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Abstract: The stochastic optimal control is an important research subject in structural engineering. Recently, a stochastic 
optimal nonlinear control method has been proposed based on the stochastic dynamical programming principle and sto-
chastic averaging method. The active and semi-active stochastic optimal control methods have been further developed for 
structural systems. The control saturation or bound, partial state observation, etc. have been taken into account by the sto-
chastic optimal control. The present paper surveys these research developments.  

INTRODUCTION   

The strong nonlinear stochastic vibration of engineering 
structures such as tall buildings and large bridges is fre-
quently caused by severe loadings such as earthquake and 
storm. The stochastic optimal control is an important re-
search subject in structural engineering [1]. The mathematics 
theory of stochastic optimal control has been developed [2-
4]. However, the linear-quadratic-Gauss (LQG) control 
method has mostly used for structural vibration control [5]. 
Recently, some stochastic optimal nonlinear control methods 
[6, 7] have been proposed, in particular, the method based on 
the stochastic dynamical programming principle and stochas-
tic averaging method [8-17]. This control method can 
achieve better control effectiveness and efficiency than the 
LQG control method. These research developments are sur-
veyed as follows: (1) stochastic optimal control law; (2) op-
timal active control; (3) optimal semi-active control; (4) de-
velopments of stochastic optimal control method.  

STOCHASTIC OPTIMAL CONTROL LAW [8, 9]  

A controlled and stochastically excited nonlinear struc-
tural system with multi-degree-of-freedom can be expressed 
as 
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where X is the n-dimensional structural displacement vector, 
Vs(X) is the structural potential, W(t) is the stochastic excita-
tion vector, U is the control force vector. Rewrite Eq. (1) in 
the following form of quasi Hamiltonian equation: 
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where H is the Hamiltonian function, Qi and Pi are respec-
tively displacement and momentum, Wk(t) is the stochastic 
excitation, assumed as Gaussian white noise, ui is the con-
trol. 

Apply the stochastic averaging method to system (2) 
yields averaged Itô stochastic differential equations. In the 
integrable and non-resonant case , for instance, the Itô equa-
tion is 
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where Hr is the first integral of Hamiltonian system, mr and 
σrs are respectively the averaged drift and diffusion coeffi-
cients, Bs(t) is the unit Wiener process, <⋅> is the average 
operator. The objective of stochastic optimal control is to 
design a control ui which minimizes the performance index 
of system (2) or (3). For finite time-interval response control, 
the performance index is 
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and for infinite time-interval ergodic control, it is 
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where L is the performance function, Ψ is the terminal cost. 
Eqs. (3) and (4) constitute a stochastic optimal control prob-
lem. By using the stochastic averaging method, the dimen-
sion of system equations can been reduced, the dynamical 
programming equation becomes non-degenerate and the re-
sponse control is converted into the energy control. 

According to the stochastic dynamical programming 
principle, the dynamical programming equation can been 
built, for system (3) and index (4b) as 
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where V is the value function. Then the optimal control law 
can be obtained by minimizing the left side of Eq. (5). Let 
function L be 
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The optimal control is 
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where ∂Hr/∂Pj is a linear function of velocity generally so 
that ui

* is a quasi-linear damping force. The value function V 
is obtained by solving the following equation: 
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The stochastic optimal control method above has been 
applied to a single-degree-of-freedom system with cubic 
nonlinearity and two-degree-of-freedom nonlinear system 
under Gaussian white noise and seismic excitations. Numeri-
cal results show that the control effectiveness and efficiency 
by using the proposed method are better than by using the 
LQG method in terms of root-mean-square response (Figs. 1 
and 2). 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. (1). Control effectiveness (K-percentage reduction in root-
mean-square displacements). 

 

 

 

 

 
 

Fig. (2). Control efficiency (µ-ratio of control effectiveness to nor-
malized root-mean-square control). 

OPTIMAL ACTIVE CONTROL [10, 11]  

The optimal feedback control (7) can be implemented by 
active control devices, for instance, active mass damper 
(AMD). The optimal active control method has been applied 

to the vibration control of a hysteretic column system and 
coupled adjacent structures.  

Optimal Active Control of Hysteretic Column 

A controlled and parametrically/externally excited hys-
teretic column system can be expressed as 
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where X is the dimensionless horizontal displacement, Z is 
the hysteretic force satisfying BW hysteresis Eq. (9b), η(t) 
and ξ(t) are respectively the vertical parametric excitation 
and horizontal external excitation, assumed as Gaussian 
white noises, u is the control. Firstly, the hysteretic force Z is 
separated equivalently into quasi-linear damping force and 
nonlinear elastic restoring force to yield equivalent non-
hysteretic system 
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where H is the total system energy. Then applying the sto-
chastic averaging method yields averaged Itô stochastic dif-
ferential equation 
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According to the stochastic dynamical programming 
principle, the dynamical programming equation for system 
(11) and index (4b) is obtained as 
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For the function L quadratic in control, the optimal active 
control is 
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The response statistics of the controlled system can be 
evaluated by substituting the optimal control into Eq. (9a) 
and using the stochastic averaging method. Numerical results 
are shown in Fig. (3). 
 

 
 
 
 
 
 
 
 
 

 

Fig. (3). Control effectiveness (Κ-percentage reduction in root-
mean-square displacements) and efficiency (µ-ratio of control ef-
fectiveness to normalized root-mean-square control) of the hys-
teretic column. 
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Optimal Active Control of Coupled Adjacent Structures 

A controlled and coupled multi-storey structures system 
under seismic ground motion excitation can be expressed as 
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where X1 and X2 are respectively the displacement vectors of 
structures 1 and 2, x••g (t) is the seismic excitation with the KT 
power spectral density, U is the coupling control force vec-
tor. By the structural mode transforming, reducing and sto-
chastic averaging, the Itô stochastic differential equation 
obtained is 
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where H  is the modal energy vector of the coupled struc-
tures, Q  is the modal displacement vector, v

U  is the modal 
control force vector, m  and !  are respectively the drift 
coefficient vector and diffusion coefficient matrix. For sys-
tem (15) and index (4b), the dynamical programming equa-
tion is obtained as 
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For the function L quadratic in control, the optimal active 
control is 
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The response statistics of the controlled system can be 
evaluated by substituting the optimal control into Eq. (14) 
and using the stochastic averaging method. Numerical results 
are shown in Figs. 4(a) and 4(b). 

OPTIMAL SEMI-ACTIVE CONTROL [12-14]  

The semi-active control depends on a smaller power sup-
ply and is more significant. The dynamic characteristics of 
semi-active control devices need to be taken into account by 
control. The MR damper is a classical semi-active control 
device, which can been described by the Bingham model or 
Bouc-Wen model [18, 19]. The MR-TLCD is another semi-
active control device. 

Semi-Active Control Law Based on the Bingham Model 
of MR Dampers 

By applying the stochastic averaging method and sto-
chastic dynamical programming principle to system (1) or 
(2), the optimal active control (7) can be determined. How-
ever, The semi-active MR damper cannot always implement 
the optimal active control law. According to the Bingham 
model, the control produced by an MR damper is 
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The first part of control (18) is a passive control compo-
nent which can be incorporated in system, and the second 
part of control (18) is a semi-active control component 
which has the amplitude Fi adjustable by the applied voltage 
and is in the opposite direction of velocity. If the semi-active 
control (18) disagrees with the optimal control, it is set to be 
zero. Therefore, the optimal semi-active control is 

!
"
#

<

$%
=

0,0

0),sgn(
*

**

i

iiis

i
F

FQF
u

&

                               (19a) 

)sgn(
2

1 1*

i

rj

r
iji Q

H

V

P

H
RF &

!

!

!

!
=

"

                                 (19b) 

The efficacy of semi-active control (19) is generally 
lower than that of the corresponding active control (7). How-
ever, under certain conditions, the relation Fi

*≥0 always 
holds so that the semi-active control (19) agrees with the 
active control (7). Thus the semi-active MR dampers can 
perform the optimal active control law. 

Semi-Active Control Law Based on the Bouc-Wen Model 
of MR Dampers 

The Bouc-Wen model can quite describe the dynamic 
characteristics of MR dampers such as hysteresis. According 
to this model, the control produced by an MR damper is 

iiiii zQcu !""= &
                                                  (20a) 

1!
!!=

ii n

iiii

n

iiiiii zzQzQQAz &&&& "#
                        (20b) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. (4). Control effectiveness (K) and efficiency (µ) of the cou-
pled adjacent structures. 
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The coefficients ci and αi can be separated into two parts, 
respectively. The first parts cip and αip are constants, and the 
second parts are proportional to the applied voltage Ui. That 
is 

iisipi Uccc +=  ，  iisipi U!!! +=                       (21a,b) 

Substituting semi-active control (20) and (21) into system 
(2), converting it into equivalent non-hysteretic system and 
incorporating the passive control component in the system 
yield 
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By using the stochastic averaging method and stochastic 
dynamical programming, the optimal semi-active control 
voltage is obtained as 
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If the right-hand side of Eq. (23) is negative, voltage Ui
* 

is set to be zero. Under certain conditions, the right-hand 
side of Eq. (23) can be always non-negative. Fig. (5) shows 
the control effectiveness and efficiency of a single-degree-
of-freedom system. 
 

 
 
 
 
 
 
 
 
 
 

 

Fig. (5). Semi-active control effectiveness (Ks) and efficiency (µs) 
based on the Bouc-Wen model. 

Semi-Active Control Law of MR-TLCD 

MR-TLCD is a new semi-active control device combin-
ing magneto-rheological fluid and tuned liquid column 
damper, which can be installed at the top floor of buildings 
for vibration control. A controlled building structure with an 
MR-TLCD under wind loading can be expressed as 
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Eqs. (24a) and (24b) are respectively the building and 
MR-TLCD equations of motion. fD is the interaction force. 
Fw(t) is the wind excitation with the Davenport spectrum. u 
is the control force produced by the MR fluid, which can be 

separated into passive part up and semi-active part us. Mak-
ing the modal transformation of (24a), combining it with 
(24b) and linearizing statistically yield 
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According to the stochastic dynamical programming 
principle, the optimal semi-active control obtained is 
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By substituting the semi-active control into Eq. (24) and 
using the statistical linearization method, the response of the 
controlled system can be evaluated. Numerical results are 
shown in Fig. (6). 
 

 

Fig. (6). Control effectiveness of the 51-storey building with 
MR-TLCD. 

DEVELOPMENTS OF STOCHASTIC OPTIMAL 
CONTROL METHOD [15-17]  

In fact, an optimal feedback control is affected by actua-
tor saturation, partial state observation and control time de-
lay. The control method needs to take these factors into ac-
count. 

Stochastic Optimal Control Law for Actuator Saturation 

The symmetric bounded control constraint can be ex-
pressed as 
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Under this condition, the optimal bounded control de-
rived from (7) is 
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Numerical results show that control (28) has higher effi-
ciency than the corresponding bang-bang control (Fig. 7) and 
can attenuate the chattering of bang-bang control (Fig. 8). 
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Fig. (7). Control efficiency of proposed stochastic optimal 
bounded control and bang-bang control. 

 
 
 
 
 
 
 
 
 
 

 

Fig. (8). Power spectral density (PSD) of acceleration responses 
of bang-bang control (BBC) and proposed stochastic optimal 
bounded control (OBC). 

Stochastic Optimal Control Law for Partially Observable 
Systems 

Actual control systems are partially observable due to in-
evitable state measuring and estimating errors. The stochas-
tic optimal control problem of partially observable systems 
can be converted into that of completely observable systems 
by the separation theorem. The stochastic optimal control 
problem of a partially observable system can be expressed as 
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Eqs. (29a), (29b) and (29c) are the system equation of 
motion, observation equation and control performance index, 
respectively. If Eqs. (29a) and (29b) are linear, the partially 
observable control problem (29) can be converted into the 
following completely observable control problem: 
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where X̂  is the optimal estimation of X. Estimation error 
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The optimal control of completely observable system 
(30) can be determined by using the method above. 

If Eqs. (29a) and (29b) are nonlinear, separate control 
into two parts, i.e., u=u1+u2 and select u1 such that G+Bu1 
and E+Fu1 are potential functions, and then convert the par-
tially observable control problem (29) into the following 
completely observable control problem: 
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where VI is the innovation process. The optimal control of 
completely observable system (32) can be determined simi-
larly. Numerical results are shown in Fig. (9). 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
Fig. (9). Control effectiveness of the partially observable non-
linear system. 

Stochastic Optimal Time-Delayed Control Law 

The optimal time-delay control problem can be expressed 
as 
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where τ is the time delay in control. Based on the stochastic 
averaging method for time-delayed systems, the state trans-
formation is obtained as 
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and the Itô stochastic differential equation is 
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The corresponding performance index for infinite time-
interval ergodic control is 
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Eq. (35) is a non-time-delay optimal control problem and 
its optimal control can be determined by using the method 
above. The inverse transformation of (34) is 
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Using (36) yields the optimal time-delayed control 
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where (⋅)τ represents the time-delayed state function. These 
control methods have respectively taken into account the 
effects of actuator saturation, partial state observation and 
control time delay, and however, need to improve further.  
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