

 

Diphenolic acid  

Reduction 

 

 

Oxidation 

 

 

 

Condensation 

Fuels oxygenates 

Solvents 

 

Copolymerization with  

other monomers 

 

Replacement of  

bisphenol for  

polycarbonate  

 

 

3-Hydroxy-butyrolactone  

 

 

Oxidative degradation 

of starch 

 

Furans, Analogs of pyrrolidones 

 

Amino analogs to tetrahydrofuran 

Reduction 

 

 

Direct polymerization 

Solvents 

 

 

Amino analogs to  

lycra fibers 

Glycerol* 

 

Transesterification of 
oils 

Same in Table 1 Same in Table 1 Same in Table 1 

Sorbitol  

 

 

Hydrogenation of 
glucose 

 

 

 

 

Isosorbide, anhydrosugars 

 

Propylene glycol, lactic  

acid 

 

Branched polysaccharides 

Dehydration 

 

Hydrogenolysis 

 

 

Direct polymerization 

PET like polymers 

 

Antifreeze, PLA 

 

 

Water soluble polymers 

Xylitol/arabinitol  Hydrogenation of 
sugars or extraction 

from biomass pre-
treatment processes 

Xylaric and xylonic acids 

Arabonic and Arabinoic acids 

 

 

Polyols (propylene and ethylene 
glycols), lactic acid 

 

 

Xylitol, xylaric, xlyonic, polyes-
ters and nylons 

Oxidations 

 

 

 

Hydrogenolysis 

 

 

 

Direct polymerization 

New uses 

 

 

 

Antifreeze, UPRs 

 

 

 

New polymer  

1From Werpy et al. (2004).  
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