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1. INTRODUCTION  

 Let E be a Banach space with norm |.| and U be another 
Banach space taking the control values. In this article, we 
would like to consider the controlled neutral functional 
second order inclusion   

  

[y´(t)  f (t, y
t
)]́   Ay(t) + Bu(t) + Gy´(t) + 

F  (t, y
t
, y´(t)), t   J  

y
0
 = , y(0) = x

0

 (1.1) 

 Here the state y(t) takes values in E and the control u  
L

2
(J, U), the space of admissible controls, where J = (0, ). 

Further, we assume A is the infinite generator of strongly 
continuous Cosine family {C(t): t  R} defined on E (we 
make this precise later) and B : U  E is a bounded linear 
operator. The map F : J  Cr  E  2

E 
is a bounded, closed, 

convex multi-valued map. Let r > 0 be the delay time and Cr 

= C([ r, 0], E) be the Banach space of all continuous 
functions with the norm || || = sup{| ( )| : r    0}. Let J0 

= [ r, 0] and   Cr and x0  E be the given initial 
conditions. Also for any continuous function y defined on the 
interval J1 = [ r, ) with values in E and for any t  J, we 
denote by yt an element of C(J0, E) defined by yt( ) = y(t + 
),   J0. Here G is a bounded linear operator on E.  

 Our aim is to study the exact controllability of the above 
abstract system which will have applications to many 
interesting systems including PDE systems. We reduce the 
controllability problem (1. 1) to the search for fixed points of 
a suitable multi-valued map on a subspace of the Banach 
space C(J, E). In order to prove the existence of fixed points, 
we shall rely on a theorem due to Ma [3], which is an 
extension of Schaefer´s theorem [4] to multi-valued maps 
between locally convex topological spaces.  
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 The controllability of second-order system with local and 
nonlocal conditions are also very interesting and researchers 
are engaged in it. Many times, it is advantageous to treat the 
second-order abstract differential equations directly rather 
than to convert them to first-order system. For example, refer 
Fitzgibbon [5] and Ball [6]. In [5], Fitzgibbon used the 
second-order abstract system for establishing the bounded-
ness of solutions of the equation governing the transverse 
motion of an extensible beam. A useful tool in the study of 
abstract second-order equations is the theory of strongly 
continuous cosine families [7, 8]. Balachandran and Marshal 
Anthoni [9-12] discussed the controllability of second-order 
ordinary and delay, differential and integro-differential 
systems with the proper illustrations, without converting 
them to first-order by using the cosine operators and Leray 
Schauder alternative. Quinn and Carmichael [13] have first 
shown that the controllability problem in Banach spaces can 
be converted in to a fixed point problem for a single valued 
map. Recently, Chang and Chalishajar [14] studied the 
controllability of Volterra-Fredholm type integro-differential 
inclusion in Banach spaces through Bohnenblust-Karlin´s 
fixed point theorem. Chalishajar [15] has also obtained 
sufficient condition for controllability of nonlinear integro-
differential third order dispersion system without compact-
ness of semi-group. Chalishajar, George and Nandakumaran 
use the monotone operator techniques to prove the 
controllability of third order dispersion system [16]. Also 
they studied controllability result for second order inclusion 
in Banach space [17]. Benchohra and Ntouyas [18] proved 
the existence and controllability results for nonlinear 
differential inclusions with nonlocal conditions. Also they 
considered controllability of functional differential and 
integrodifferential inclusions in Banach spaces [19]. In both 
the papers they used a fixed point theorem for the 
condensing maps due to Martelli. Then they demonstrated 
the controllability results for multi-valued semi-linear neutral 
functional equation [20]. Benchohra, Gorniewicz and 
Ntouyas [1] paid there attention to show the controllability 
on infinite time horizon for first and second-order functional 
differential inclusions in Banach spaces. The existence of the 
system considered in [1] was also proved by them. They 
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used here the fixed point theorem due to Ma [3]. Our 
intention in this paper is to study the controllability on 
infinite time horizon for second-order damped semi-linear 
neutral functional differential inclusion in Banach spaces. 
We consider the multi-valued map which is function of both 
the delay term as well the derivative of the unknown 
function. We will take the help of fixed point theorem due to 
Ma, which is an extension of Schaefer´s theorem to locally 
convex topological spaces, semigroup method [21] and set-
valued analysis [22, 23].  

 The study of the dynamical buckling of the hinged 
extensible beam which is either stretched or compressed by 
axial force in a Hilbert space, can be modelled by the 
hyperbolic equation  

  

2u
1

t2
+

4u
1

t4
= + |

i
1

t
( ,t) |2 d

0

L
2u

1

x2
+ g

u
1

t
,  (1.2) 

where , , L > 0 and u1(t, x) is the deflection of the point x 
of the beam at the time t. Also g is a nondecreasing 
numerical function and L is the length of the beam.  

 Equation (1. 2) has its analogue in R
n 

and can be included 
in a general mathematical model  

u1”+ A
2
u1 + M(||A 

1

2 u1|
  
|
H

2
)Au1 + g(

  
u

1

'
) = 0,  (1. 3) 

where A is a linear operator in a Hilbert space H and M, gare 
real functions. Equation (1.2) was studied by Patcheu [24] 
and (1.3) was studied by Matos and Pereira [25]. These 
equations are the special cases of the following second order 
damped nonlinear differential equation in an abstract space  

u1”+ Au1 + G
  
u

1

'
= f(t, u1, 

  
u

1

'
); u1(0) = u10, 

  
u

1

'
(0) = u11, (1. 4)  

where A, B are linear operators.  

 The outlay of the paper is as follows. Following section 
provides necessary preliminaries so that the system can be 
put in the integral form which gives the existence of a mild 
solution. In Section 3, we represent the state of the system in 
terms of the Cosine and Sine family and reduce the 
controllability to that of finding a fixed point of a multi-
valued map. We then establish the existence of a fixed point 
by applying a fixed point theorem due to Ma [3]. Finally in 
Section 4, we present an example to illustrate our theory.  

2. PRELIMINARIES 

 In this section, we introduce notations, definitions, and 
preliminary facts from multi-valued analysis which are used 
throughout this paper. Let Jm = [0, m], m  N. The space C(J, 
E) is the Banach space of continuous functions from J into E 
with the metric (see [26])  

  

d( y, z) =
2 m || y z ||

m

1+ || y z ||
mm=0

, for each y, z  C(J, E) 

where  

|y|m : = sup{|y(t)| : t  Jm}. 

 Let B(E) be the Banach space of bounded linear operators 
from E to E with the standard norm. A measurable function y 
: J  E is Bochner integrable if and only if |y| is Lebesgue 
integrable. For properties of the Bochner integral, we refer to 

[27]. Let L
1
(J, E) denotes the Banach space of Bochner 

integrable functions and Up denotes a neighbourhood of 0 in 
C(J, E) defined by  

Up1 : = {y  C(J, E): |y|m   p1} 

The convergence in C(J, E) is the uniform convergence in 
the compact intervals, i.e. yj  y in C(J, E) if and only if ||yj 

 y||m  0 in C(Jm, E) as j   for each m  N. A set M  
C(J, E) is a bounded set if and only if there exists a positive 
function   C(J, R+) such that  

|y(t)|  (t) for all t  J and y  M. 

The Arzela-Ascoli theorem says that a set M  C(J, E) is 
compact if and only if for each m  N, M is a compact set in 
the Banach space (C(Jm, E), ||.||m).  

 We say that one-parameter family {C(t): t  R} of 
bounded linear operators in B(E) is a strongly continuous 
cosine family if and only if  

1 C(0) = I, I is the identify operator on E.  

2 C(t + s) + C(t  s) = 2C(t)C(s) for all s, t  R.  

3 the map t  C(t)y is strongly continuous in t on R for 
each fixed y  E.  

 The strongly continuous Sine family {S(t): t  R}, 
associated to the strongly continuous Cosine family {C(t): t 

 R} is defined by  

S(t)y = 
  

C(s)y ds,
0

t

y  E, t  R. 

Assume the following condition on A :  

(H1) A is the infinitesimal generator of a strongly continuous 
cosine family C(t), t  R of bounded linear operators E into 
itself and the adjoint operator A

* 
is densely defined, i.e. 

D(A
*
) = E

* 
(see [27]).  

 The infinitesimal generator of a strongly continuous 
Cosine family C(t), t  R is the operator A : D(A)  E  E 
defined by  

Ay = 
  

d
2

dt
2

C(t)y|t = 0, y  D(A), 

where D(A) = {y  E : C(.)y  C
2
(R, E)}. Define E1 = {y  E 

: C(.)y  C
1
(R, E)}.  

LEMMA 2.1. ([7]) Let (H1) hold. Then  

1.  there exists constant M1  1 and w  0 such that 

|C(t)|  M1e 
w|t| 

and | S(t)  S(t )|  M1| 
  

e
w|s|

ds
0

t*

| for 

t, t
 

 R.  

2.  For y  E, S(t)y  E1 and so S(t)E  E1 for t  R.  

3.  For y  E1, C(t)y  E1, S(t)y  D(A) and 

 

d

dt

C(t)y = 

AS(t)y, t  R.  

4.  For y  D(A), C(t)y  D(A) and 

  

d

dt
2

 
C(t)y = AC(t)y 

for t  R.  
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LEMMA 2.2. ([7]) Let (H1) holds, let v  C
1
(R, E) and let 

q(t) = 
  

S(t s)v(s) ds
0

t

.  Then 

q  C
2
(R, E) for t  R and q(t)  D(A). 

Further q satisfies  

q (t) = 
  

C(t s)v(s) ds
0

t

and q   (t) = Aq(t) + v(t). 

For more details on strongly continuous Cosine and Sine 
family, we refer the reader to the book of Goldstein [28] and 
papers of Travis and Webb [7, 8]. We now recall some 
preliminaries about multi-valued maps.  

 Let (X, ||.||) be a Banach space. A multi-valued map G : X 
 2

X 
is convex (resp. closed) if G(x) is convex (resp. 

closed) in X for all x  X. The map G is bounded on bounded 
sets if G(B) = Ux BG(x) is bounded in X for any bounded set 
B of X (i.e. supx B{sup{||y|| : y  G(x)}} < ). G is called 
upper semi continuous (u. s. c.) on X if for each x0  X the 
set G(x0) is a nonempty, closed subset of X and if for each 
open set B of X containing G(x0), there exists an open 
neighborhood A of x0 such that G(A)  B. The map G is said 
to be completely continuous if G(B) is relatively compact 
for every bounded subset B  X.  

 If the multi-valued map G is completely continuous with 
nonempty compact values, then G is u. s. c. if and only if G 
has a closed graph. That is, if xn  x0 and yn  y0, where yn 

 G(xn), then y0  G(x0). We say, G has a fixed point if there 
is x  X such that x  Gx. In the following BCC(X) denotes 
the set of all nonempty bounded, closed and convex subsets 
of X.  

 A multi-valued map G : J  BCC(E) is said to be 
measurable, if for each x  E, the distance function Y : J  
R defined by  

Y(t) = d(x, G(t)) = inf{|x  z| : z  G(t)} 

is measurable. For more details on multi-valued maps, see 
[22, 23].  

 We assume the following hypotheses:  

(H2) C(t), t > 0 is compact.  

(H3) Bu(t) is continuous in t and M2 be constant such that 
|B|  M2.  

(H4) Let m  N be fixed. Let W : L
2
(J, U)  E be the linear 

operator defined by  

  
Wu = S(m s)Bu(s) ds

0

m

 

Then W : L
2
(J, U)/kerW  E induces a bounded invertible 

operator    W
1

and there exists positive constant M3 such that 

and |   W
1

|  M3. For construction of   W
1

, refer [10].  

(H5) The function f : J  Cr  E is completely continuous 
and for any bounded set B  C(J1, E), the family {t  f(t, 
yt): y  B} is equicontinuous in C(J, E). Further assume, 
there exist constants 0  c1 < 1 and c2  0 such that for all t  

J,   Cr, we have  

|f(t, )|  c1||  || + c2. 

(H6) The multi-valued map (t, , y)  F (t, , y) is 
measurable with respect to t for each   Cr and y  E and F 
is u. s. c. with respect to second and third variable for each t 

 J. Moreover for each fixed z  C(J1, E) and y  C(J, E) 
the set  

SF, z, y = {v  L
1
(J, E) : v(t)  F(t, zt, y(t)) for a.e. t  J} 

is nonempty.  

(H7) We assume F satisfies the following estimate. Given  
 Cr and y  E, there exist p  L

1
(J, R+)  

||F (t, , y)|| : = sup{|v| : v  F(t, , y)}  p(t) (|| || + |y|), 

where  : R+  (0, ) is continuous and increasing and there 

is a c > 0 such that the integral 
  

ds

s + (s)c

=

 
is sufficiently 

large (an explicit lower bound and expression for c can be 

given). For example one can take  such that  

  

ds

s + (s)c

= . 

(H8) For z  C(J1, E) and y  C(J, E) varies in a 
neighborhood of 0 and t  J, the set  

(C(t)  S(t)G) (0) + S(t)[x0  f(0, )] + 

  
C(t s) f (s, y

s
) ds +

0

t

 

  
+ C(t s)Gy(s) ds +

0

t

S(t s)Bu(s) ds + S(t s)v(s) ds,
0

t

0

t

 

is relatively compact. 

 Then the integral equation formulation of the system 
(1.1) can be written as [29] 

  

y(t) = (t), t j
0

y(t) = (C(t) S(t)G) (0)+ S(t)[x
0

f (0, )]+ C(t s) f (s, y
s
) ds

0

t

+ C(t s)Gy(s) ds + S(t s)Bu(s) ds + S(t s)v(s) ds,
0

t

0

t

0

t

 

where v  SF;y;y  = {v  L
1
(J, E) : v(t)  F(t, yt, y  (t)) for a.e. t 

 J} is called the mild solution on J of the inclusion (1.1). 

REMARK 2.3. If dim E <  and J is a compact real 
interval, then SF;y;y    (see [30]). 

DEFINITION 2.4. The system (1.1) is said to be 
controllable on J if for every  Cr with  (0)  D(A), x0  E1, 
y1  E and for each m, there exists a control u  L

2
(Jm, U) 

such that the solution y(.) of (1.1) satisfies y(m) = y1. 

The following lemmas are crucial in the proof of our main 
theorem to be stated and proved in the next section. 

LEMMA 2.5. ([30]) Let I = Jm be the compact real interval 
and X be a Banach space. Let F be a multi-valued map 
satisfying (H6) and let  be a linear continuous mapping 
from L

1
(I, X) to C(I, X), then the operator 

oSF : C(I, X)  BCC(C(I, X)) defined by  

y  ( oSF )(y) := (SF;y
t
;y ) 

is a closed graph operator. 

LEMMA 2.6. ([3]) Let X be a locally convex space and N1 : 
X  2

X
 be a compact, convex, u.s.c. multi-valued map such 

that there exists a closed neighborhood Up of 0 for which 
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N1(Up) is a relatively compact set for each neighborhood N1. 
If the set  

 : = {y  X : y  N1(y) for some  > 1} 

is bounded, then N1 has a fixed point.  

3 CONTROLLABILITY RESULT 

 We now state and prove the main controllability result.  

THEOREM 3.1. Assume that the hypotheses (H1)  (H8) 
are satisfied. Then the system (1.1) is controllable on J.  

Proof: Fix m  N. Consider the space  

Z = {y  C([ r, m], E) : y|[0, m]  C
1
([0, m], E)} 

with the norm 

||y||z = max{||y||C([ r, m], E), ||y||C1
([0, m], E)}.  

 Using the hypothesis (H4) for y  Z we define the control 
formally as  

   
u(t) =W

1

y
1

(C(m) S(m)G) (0) S(m)[x(0) f (0, )] C(m s)
0

m
 

  
f (s, y

s
)ds C(m s)Gy(s) ds S(m s) ds

0

m

0

m

(t).  (3.1) 

 Using the above control, define a multi-valued map N1 : Z 
 2

Z 
by  

(N1y)(t) =  (t) for  r  t  0  

and for m  t  0  

N1y : = {h  C(J, E): h satisfies (3. 2)}, 

where h is given by  

h(t)=(C(t) S(t)G) (0)+S(t)[x0  f(0, )] + 
  

C
0

t

(t  s)f(s, ys)ds  

+
  

C
0

t

(t s)Gy(s)ds+
  

S
0

t

(t s)v(s)ds+
  

S
0

t

(t )Bu( )d .(3.2)  

Here u is defined as in (3.1) and v  SF, yt, y’ 
.
 Our aim is to 

prove the existence of a fixed point for N1. This fixed point 

will then be a solution of equation (2.1). Clearly (N1y)(m) = 

y1 which means that the control u steers the system from 

initial state y0 to y1 in time m, provided we obtain a fixed 

point of the nonlinear operator N1.  

 In order to obtain the fixed point of N1, we need to verify 
the various conditions in Lemma 2. 6.  

Step 1: The set  : = {y  Z : y  N1(y),  > 1} is bounded. 
To see this, let y  . Then y has the representation for t  0  

  

y(t) = 1h(t) = 1(C(t) S(t)G) (0) + 1S(t)[x
0

f (0, )]

+ 1 C(t s) f (s, y
s
) ds +

0

t

+ 1 C(t s)Gy(s) ds
0

t

+ + 1 S(t s)v(s) ds + + 1 S(t )Bu( ) d ,
0

t

0

t

 (3.3) 

where u is defined as in (3. 1). It is, then easy to observe that 
y is a mild solution of the system  

[y (t)
1
f(t, yt)]  

' 

 
1
Ay(t) +

1
Gy (t) + 

1
Bu(t) +

1
F(t, yt, y  (t)), t  J.  (3.4)  

 Thus we have to obtain bounds on y and y
 
independent 

of  > 1 which will prove the boundedness of .  

 Using the assumptions, it is easy to obtain positive 
constants C1, C2, C3 depends on the initial values, m and 

bounds on the Cosine and Sine operators such that  

   
| y(t) | C

1
+C

2
|| y

s
||

0

t

ds +C
3

p(s) (|| y
s

||+ | y (s) |) ds
0

t

 for 

all r  t  m.  

Denoting by v(t), the right-hand side of the above inequality, 
we get  

(t)  v(t). 

Here the function  is defined by  

(t) = sup{|y(s)| : r  s  t} : r  t  m.  

Further v(0) = C1 and  

 v (t)  C2 (t) + C3p(t) ( (t) + y (t)) 

          C2v(t) + C3p(t) (v(t) + |y (t)|), t  J.  

Now  

y (t)=
1
(AS(t)  C(t)G) (0) + 

1
C(t)[x0  f(0, )] + 

1
f(t, yt)  

 +
1

  
AS

0

t

(t s)f(s,ys)ds+
1

  
AS

0

t

(t s)Gy(s)ds+
1
Gy(t)  

 +
1

  
C

0

t

(t )B   W
1

[y1 (C(m) S(m)G) (0) S(m)[x0 f(0, )] 

 
  

C
0

m

(m  s)f(s, ys)ds 
  

C
0

m

(m  s)Gy(s)ds  

 
  

S
0

m

(m  s)v(s)ds( )d  + 
1 

  
C

0

t

(t  s)v(s)ds, t  J.  

We can estimate y
 
in a similar fashion. There exist positive 

constants C4, C5, C6, C7 such that  

|y (t)| C4 + C5||yt||+C6

  
|| y

s
|| ds

0

t
+C7

  
p(s)

0

t
(||ys|| + |y (s)|)ds 

   C4 + C5 (t) + C6 

  
|| y

s
|| ds

0

t
+ C7

  
p(s)

0

t
(||ys|| + |y  (s)|)ds  

   C4 + C5v(t) + C6

  
|| y

s
|| ds

0

t
+ C7

  
p(s)

0

t
(||ys|| + |y (s)|)ds.  

Denoting by r(t) the right-hand side of the above inequality, 
we have  

|y (t)|  r(t), t  J 

r(0) = C4 + C5C1 

and  

r (t)  C5v (t) + C6 (t) + C7p(t) ( (t) + |y (t)|)  

        C5v (t) + C6v(t) + C7p(t) (v(t) + r(t))  

        (C2C5 + C6)v(t) +(C3C5 + C7)p(t) (v(t) + r(t)),  

where the last inequality is obtained from the estimate of 
v (t). Let  

w(t) = v(t) + r(t), t  J. 

Then  

c : = w(0) = v(0) + r(0) = C1 + C4 + C1C5 

and  

w (t) = v (t) + r (t)  (C2 + C2C5 + C6)v(t) + (C3 + C3C5 + 
C7)p(t) (v(t) + r(t))  
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= (C2 + C2C5 + C6)w(t) + (C3 + C3C5 + C7)p(t) (w(t))  

 m(t)[w(t) + (w(t))],  

where m(t) : = max{C2 + C2C5 + C6, C3 + C3C5 + C7)}. This 
implies that  

  

ds

s + (s)

ds

s + (s)w(0)

w(t )

c

w(t )

m(s) ds <
ds

s + (s)c0

m

,  

where the last inequality follows from assumption (H7). This 
implies that there exists a constant L such that  

w(t) = v(t) + r(t)  L, t  Jm. 

Thus  

||y(t)||  v(t)  L, t  Jm 

||y (t)||  r(t)  L, t  Jm 

and hence  is bounded.  

Step 2: N1y is convex for each y  Z.  

Indeed, if h1, h2  N1y then there exist v1, v2  SF1, yt,
 y  

 
such 

that for i = 1, 2, we have  

hi(t)=(C(t) S(t)G) (0)+S(t)[x0 f(0, )]+
  

C
0

t

(t s)f(s, ys)ds  

+ 
  

C
0

t

(t  s)Gy(s)ds + 
  

S
0

t

(t  s)vi(s)ds  

+
  

S
0

t

(t  )Bu( )d ,  (3.5)  

were u is defined as in (3. 1) with v replaced by vi. Then it is 
an easy matter to see that, for 0  k  1,  

(kh1 + (1  k)h2)(t) = (C(t)  S(t)G) (0) 

+ S(t)[x0  f(0, )] + 
  

C
0

t

(t  s)f(s, ys)ds 

+ 
  

C
0

t

(t  s)Gy(s)ds + 
  

S
0

t

(t  s)(kv1 

+ (1  k)v2)(s)ds + 
  

S
0

t

(t  )Bu( )d , 

where u is defined as in (3. 1) with v = kv1 + (1  k)v2.  

 Since SF1, yt,
 y  

 
is convex as F is convex, we have v = kv1 

+ (1  k)v2  SF1, yt,
 y  and hence kh1 + (1  k)h2  N1y.  

Step 3: N1(Uq) is bounded in Z for each q  N, where Uq is a 
neighborhood of 0 in Z.  

 We have to show that there exists a positive constant l 
such that for any y  Uq and h  N1y such that ||h||Z  l. In 
other words, we have to bound the sup-norm of both h and 
h´. We can write  

h(t)=(C(t) S(t)G) (0)+S(t)[x0 f(0, )] +
  

C
0

t

(t s)f(s, ys)ds  

+
  

C
0

t

(t s)Gy(s)ds+
  

S
0

t

(t s)v(s)ds+
  

S
0

t

(t )Bu( )d , (3.6)  

and therefore  

|h(t)|  C1 + C2 
  

|| y
s

||
0

t

ds + C3 
  

p
0

t

(s) (||ys|| + |y (s)|)ds (3.7)  

Also,  

h (t) = (AS(t)  C(t)G) (0) + C(t)[x0  f(0, )] + f(t, yt)  

     + 
  

AS
0

t

(t  s)f(s, ys)ds + 
  

AS
0

t

(t  s)Gy(s)ds  

+
  

C
0

t

(t )   BW
1

[y1 (C(m) S(m)G) (0)  S(m)[x0  f(0, )]  

 
  

C
0

m

(m  s)f(s, ys)ds  
  

C
0

m

(m  s)Gy(s)ds  

 
  

S
0

m

(m  s)v(s)ds] ( )d  + 
  

C
0

t

(t  s)v(s)ds, (3.8)  

where u is defined as in (3. 1) and v  SF1, yt,
 y

.
 This implies 

that  

|h (t)|  C4 + C5v(t) + C6 

  
|| y

s
|| ds

0

t
 + C7 

  
p

0

t
(s) (||ys|| + 

|y (s)|)ds (3.9) 

 The assumptions will give uniform estimates for v and y 
which in turn can be used to obtain the required bounds for 
h  and h

 
for every y  Uq and h  N1y.  

Step 4: N1(Uq) is equi-continuous, for each q  N. That is 
the family {h  N1y : y  Uq} is equi-continuous.  

 Let Uq = {y  Z, ||y||  q} for some q  1. Let y  Uq, h  
N1y and t1, t2  Jm such that 0 < t1 < t2  m. Then  

|h(t1)  h(t2)|  

 |[C(t1)  C(t2)] (0)| + |[S(t1)G  S(t2)G] (0)  

+|[S(t1)  S(t2)][x0  f(0, )]| + | 
  

C
0

t

[(t1  s)  C(t2  s)]f(s, 

ys)| 

+|
  

C
t
1

t
2

(t2  s)f(s, ys)ds| + |
  

[C
0

t
1

(t1  s)  C(t2  s)]Gy(s)ds| 

+|
  

C
t
1

t
2

(t2  s)Gy(s)ds| + |
  

[S
0

t
1

(t1  )  S(t2  )]  

   BW
1

[y1  (C(m)  S(m)G) (0)  S(m)[x0  f(0, )]  

  
C

0

m

(m  s)f(s, ys)ds 
  

C
0

m

(m  s)Gy(s)ds  

+ 
  

S
0

b

(m  s)v(s)( )d | + |
  

S
0

b

(t2  )  

   BW
1

[y1  (C(m)  S(m)G) (0)  S(m)[x0  f(0, )]  

  
C

0

m

(m  s)f(s, ys)ds  C(m  s)Gy(s)ds  

+
  

S
0

m

(m  s)v(s)( )d | + |
  

[S
0

m

(t1  s)  S(t2  s)]v(s)| 

+|
  

S
t
1

t
2

(t2  s)v(s)ds|  (3. 10)  

 Now using the bounds on v and y and the given 
assumptions, by a routine calculation, we obtain a positive 
constant L > 0 such that |h(t1)  h(t2)|  



6     The Open Automation and Control Systems Journal, 2009, Volume 2 Dimplekumar N. Chalishajar 

 L{|C(t1)  C(t2)| + |[S(t1)  S(t2)]G| + |S(t1)  S(t2)|} 

  
+ L | C(t

1
s) C(t

2
s) | ds + | C(t

2
s) | ds

t
1

t
2

0

t
1{ }  

  
+ L | S(t

1
s) S(t

2
s) | ds + | S(t

2
s) | ds

t
1

t
2

0

t
1{ }  (3. 11)  

In an analogous way, one can also obtain a similar estimate 
for |h (t1)  h (t2)| as follows.  

|h (t1)  h (t2)|  

 L1{|AS(t1)  AS(t2)| + |[C(t1)  C(t2)]G| + |C(t1)  C(t2)|} 

  
+ L

1
| AS(t

1
s) AS(t

2
s) | ds + | AS(t

2
s) | ds

t
1

t
2

0

t
1{ }  

  
+ L

1
| C(t

1
s) C(t

2
s) | ds + | C(t

2
s) | ds

t
1

t
2

0

t
1{ } (3. 12)  

 Note that C(t) and S(t) are uniformly continuous in the 
uniform operator topology. Thus the above estimates implies 
the required equicontinuity. This also proves the relative 
compactness of N1(Uq). Now it remains to prove the u. s. c 
of N1. By our discussion in Section 1, it is enough to prove 
that N1 has a closed graph. We do this in the next step using 
Lemma 2. 5.  

Step 5: Let hn  N1yn and hn  h
*
, yn  y

*
. We must show 

that h
* 

 N1y
*
. By definition, there exists vn  SF, y

nt, 
y

n
,
 
such 

that  

hn(t) = (C(t)  S(t)G) (0) + S(t)[x0  f(0, )] +
  

C
0

t

(t  s)f(s, 

yns)ds  

+
  

C
0

t

(t  s)Gyn(s)ds +
  

S
0

t

(t  s)vn(s)ds  

+
  

S
0

t

(t  )Bun( )d , (3. 13)  

where un is defined as in (3. 1), where y is replaced by yn. 
The difficulty is that we do not have the convergence of vn 

and hence that of un. In fact, we cannot expect the 
convergence of vn and the existence of v

* 
(to be defined later) 

has to be achieved by a suitable selection. First we separate 
the part of vn from un. Write un = 

 
u

n
+
   
u

n
, , where  

   
u

n
(t) =W

1

y
1

(C(m) S(m)G) (0) S(m)[x(0) f (0, )]  

  
C(m s)Gy

n
(s) ds C(m s) f (s, y

ns
)

0

m

0

m

(t)  (3.14) 

and  

   
u

n
(t) = W

1

S(m s)v
n
(s) ds

0

m

(t).  (3. 15)  

Thus we get from (3. 13) that ˜ 

   
h

n
(t)  : = hn(t)  (C(t)  S(t)G) (0)  S(t)[x0  f(0, )]  

  
C

0

t

(t)Gy
n
(s)ds C

0

t

(t s) f (s, y
ns

)ds S(t )Bu
n
( ) d

0

t

 

   
= S(t )Bu

n
( ) d + S(t s)v

n
(s) ds.

0

t

0

t

(3.16) 

Note that the LHS of the above equation do not contain vn. In 
order to apply Lemma 2. 5, define  : L

1
(Jm, E)  C(Jm, E) 

by  

(v)(t) : = 

   
S(t s)BW

1

S(m )v( ) d
0

m

0

t

(s)ds + S(t s)v(s) ds.
0

t

 

Then 
   
h

n
(t)   (SF, y

nt, 
y

n
) and since hn and yn converges, we 

deduce that 
  
h

n  also converges to h
* 

and is given by  

   
h

*(t) : = h
* 

(t)  (C(t)  S(t)G) (0)  S(t)[x0  f(0, )]  

  
C

0

t

(t  s)Gy
* 

(s)ds  

 
C

c

t

(t  s)f(s, 
  
y

s

*
)ds  

 
S

c

t

(t  ) Bu ( )d ,  (3. 17)  

where  u  has the same definition as  
 
u

n
 with yn replaced by 

y
*
. Finally from Lemma 2. 5, there exists v

* 
 (SF,

  
y

t

*

,y*’) 
such that 

h
*
(t) = (C(t)  S(t)G) (0) + S(t)[x0  f(0, )] +

  
C

0

t

(t  

s)Gy
*
(s)ds  

+
  

C
0

t

(t  s)f(s, 
  
y

s

*
)ds +

  
S

0

t

(t  s)v
*
(s)ds +

  
S

0

t

(t  

)Bu ( )d ,  

where u
* 

is defined as in (3. 1), where y is replaced by y
*
. 

Observe that we do not claim the convergence of un to u
* 

and 
vn to v

*
.  

 This shows that N1 has a closed graph. As a consequence 
of Lemma 2. 6, we deduce that N1 has a fixed point in Z. 
Thus system (1. 1) is controllable on J and this completes the 
proof of the main theorem.  

4. EXAMPLE  

 Consider the following second-order partial differential 
inclusion:  

  

t

x

t
( y,t) f (t, x

t
) x

yy
( y,t)+ u( y,t)

+G
x

t
( y,t)+ F(t, x

t
,

x

t
( y,t))

x(0,t) = x( ,t) = 0 for t > 0

x( y,t) = ( y,t), for r t 0

x

t
( y,0) = y

0
(x), t J = 0, ) for 0 < x <

   (4.18)  

Here one can take arbitrary non linear functions f and F 
satisfying the assumptions (H5)-(H7). Let E = L

2
[0, ] and 

Cr = C([ r, 0], E) be as in Section 1. We use the same 
notations. Then, for example, one can take f : J  Cr   E 

defined by  

f(t, )(y) = (t, (y, r)),   Cr, y  (0, ) 

and F : J  Cr  E  2
E 

be defined by  

F(t, , w)(y) = (t, (y, r), w(y)),   Cr, w  E, y  (0, ) 

with appropriate conditions on  and .  
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 Now u : (0, )  J  R is continuous in t which is the 
control function. Define A : E  E by  

Aw = w , w  D(A) 
where  

D(A) : {w, w  areabsolutely continuous, w   E, w(0) = w( ) 
= 0}. Then A has the spectral representation 

  

Aw = n
2 (w, w

n
)w

n
, w D( A),

n=1

 

where wn(s) = 
 

2
sin ns, n = 1; 2; 3,… is the orthogonal set 

of eigen-functions of A. Further, it can be shown that A is the 

infinitesimal generator of a strongly continuous Cosine 

family C(t), t  R, defined on E which is given by 

  

C(t)w = cos nt(w, w
n
)w

n
, w E.

n=1

 

The associated Sine family is given by 

  

C(t)w =
1

n
sin nt(w, w

n
)w

n
, w E.

n=1

 

The control operator B : L2(J, E)  E is defined by 

(Bu)(t)(y) = u(y, t), y  (0, ), 

which satisfies the condition (H4). Here G is a bounded 
linear operator. Now the PDE (4.18) can be represented in form 
(1.1). Hence, by Section 3, the system (4.18) controllable.  
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