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Abstract: An adaptive iterative learning control(ILC) approach is proposed for a class of uncertain nonlinear systems 

without prior knowledge about system control directions. The Nussbaum-type gain and the positive definite discrete ma-

trix kernel are proposed for dealing with selection of the unknown control gain and learning of the repeatable uncertain-

ties, respectively. Asymptotic convergence for a trajectory tracking within a finite time interval is achieved through repeti-

tive tracking. Simulations are carried out to show the validity of the proposed control method. 

INTRODUCTION   

Iterative learning control(ILC) can deal with repeatable 
uncertainties through repetitive operations. Typical ILC’s are 
designed based on the discrete Lyapunov method and the 
control output is updated in an affine fashion such as the P 
type or D type learning [1,2]. They require some precondi-
tions on the learning gains. For example, given a linear dy-
namic system 
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in order to guarantee convergence in terms of the -norm, the 
learning gain L(t) should satisfy 1<CBLI . It implies that 
a priori knowledge about the control gain matrix CB has to 
be available for learning control design. There exist other 
stability conditions, e.g., paper [3] proposed an adaptive 
high-gain iterative learning controller for a class of multi-
input multi-output (MIMO) linear time-invariant systems but 
a priori knowledge about CB was generally required, which 
should be positively definite. In some applications, such as 
uncalibrated visual servoing, it is difficult to obtain this kind 
of prior knowledge, that involves the external and internal 
parameters of a camera system, and the learning control may 
deteriorate to divergence due to control singularity [4]. In 
this case, an offline calibration process for parameter estima-
tion or a trial run for gain tuning is necessary. The process is 
not only tedious but also requires a lot of human intervention 
with special expertise. In industry applications, there has 
been a tendency to develop techniques with less user inter-
vention. Typically, products are engineered as systems to 
perform set functions. While they may work effectively from 
an engineering perspective, it is often at the expense of how 
the system will be used by real people [5]. A good product is 
one that not only works but is also easy to use even with less 
prior knowledge. In this context, it is necessary to study 
methodologies that are able to gain model knowledge for 
ILC parameter setting without user intervention if we expect 
that ILC’s can be used by ordinary users in real applications. 
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In adaptive control, the Nussbaum gain [6,13] and the 
correction vector method [14] were proposed to deal with 
this kind of control problem without any prior model knowl-
edge. For the purpose of robot trajectory imitation with an 
unknown camera-robot model, paper [15] proposed an indi-
rect ILC for controlling systems without a priori knowledge. 
The indirect ILC identifies the gain matrix using a least 
square algorithm and then modifies the identified matrix, 
which might not yet converge to the true parameters, to 
avoid control singularity based on the correction vector 
method. Considering the fact that control of a system with 
less model knowledge involves two classes of learning that 
demand different resolutions, i.e. a coarse gain selection to 
satisfy the ILC preconditions and a fine leaning for compen-
sating repeatable uncertainties, an ILC combining a Nuss-
baum gain incorporating with adaptive ILC’s can be more 
suitable for real-time applications because it does not carry 
out explicit parameter identification. Nussbaum gain based 
ILC’s have been studied in [16,17] for single-input single-
output (SISO) nonlinear systems with an unknown control 
direction. Designing an iterative learning controller using 
Nussbaum gain for MIMO systems is significant for its ap-
plications, e.g. for uncalibrated visual servoing that appears 
to be more difficult than SISO systems to gain model knowl-
edge. Integrating with unmixing set, a Nusbaum gain based 
gain matrix selector was proposed for control of an MIMO 
linear system with nonsingular gain matrix [18].  

This paper proposes an adaptive ILC for a class of mini-
mum-phase MIMO nonlinear systems, where the repeatable 
nonlinear uncertainties are learned via an iterative learning 
law in a form of the positive definite discrete matrix kernel 
and the unknown control gain matrix, which is either posi-
tive definite or negative definite and is called a control direc-
tion, is dealt with by a Nussbaum gain for control direction 
probing. Under the control of the proposed algorithm, this 
paper shows that the unknown gain matrix is continuously 
probed and the control performance can be gradually im-
proved through repetitive operations. The tracking error se-
quence can be asymptotic to zero at the end. The influence of 
Nussbaum gain to the control performance is studied in 
simulations.  

PROBLEM FORMULATION  

In this paper, we consider a class of nonlinear systems 
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where t denotes the time horizon; i  denotes the i
th

  repeti-

tive tracking; mnRB  and nmRC  are unknown constant 

input and output matrices, respectively; pmRY )(  is a 

measurable nonlinear matrix; nRitf ),(  and pRita ),(  are 

unknown but repeatable vectors, i.e. )(),( tfitf =  and 

)(),( taita = ; nRitx ),( , mRitu ),(  and mRity ),(  are the 

state, the control input and the control output at instant t in 
the i

th
  tracking, respectively.  

Given a desired trajectories mRtr )(  over a finite time in-

terval ],0[ fT , the control objective is to design an iterative 

learning control ),( itu  with the ability to reduce tracking 

errors for the whole trajectory in the time interval ],0[ fT  

based on the past tracking experience, such that, as i , 

the system tracking error 

],0[    ,0)(),(),( fTttrityite = . The follows are the 

assumptions of system (2): 
Assumption 1. The control gain matrix CB  is symmetric 

and has spectrum )(CB  lying in either the open left )(C  
or the open right )( +C  half complex plane. 

Assumption 2. For every trial, the initial states can be re-
set to the desired states, i.e. ixxx di == ,)0()0( 0 . 

The assumption 1 assumes that CB  is either positive 
definite or negative definite but the designer has no prior 
knowledge about the control direction. The assumption 2 is 
the initial resetting condition of ILC’s.  

DESIGN OF CONTROL LAW  

For system (2), we know that 

 )],(),()),(([),(),( ituitaitxYCBitCfity ++=&  

The error equation can then be written as:  
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Notice that ))(),(()( 1 tritCfCB &  is repeatable, i.e. it is in-

variant over repetitive index i, because of f(t,i)=f(t). In addi-
tion, a(t)=a(t,i) is repeatable too. Let 

))()(()()( 1 trtCfCBtb &= , the error equation can be rewrit-

ten with regard to two unknown but repeatable uncertainties, 
a(t) and b(t): 

[ ] ),()()),(()()(),( itutaitxYtbCBite ++=&                   (3) 

If we know that CB is positive definite, an adaptive ILC 
can be proposed: 

),,(),(),( itgitgitu fl +=                                              (4) 

where ),(ˆ)),((),(ˆ),( itaitxYitbitgl +=  is an adaptive iterative 

learning term for compensating the repetitive uncertainties 

and ),(),( itKeitg f = , K>0, is a linear feedback term to cope 

with unrepeatable disturbances.  

If we do not have the prior knowledge about CB, a coarse 
exploration of the gain direction must be carried out. In the 
paradigm of adaptive control, the Nussbaum gains were pro-
posed for the exploration based on observation of a perform-
ance index [6,7]. A Nussbaum gain can be considered as a 
control-direction selector that can swing from positive to 
negative according to control performance, e.g. 

)exp()
2

1
cos()( 2

=yh , )exp()cos( 2   , )cos(2 , and 

)))(ln(cos()ln( sqrt , etc. Namely, a poor control perform-

ance, corresponding to a bigger dtd / , tends to change the 

control gain to its opposite direction but a good control per-
formance ceases this change. A Nussbaum gain has an in-
creased amplitude due to the fixed probing period in the 
Nussbaum functions. It gives a chance to the system to cor-
rect deviation caused by the previous control using a wrong 
gain. This may cause poor transients during the process of 
probing, which are the expense of exploration and may hap-
pen in any trial run for gaining unknown knowledge, e.g. 
movement excitation for identification, human learning to 
back a car. Notice that this does not mean the control gain 
may always increase. Because probing of each direction us-
ing a Nussbaum gain has a whole sine curve, the gain could 
be stabilised at a suitable value depending on the current 
tracking performance. 

Based on the above analysis, an adaptive ILC can be pro-
posed for coping with unknown control direction: 

),()),((),( itgitkitu =                                               (5) 

where ),(),(),( itgitgitg fl +=  and )),(( itk  is a Nussbaum-

type function with 

),(),(),( iteitgitk T
=&                                                  (6) 
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                                     (7) 

The control (5) integrates adaptive ILC, g(t,i) , with auto-

matic gain selection using a Nussbaum gain, )),(( itk . In 

this paper, we choose a Nussbaum-type function of 

),cos(:)( 2 kk=  Rk , which has the following property:  

Property 1. [6] The Nussbaum-type function )(  has the 

properties  
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Remark 1: In the Nussbaum gain based control, the perform-

ance index was often set as a norm of control errors, e.g. 
p

iteitk ),(),( =& . In this case, noise may cause increase in 

k(t,i) and further result in a high control gain v(k(t,i)). How-

ever, in (6), the performance observation of learning control 

is taken as ),(),( iteitg T  that is the projection of the learned 

term onto the control error and reflects convergence of a 

learning process. It could exhibit robustness to measurement 

noise, which will be verified in the simulations.  
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The control ),( itg  in (5) consists of a learning control term 

),( itgl
 and a feedback control term ),( itg f

: 

),,(),(),( itgitgitg fl +=
                                        (10) 
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),(),( itKeitg f =                                                     (12) 

where 2,1),( =mFm
 are any positive definite discrete matrix 

kernels; K is a positive constant. 

The learning control (11) in a form of positive definite 
discrete matrix kernels is motivated by the discrete model 
reference adaptive system design using the hyperstability 
approach [19], where a sub-problem is to find the most gen-
eral solutions for 

1
 such that the following inequality holds: 
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where 2

0
 is an arbitrary positive finite constant; v and w are 

the n-dimensional input and output of a block; qnR1
 

represents the adaptive mechanism; y is a finite q-

dimensional vector and qnRA0
 is an unknown but con-

stant matrix. 
Property 2. [18] The inequality of (13) is satisfied by: 

TlGylvlkFlkv )]()[1()(),,(1 +=  

where F(k-l) is a positive definite discrete matrix kernel 
whose Z-transformation is a positive real discrete transfer 
matrix with a pole at 1=z , and G is a positive definite ma-
trix. 

Although the inequality (13) can be held only for any un-
known constant matrix A0, the property 2 is able to be ex-
tended as a general solution of ILC’s in positive definite dis-
crete matrix kernels for repeatable uncertainties, e.g. 
a(i, t) = a(t) , if the learning is conducted along the iterative 
horizon i. However, the adaptive controls in time-horizon, 
which are able to adapt the constant or slow time-varying 
uncertainties, e.g. A0 in (13), are not very suitable for sys-
tems like (2), where f(t,i) and a(t,i) are both time-varying but 
repeatable. ILC can be an effective alternative.  

If let )1()( += kvkn , a(t)= -A0, y(k)=1, and G=1 in Prop-
erty 2, we can obtain the following property along iterative 
horizon i:  

Property 3. [4] For any vector )(in  and any repeatable 
constant vector a(t), a positive definite discrete matrix kernel 
F(i q) ensures that the following accumulation along itera-
tive horizon i is always upper bounded: 
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where 2

0
 is any positive finite constant. 

Example: Similar to the Integral Adaptation in the Model 

Reference Adaptive Systems[18], F(i) is taken as a diagonal 

matrix with elements of ’s,  >0. It is obvious that F(i)’s z-

transformation )
1

,,
1

()( =
z

z

z

z
diagzF L  with a pole at 

z=1. F(i) is a positive definite discrete matrix kernel because 

its z -transformation is a positive real discrete transfer ma-

trix. This can be verified by: 

(1) F(z) is analytic outside the unit circle. The pole on the 
unit circle is simple and the associated residue is positive. 

(2) Applying the transformation )1/()1( jjz +=  to F(z) 
, its real part is given by 

( ) )
2

1
,,

2

1
()(Re LdiagjF =  

Therefore, for all real , ( ) 0)(Re >jF . 

Now, we are going to verify the boundedness of the 
accumulation for F(i)=diag( ,…, ): 
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Remark 2: In the proposed ILC (11), if F1 and F2 are selected 

to be diag( 1…, 1) and diag( 2…, 2), 1>0 and 2>0, they 

lead to a P-type feedback learning using current tracking er-
rors: 
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Classical ILC’s use only the previous tracking errors for 
current learning [20]. It has an advantage that feedforward 
compensation can be calculated offline and be implemented 
online through a simple mechanism of retrieval-from-
memory. Some researchers introduced current iterative track-
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ing error into learning, called feedback ILC, and argued that 
could improve robustness to uncertainties, the tracking error 
bound and the ILC convergence rate [21,22]. The discrete 
definite positive kernels can provide a general class of feed-
back ILC’s. 

Remark 3: Other ILC’s can be derived from various posi-
tive definite discrete matrix kernels, e.g. an ILC in a form of 
a low pass filter along repetitive index: 

+=

+=

      ),()1,(ˆ),(ˆ

),()1()1,(),(

itWitbitb

iteitWitW . 

where the coefficient  of the filter must be less than 1/3 in 
order to be a positive definite discrete matrix kernel. 

It will be proved that the adaptive ILC of (5) that inte-
grates the adaptive ILC in discrete positive definite matrix 
kernels with the Nussbaum gain can cope with repeatable 
uncertainties and together with an unknown gain matrix.  

Theorem 1. Under the two assumptions and the control 
(5), k(t, i)  is bounded and the repetitive tracking error se-
quence is asymptotic to zero when iterations go to infinity, 
i.e. 0),( ite  as i . 

Proof of Theorem 1:  

By Assumption 1 there must exist an { }1,1  such that 

CB  is symmetrically and positively definite. We define 
11 )()(: == CBCBQ , then Q is symmetrically and posi-

tively definite too and IQCB = . We define a Lyapunov 

equation: 
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From (3) and (10), we have 
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   (14) 

Because of Assumption 2, i.e. V(0,i)=0, the total energy 
of the repetitive tracking from (0,0) to (t,i) can be obtained 
by:  
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Substituting (14) into it, we have  
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From the property 3 of a positive definite discrete matrix 
kernel, the updating laws of b̂(t, i) and â(t, i)  along iterative 
horizon can guarantee upper-boundedness of the first four 
terms, i.e.: 
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where 4,3,2,1),max(
22

== mm
, is a positive finite constant 

and equation (6) and equation (7) have been applied. 
Thus 
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which is lower bounded. It can be rewritten as  

f
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Suppose, at any time instant, ),( itk  becomes divergent. We 

consider the cases of positive and negative divergence: 

1) +),( itk  

Equation (17) implies 1)(
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where k(0,0)=0. It contradicts (9) if  is +1 or contradicts (8) 
if  is -1; 

2) ),( itk  
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Equation (17) implies 1)(
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where k(0,0)=0. It contradicts (8) if  is +1 or contradicts (9) 
if  is -1. 

So ),( itk  and thus +
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dkk  must keep bounded for 

repetitive tracking. Then, from (15), we know 

that
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f itVjTV  is bounded as a result. For this posi-

tive and monotonic series, we know that 0),( itV  as 

i , i.e. ],0[,0),( fTtite . 

NUMERICAL EXAMPLES 

Considering the following 2-dimensional system with an 
unknown gain matrix B and a repeatable uncertainty f(t): 

Butfx += )(&                                                        (18) 
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5.01
 and  

)cos(3

)sin(2
)(  where B

t

t
tf  are supposed to 

be unknown. 

Because of the time-varying uncertainty f(t), adaptive 
control along time-horizon is not adequate for control of this 
sort of systems but ILC’s can be an effective alternative.  

Based on the Theorem 1, an adaptive ILC can be con-
structed for tracking control of a given trajectory: 
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Fig. (1). The desired trajectory. 

The control law is designed below with a sampling pe-
riod of 20ms. 
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where the discrete positive definite matrix kernel is set to be 
a positive definite matrix, i.e. F1(.)=diag(2,2), and the feed-
back gain K=1.5. The control (20) consists of a control direc-

tion selector in a form of the Nussbaum functions and a his-
tory based learning control. In order to verify robustness of 
the Nussbaum gain, suppose that there exists a random 
measurement noise n in uniform distribution on the interval 
of [-0.05, 0.05], i.e., em(t,i)=e(t,i)+n.  

Fig. (2) depicts the first tracking errors. In the first track-
ing, because the controller did not know its correct control 
direction and did not have any compensation to the move-
ment, it showed a big tracking error that caused the Nuss-
baum gain to probe the correct control direction. The evolu-
tion of the control performance observation k(t,i) and the 
corresponding Nussbaum gain are plotted in Fig. (3). From 
the figure, we did not see any evidence of divergence due to 
the measurement noise and the coarse gain probing reached 
the correct gain after the first trial. The RMS(Root Mean 
Square) error of the iterative learning control is illustrated in 
Fig. (4). It clearly indicates the learning and control capabili-
ties of the proposed control law that includes a coarse prob-
ing of the control direction and a fine tuning for movement 
and uncertainty compensation. The control errors of the 30

th
 

tracking is depicted in Fig. (5). Comparing with the control 
errors of the 1

st
 tracking in Fig. (2), we can find that the 

maximum tracking errors in both directions are reduced from 
ex1max=6.189 and ex2max=11.05 to ex1max=0.096 and 
ex2max=0.086. 
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Fig. (2). The first tracking errors for the case 1. 
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Fig. (3). Nussbaum gain v and k(t,i) for the case 1. 
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Fig. (4). RMS error of the ILC for the case 1. 
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Fig. (5). The 30
th

 tracking errors for the case 1. 

Now we suppose an unknown system with a repeatable un-

certainty of ==
15.0

5.01
 and  

5.0
)(
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B
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e
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t

t

, which is 

negatively definite. The same control law is applied for the 
trajectory tracking. Fig. (6) and Fig. (7) show the 1
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 tracking errors. The proposed control law can automati-
cally probe the control gain quickly as shown in Fig. (8).  
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Fig. (6). The first tracking errors for the case 2. 
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 tracking errors for the case 2. 
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Fig. (8). Nussbaum gain v and k(t,i) for the case 2. 

Notice the evolution of the Nussbaum gain in Fig. (3) and 
Fig. (8), we can make the following conclusions: 

1 the Nussbaum gain can find out the correct gain rap-
idly within the first trial and thereafter tracking will contrib-
ute to the learning of compensation as typical ILC’s;  

2 an interesting phenomenon can be observed that steep 
increase of k(t,i) and the corresponding Nussbaum gain v 
usually occur near the end of the first tracking. It is caused 
by large tracking errors and exhibits more oscillation for 
gain exploration. However, after start of the second tracking, 
both k(t,i) and v are quickly stabilised because of the initial 
resetting of ILC’s after a short period of local tunings. Con-
sequently, repetitive resetting is a good strategy for Nuss-
baum function based gain selection, which gives a chance to 
do fine tuning of the gain. It also inspires us that, in the 
Nussbaum-gain based adaptive control, a reference rectifying 
strategy, i.e. modifies the desired trajectory to align with the 
current state and forces control error to zero regularly, could 
effectively help stabilise the gain-selection process and avoid 
extremely high-gain control, which also implies that a better 
transient performance could be achieved;   

3 even with a measurement noise in a range of [-
0.05,0.05], both k(t,i) and the Nussbaum gain v(k(t,i)) can be 
stabilised. 
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CONCLUSIONS 

Integrating Nussbaum gains with positive definite dis-
crete matrix kernels, this paper proposed an adaptive ILC 
consisting of a coarse control direction selector and a fine 
learning control for a class of nonlinear systems. The sys-
tems may include time-varying but repeatable linear parame-
ters and an unknown positive or negative definite control 
gain matrix. Without any prior knowledge about these uncer-
tainties, the paper proved that the output is able to converge 
to the desired one through repetitive tracking. The simula-
tions showed that Nussbaum gains can effectively incorpo-
rate with adaptive ILC’s to control a system with an un-
known control direction. 
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