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Abstract: This paper proposes the design of a robust fault estimator for a class of nonlinear uncertain NCSs that ensures 

the fault estimation error is less than prescribed H  performance level, irrespective of the uncertainties and network-

induced effects. T-S fuzzy models are firstly employed to describe the nonlinear plant. Markov processes are used to 

model these random network-induced effects. Sufficient conditions for the existence of such a fault estimator for this class 

of NCSs are derived in terms of the solvability of bilinear matrix inequalities. An iterative algorithm is proposed to 

change this non-convex problem into quasi-convex optimization problems, which can be solved effectively by available 

mathematical tools. The effectiveness of the proposed design methodology is verified by a numerical example.  

1. INTRODUCTION  

 In order to avoid production deteriorations or damages, 
system faults have to be identified and decisions that stop the 
propagation of their effects have to be made. This gives the 
rise to the research on fault detection and isolation (FDI) and 
in recent years, the problem has attracted lots of attention of 
researchers. Among them, the model-based approach is the 
common approach, see survey papers [1-4]. The prime 
importance [5, 6] in designing model-based fault-detection 
system is the increasing robustness of residual to unknown 
inputs and modelling errors and enhancing the sensitivity to 
faults. Two approaches are mainly applied in FDI to address 
these two issues. One is to use the H  norm of transfer 
function matrix from fault to residual signal as a measure to 
estimate the sensitivity to the faults [7, 8]. Another method is 
to adopt the H -filtering formulation to make the error 
between residual and fault as small as possible [9, 10]. 
Furthermore, the existence of time delays is commonly 
encountered in dynamic systems and has to be dealt with in 
the realm of FDI. Some results have been obtained to 
address this issue, see [11-14]. However, these results are 
mostly obtained for systems with state delays.  

 On the other hand, due to the expansion of system 
physical setups and functionality, networked control systems 
(NCSs) have been introduced into the design of control 
systems. NCSs are a type of distributed control systems 
where sensors, actuators, and controllers are interconnected 
by communication networks. It can improve the efficiency, 
flexibility and reliability of integrated applications, and 
reduce installation, reconfiguration and maintenance time 
and costs. Due to its low cost, flexibility, and less wiring, the 
use of NCSs is rapidly increasing in industrial applications, 
including telecommunications, remote process control, 
altitude control of airplanes, and so on, and therefore 
considerable attention has been devoted to the problem of 
networked control systems [15-23]. 
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 Network-induced delays and data packet dropouts are 
two main issues raised in the research of NCSs, see [15, 21-
23]. In the NCS, data is sent through the network in packets. 
Due to this network characteristic, therefore, any continuous-
time signal from the plant are first sampled to be carried over 
the communication network. Chances are that those packets 
can be lost during transmission because of uncertainty and 
noise in communication channels. It may also occur at the 
destination when out of order delivery takes place. 
Furthermore, the network-induced delays are also a 
challenging problem in control of NCSs that occurs while 
exchanging data among devices connected by the 
communication network. Depending on network 
characteristics, such as their topologies, routing schemes, 
etc., these delays can be constant, time varying, or even 
random. They can degrade the performance of control 
systems can even destabilize the system. The severity of the 
network-induced delays is aggravated when data packet 
dropouts occur during a network transmission.  

 On the other hand, the study of Markovian jump linear 
systems has attracted a great deal of attention; see [24-31]. 
This class of systems is normally used to model stochastic 
systems which change from one mode to another randomly 
or according to some probabilities. Some of these results 
[28-31] are applied to Markovian jump linear systems with 
mode-dependent time delays. In [31], stabilization of 
networked control systems with the sensor-to-controller and 
controller-to-actuator delays is considered in the discrete-
time domain. According to the characteristics of NCSs, the 
Markov process is an ideal model of the random time delays 
happen in the communication network.  

 According to the characteristics of NCSs, the Markov 
process is an ideal model of the random time delays happen 
in the communication network. Due to the characteristics of 
communication network, furthermore, network-induced time 
delays are input delays. It should be noted that in FDI with 
time-varying input delays, it is difficult to analyze H  

performance or disturbance attenuation based on the gain 
characterization, because of the state variation depends not 
only on the current but also the history of exterior  disturbance  
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input. To the best of authors’ knowledge, fault estimation 
problem has not been well studied for systems with input-
delays.  

 Motivated by the aforementioned issues, this paper firstly 
introduces a new disturbance attenuation notation for 
systems with input delays. We approximate the nonlinear 
plant by a Takagi-Sugeno model [32]. This fuzzy modelling 
is simple and natural. The system dynamics are captured by 
a set of fuzzy implications which characterize local relations 
in the state space. The main feature of a Takagi-Sugeno 
fuzzy model is to express the local dynamics of each fuzzy 
implication (rule) by a linear system model. The overall 
fuzzy model of the system is achieved by fuzzy "blending" 
of the linear system models. In light of such formulation, this 
paper proposes a robust fault estimator that ensures the fault 
estimation error is less than prescribed H  performance 
level, irrespective of the uncertainties and network-induced 
effects, i.e., network-induced delays and packet dropouts in 
communication channels, which are to be modeled by the 
Markov processes. Based on the Lyapunov-Razumikhin 
method, the existence of a delay-dependent fault estimator 
for the nonlinear plant is given in terms of the solvability of 
bilinear matrix inequalities (BMIs). An iterative algorithm is 
proposed to change this non-convex problem into quasi-
convex optimization problems, which can be solved 
effectively by available mathematical tools.  

 This paper is organized as follows. Problem formulation 
and preliminaries are given in Sections 2. Section 3 gives the 
main results of this paper. An illustrating example is 
presented in Section 4. Finally, concluding remarks are 
drawn in Section 5. 

2. PROBLEM FORMULATION AND PRELIMINARIES 

 In this paper, we describe the nonlinear plant as follows: 
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where x(t)  n
 is the state vector, 

   
(t)   p

 and f(t)  q 

are, respectively, exogenous disturbances and faults which 
belong to L2[0; ), y(t)  l

 denotes the measurement 
output. 

 Furthermore, i  IR = {1,…,r}, r is the number of fuzzy 
rules; k(t) are premise variables, M · are fuzzy sets, k = 1,…, 
p, p is the number of premise variables 
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 Here, M ( k(t)) denote the grade of membership of k(t) 
in M . 

 In addition, matrices Ai and Ci characterize the 
uncertainties in the system and satisfy the following 
assumption:  

Assumption 2.1. 

  

A
i

C
i

=
H

1i

H
2i

F(t)E
i
,  

where H1i, H2i, and Ei are know read constant matrices of 
appropriate dimensions, and F(t) is an unknown matrix 
function with Lebesgue-measurable elements and satisfies 
F(t)T

 F(t)  I, in which I is the identity matrix of appropriate 
dimension.  

 In this paper, we consider a nonlinear networked control 
system of which the plant is described by the T-S model (1). 
The setup of the overall configuration is depicted in Fig. (1), 
where (t)  0 is the random time delay from sensor to 
controller. These delays are assumed to be upper bounded.  

 

Fig. (1). Block diagram of a fault estimator for a nonlinear 

networked control system. 

 The plant outputs are sampled with periodic sampling 

interval hs
 and sent through the network at times khs, k  . 

In the absence of data dropouts, it can be noted that the 

measurement signals {y(khs
), k  } are received by the 

controller side at times khs
 + 

  k

s where 
  k

s
 is the delay that 

measurement sent at khs
 experiences. A fault estimation filter 

is therefore constructed t  [khs
 + 

  k

s ,(k + 1)hs
 + 

    k+1

s
] as 

follows:  
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where y(khs
) is equal to the last successfully received 

measurement signal, 
  
x̂(t)  is the filter’s state vector, rs(t) is 

the residual signal, and matrices 
  
Â

ij
, B̂

i
,Ĉ

i
and D̂

i
 the 

filter’s parameters.  

 It should be noted that in this system setup, the premise 
vector (t) is connected to the fault estimator via point-to-
point architecture, which is immune to network-induced 
delays.  

 Defining  

   
(t) := t kh

s , t kh
s
+

k

s ,(k +1)hs
+

k+1

s ,  (3) 
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(2) can be rewritten as:  
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Ĉ

i
x̂(t)+ D̂

i
y(t (t)) ,

(4) 

where  

    
(t) [min

k
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s },hs
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k

{
k+1

s }], k (t) = 1,  (5) 

Fig. (2) shows (t) with respect to time where for all 

    
k,

k

s
=

s ,  and constant sampling interval hs
 with T = khs

 + 
s
. The derivative of (t) is almost always one, except at the 

sampling times, where (t) drops to 
s
.  

 

Fig. (2). Evolution of (t) with respect to time without packet 

dropout. 

 Furthermore, data packet dropout can be viewed as a 
delay grows beyond the defined boundary in (5). Let us 
define ns as the number of consecutive dropouts in the 
network channel. Then we can get:  

    
(t) [min

k

{
k

s },(n
s
+1)hs

+ max
k

{
k+1

s }], k (t) = 1,    (6)  

 If the measurement packet sent at khs is lost, for instance, 
then (t) increases up to 2hs

 + 
s
. We can see this scenario 

from Fig. (3).  

 

Fig. (3). Evolution of (t) with respect to time with packet dropout 

at khs. 

 In [33], a Markov chain is utilised to model network 
delays. Modes of the Markov chain are defined as different 
network load conditions. For each mode of in the Markov 
chain, a corresponding delay is assumed to be time-varying 
but upper bounded by a known constant.  

 Following the same line as [33], we use a Markov 
process { (t)} to model 

   k

s  { (t)} is a continuous-time 
discrete-state Markov process taking values in a finite set S = 
{1, 2,···,s} with transition probability matrix given by:  

    

Pr{ (t + ) = | (t) = }=
+ o( ),

1+ + o( ), = ,
 (7) 

where  > 0, and 
    
lim 0

o( )
= 0  Here 
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transition rate from mode  to mode 
 

(  =
 

), and 

    
=

=1,

S

.  

 Together with each mode in the Markov process, the 
corresponding delay is assumed to be time-varying but upper 
bounded by a known constant. Furthermore, we assume that 
the mode of the Markov process or state of the network load 
condition is accessible by the controller and the sensor. The 
sensor sends the mode of the network load condition and the 
measurement to the controller. These assumptions are 
reasonable and they are employed in [33].  

 From (6), { (t)} can be regarded without loss of 
generality as the model of (t).  

 Therefore, following the modelling procedure presented 
in paper 2, for the nonlinear plant represented by (1), the 
fuzzy fault estimator at time t is inferred as follows:  
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Ĉ

i
( (t))x̂(t)

+ D̂
i
( (t))y(t ( (t),t))

 (8) 
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Â
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rule are parameters of the fault estimator which are to be 
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 The aim of this paper is to design a fault estimator of the 
form (8) such that the following inequality holds:  

 For (9) with its zero state response 
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for all t  2     t, then a fault estimator is designed 
satisfying a disturbance attenuation level .  

 In this paper, we assume u(t) = 0 before the first control 
signal reaches the plant. From here, i( (t)) and j ( (t)) are 
denoted as i and j respectively for the convenience of 
notations. In the symmetric block matrices, we use (*) as an 
ellipsis for terms that are induced by symmetry. Âij( (t)) is 
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3. MAIN RESULT  

The following theorem provides sufficient conditions for the 
existence of a mode-dependent fault estimator for the system 
(9) that guarantees disturbance attenuation level .  
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where ij ( ) and ij  ( ) are represented at the next page and  
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then (9) holds for delay ( , t) satisfying ( , t)  ( ) with 
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Proof: Note that for each (t)=   S for the system (9) at 
time t, it follows from Leibniz-Newton Formula  
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Then the closed-loop system (9) can be rewritten as:  
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where ( , t) is constant and Eij = Aij + Bij for the sake of 
simplification of notation.  

 Select a stochastic Lyapunov function candidate as  

     
V (x(t), (t),t) = x

T (t)P( (t))x(t)  (24) 

 

    

ij
( ) =

1i
( ) ( )T ( )T ( )T ( )T ( )T

(
1
+ 4

2
) ( )I

2ij
( ) ( )T ( )T ( )T ( )T

0 0 I ( )T ( )T ( )T

0 0 0 I ( )T ( )T

B
i

T B
i

T X ( ) 0 0 d
f
I ( )T

G
i

T G
i

T X ( ) 0 0 0 d
f
I

0 D
j

T F
i
( ) 0 0 0 0

0 J
j

T F
i
( ) 0 0 0 0

L( ) 0 D̂
i
( )C

j
0 0 I

ZT ( ) 0 0 0 0 0

1ij
H

1i

T

1ij
H

1i

T X T ( )+ H
2 j

T F
i

T ( )) 0 0 0 0

E
i
Y ( ) E

i
0 0 0 0

0 0 0 0 0 0

0 0 E
i

0 0 0

 

     

    

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T

d
f
I ( )T ( )T ( )T ( )T ( )T ( )T ( )T

0 d
f
I ( )T ( )T ( )T ( )T ( )T ( )T

D̂
i
( )D

j
D̂

i
( )J

j
I ( )T ( )T ( )T ( )T ( )T

0 0 0 Q( ) ( )T ( )T ( )T ( )T

0 0 0 0
1ij

I ( )T ( )T ( )T

0 0 0 0 0
1ij

I ( )T ( )T

0 0
2ij

H
2 j

T
o D̂

i

T ( ) 0 0 0
2ij

I ( )T

0 0 0 0 0 0 0
2ij

I

 

 



Uncertain Nonlinear Networked Control Systems The Open Automation and Control Systems Journal, 2009, Volume 2     37 

where P( (t)) is the positive constant symmetric matrix for 
each (t)=  S. It follows  
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2
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the derivative of the function of V (  x (t), (t),t) along the 
trajectory of the joint Markov process {  x (t), (t),t  0}at the 
point {  x (t), (t)= } at time t; see [24] and [34].  
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+ T (t + ) (t + )] x
T (t) ( ,t) ( 1 + 2 )P( )x(t)}

(31) 

 Furthermore, by adding and subtracting eT
 (t)e(t) + 

df   
T (t)

   
(t)  to and from (31), we can get:  

      

AV (x(t), (t),t)

x
e

T (t)M ( ( ,t), )x
e
(t)+ xT (t ( ,t))x(t ( ,t))

eT (t)e(t)+
d

f

T (t) (t)

+ ( ,t)[
1

xT (t + )P( )x(t + )

+
2

xT (t ( ,t)+ )P( )x(t ( ,t)+ )

+
T (t + ) (t + )] xT (t) ( ,t) (

1
+

2
)P( )x(t)

 

where 
     
x

e
(t) = [x

T (t) x
T (t ( ,t)) T (t)]T ,  is given by:  

     

M ( ( ,t), ) = μ
i
μ

j {
j=1

r

i=1

r

ij

T P( )+ P( )
ij

T

+3 ( ,t)
2

P( )

+ ( ,t) (
1

+
2

)P( )

+
j=1

S

P( )

( )T ( )T

0 I ( )T

C
ij

T P( ) 0
d

f

I

 

    

+

D
1

i

T

D
2

ij

T

D
3

ij

T

D
1

i

D
2

ij

D
3

ij
}  

We denote 

     

(i, j) =

ij

T P( )+ P( )
ij

T

+3 ( ,t)
2

P( )

+ ( ,t) (
1

+
2

)P( )

+
j=1

S

P( )

( )T ( )T

0 I ( )T

C
ij

T P( ) 0
d

f

I

,

D
T (i, j) =

D
1

i

T

D
2

ij

T

D
3

ij

T

  (32) 

Then  

     

M ( ( ,t), )

= μ
i

2

i=1

r

(i, i)+ D
T (i, i)D(i, i)

+2 μ
i
μ

j

1

2i< j

r

i=1

r

(i, j)+ D
T (i, j)D(i, j)

 (33) 

 In this paper the time delays are assumed to be bounded, 
hence ( , t) can also be assumed to be bounded, that is, ( , 
t)  ( ), where ( ) is the constant given in the theorem. 
Using this fact, we learn that:  

     
M ( ( , t), ) M ( ( ), )  

 Hence, if (13) and (14) hold, it can be shown later that 

    
M ( ( ), )  < 0 for  = 1. Then we get  

     

AV (x(t), (t),t)

< x
e

T (t)x
e
(t)+ xT (t ( ,t))x(t ( ,t)) eT (t)e(t)

+
d

f

T (t) (t)+ ( ,t)[
1

xT (t + )P( )x(t + )

+
2

xT (t ( ,t)+ )P( )x(t ( ,t)+ )

+
T (t + ) (t + )] xT (t) ( ,t) (

1
+

2
)P( )x(t)

(34) 
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where  

     
= min {

min
( M ( ( ),1))}.  

 

 It is easy to see that  > 0.  

 In this paper, we assume that for all   [  ( , t), 0], a 
scalar  > 0 exists such that  

      
x(t + )  x(t) .  (35) 

 It can be noted from [35] that (35) is not restrictive since 
we allow  to be any value, greater or smaller than 1. In the 
sequel, therefore, we assume there exists  < . Hence, by 
Dynkin’s formula [27], (34) becomes:  

      

E{V (x(t), (t), t)} E{V (x(0), (0),0)}

E{ eT (t)e(t) dt
0

T
f

}

+ E{ sup
x 00

T
1 T (t + ) (t + )dt}

+ ( , t)
1

E{ xT (t + )P(
0

T
f

)x(t + )dt}

2
E{ xT (t ( , t) + )P(

0

T
f

) x(t ( , t) + )dt}

( , t) (
1
+

2
)E{ xT (t)P(

0

T
f

)x(t)dt}

 

with  = max( ( )) + df 
and  = max( ( )).  

 Applying the Razumikhin-type theorem for stochastic 
systems [36], we assume that for any  > 1, the following 
inequality holds:  

    
E min

(t ) S

V (x( ), ( ), ) < E {max
(t ) S

V (x(t), (t), t)  (36) 

 Using the fact that   x (0) = 0and V(  x (Tf))  0 for all Tf   
0 and bearing in mind the assumption that ( , t)  ( ), we 
have:  

    

E{ eT (t)e(t) dt
0

T
f

}

E{ sup
x 00

T
1 T (t + ) (t + )dt}

 

 This satisfies the conditions set in Definition 2.1 and we 
can say the system (9) has a disturbance attenuation level .  

 Hereinafter, we will show that (13) and (14) guarantees 

    
M ( ( ),1) < 0.  

 Applying Schur complement to 
    
M ( ( ),1) < 0,  we can 

have:  

     

ij

T P( )+ P( )
ij

+ ( )
1

+ 4
2

P( )

+
j=1

S

P( )

( )T ( )T ( )T

0 I ( )T ( )T

C
ij

T P( ) 0
d

f

I ( )T

D
1

i

D
2

ij

D
3

ij

I

< 0  (37) 

 Using the partition 

    

P( ) =
X ( ) Y

1( ) X ( )

Y
1( ) X ( ) X ( ) Y

1( )

,  

multiplying (37) to the left by 
  

 
 
and to the right by 

   

T  

 

 

      

AV (x(t), (t), t)

x(t)P( )x(t) + xT (t)P( )x(t) + xT (t)P( )x(t)
=1

S
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ij
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T P( )x(t)
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kl

x(t + ) + B
kl
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kl
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kl
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kl
B
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1
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+
1

2

xT (t)P( )B
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B

kl
P 1( )BT

kl
B

T

ij
P( )x(t) +

2
xT (t ( , t) + )P( )x(t ( , t) + )

+xT (t)P( )B
ij
C

kl
C

T

kl
B

T

ij
P( )x(t) + T (t + ) (t + )]

                                   (27) 
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where 

    

=

J
T

0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

 with 

    

J =
Y ( ) I

Y ( ) 0
,  using 

Assumption 2.1 and Schur complement, and applying the 

controllers defined as in (20)-(22) yields (38) at the same 

page.  

 Using Lemma 2.1, it is easy to see that (13) guarantees 
the existence of (38), which infers 

    
M ( ( ),1) < 0.  Using 

the continuity property of the eigenvalues of 
    
M ( , )  with 

respect to , there exists a sufficiently small  > 0 such 

 

     

1i ( ) ( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T ( )T
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0 0 0 I ( )T ( )T ( )T ( )T ( )T ( )T

Bi
T Bi

T X ( ) 0 0 d f I ( )T ( )T ( )T ( )T ( )T
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T Gi
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0 Dj
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0 J j
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0 0 0 0 0 0 0 0
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that
    
M ( ( ),1+ ) < 0.  Hence, there exists a  > 1 such 

that 
    
M ( ( ), ) < 0  still holds.  

 Next, it will be shown that (15)-(19) are derived from 
(28)-(30).  

 Firstly, the inequality (28) can be rewritten as follows by 
applying Schur complement:  

     

1 P
1( ) A

ij

A
T
ij

P( )

< 0  (39) 

 Using Assumption 2.1, multiplying (39) to the left by 

    

J
T

P( ) 0

0 J
T

, and to the right by 

    

P( )J 0

0 J

,  and 

using the controllers defined as (20)-(22) yields:  

    

1
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i
Y ( )C

j

T
F

i

T ( )
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A
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+

H
1i

X ( )H
1i

0

0

F(t) 0 0 E
i
Y ( ) E

i

+ 0 0 E
i
Y ( ) E

i

T

F
T (t)

H
1i

X ( )H
1i

0

0

T

< 0.

 (40) 

 To address the term containing 
    

Y ( )Y 1( )
j=1

S

 we 

first rewrite (40) into the following equivalent form:  

    

R
1

( )T ( )T ( )T

0
( Y
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S

( Y
1( ))

=1,

S
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0 Y
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S

R
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H
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1i
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i
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i
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i

T

F
T (t)

H
1i

X ( )H
1i

0

0

T

< 0.

 (41) 

 On the left hand side of (41), if the second term is less 
than zero, we get:  

    

1
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1
( )T ( )T ( )T
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1
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S
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i
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i
Y ( ) E

i
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F
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H
1i
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1i

0
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(42) 

 By defining new variables R4  
and using (16), we get  

    

R
4

R
4
> Y

1( )
=1,

S

Y
1( )

=1,

S

 

R4  
> jY 1(j), which also implies that 

 Therefore, by applying Lemma 2.1 and Schur 
complement, it is not hard to see that if (15) holds, (42) is 
guaranteed and (28) is thereby satisfied.  

 Furthermore, we address the negativeness of the second 
term on the left hand side of (41). Firstly, we want the 
second term is less than zero, that is:  

    

R
1

( )T ( )T ( )T

0
( Y

1( ))
=1,

S

( Y
1( ))

=1,

S
( )T ( )T

0 Y
1( )

=1,

S

R
2

( )T

0 0 0 R
3

< 0    (43) 

By multiplying (43) both sides by  

     

I 0 0 0

0 ( Y
1( )) 1

=1,
S 0 0

0 0 I 0

0 0 0 I

,  

we can see that if there exists (17) , (43) holds. It is 
straightforward to obtain that the third term is negative as 
well if (17) holds.  

 (18)-(19) can be derived from (29)-(30) using the same 
procedure.  

 Besides, P( ) > 0 is equivalent to  
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J
T

P( )J =
Y ( ) I

I X ( )
> 0  (44) 

 We therefore have the inequality condition (12).  

 This completes the proof. 

 It should be noted that terms 
    
Y ( )C

j

T
F

i

T ( ),
1

X ( )  and 

   
1
Y ( )  in (13)-(19) are not convex constraints, which are 

difficult to solve. We therefore propose the following 

algorithm to change this non-convex feasibility problem into 

quasi-convex optimization problems [37].  

 Iterative linear matrix inequality (ILMI) algorithm  

Step 1.  Find 
   
X ( ),Y ( ), D̂

i
( ), F

i
( ) and L

i
( )  subject to 

(12) and (13) with ( ) = 0.  

Let n = 1 and Xn( )= X( ) and Yn( )= Y ( ).  

Step 2.  Solve the following optimization problem for 

   n
D̂

i
( ), F

i
( ) and L

i
( )  with the given ( ) and 

Xn( ) and Yn( ) obtained in the previous step:  

OP1:  Minimize n subject to the following LMI 
constraints:  

Left hand-side of (13) 

    

n

Y
n

( ) I

I X
n

( )
0

0 0

< 0  (45) 

 and (12), (15)-(19).  

Step 3.  If n < 0, Xn( ), Yn( ) and 
   
D̂

i
( ),  Fi( ), and Li( ) are a 

feasible solution to the BMIs and stop.  

Step 4. Set n = n + 1. Solve the following optimization 

problem for n, Xn( ) and Yn( ) with 
   
D̂

i
( ),  Fi( ), and 

Li( ) obtained in the previous step:  

OP2:  Minimize n subject to LMI constraints 
(45), (12), and (15)-(19).  

Step 5.  If n < 0, Xn( ), Yn( ) and 
   
D̂

i
( ),  Fi( ), and Li( ) are a 

feasible solution to the BMIs and stop.  

Step 6.  Set n = n + 1. Solve the following optimization 

problem for Xn( ) and Yn( ) with n, 
   
D̂

i
( ),  Fi( ), and 

Li( ) obtained in the previous step: 

OP3:  Minimize trace (

    

Y
n

( ) I

I X
n

( )
) subject 

to IXn( ) LMI constraints (45), (12), and 

(15)-(19). 

Step 7.  Let Tn = 

    

T
n

=

Y
n

( ) I

I X
n

( )
.  If ||Tn  Tn 1| | / | |  

Tn | | < ,  is a prescribed tolerance, go to Step 8. 

Else, set n = n + 1, Xn( )= Xn 1( ) and Yn( )= Yn 1( ), 

then go to Step 2.  

Step 8. A fault estimator for the system may not be found, 

stop.  

Remark 3.1. 

(1)  In Step 1, the initial data is obtained by assuming that 
the system has no time delay.  

(2)  A term 

    

n

Y
n

( ) I

I X
n

( )
0

0 0

is introduced in (13) 

to relax the LMI constraints. It is referred as /2-

stabilizable problem in [38]. If an n < 0 can be 
found, the robust fault estimator can be obtained. The 
rationale behind this concept can also be found in 

[39].  

(3) The optimization problem in Step 2 and Step 4 is a 
generalized eigenvalue minimization problem. These 
two steps guarantee the progressive reduction of n. 
Step 6 guarantees the convergence of the algorithm.  

4. NUMERICAL EXAMPLE  

 To illustrate the validation of the results obtained 
previously, we consider the following problem of balancing 
an inverted pendulum on a cart. The equations of motion of 
the pendulum are described as follows:  

     

x1 = x2

x2 =
g sin(x1) amlx2

2 sin(2x1) 2 cos(x1)u

4l 3 aml cos2(x1)
+

 (46) 

where x1 denotes the angle of the pendulum from the vertical 
position, and x2 is the angular velocity. g = 9.8m/s2 is the 
gravity constant, m is the mass of the pendulum, a =1/(m + 
M), M is the mass of the cart, 2l is the length of the 
pendulum, and u is the force applied to the cart. In the 
simulation, the pendulum parameters are chosen as m =2kg, 
M =8kg, and 2l =1.0m.  

 We approximate the system (46) by the following T-S 
fuzzy model:  

     

Rule 1: If x1(t) is M1, then

x(t) = ( A1 + A1)x(t)+ B1 (t)

+ (B21
+ B21

)u(t)

(t) = C1x(t)+ D12u(t)

y(t) = C2x(t)

 

     

Rule 2: If x1(t) is M2 , then

x(t) = ( A2 + A2 )x(t)+ B1 (t)

+ (B22
+ B22

)u(t)

(t) = C1x(t)+ D12u(t)

y(t) = C2x(t)
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A1 =

0 1

g

4l 3 aml
0

, B21
=

0

4l 3 aml

A2 =

0 1

2g

(4l 3 aml 2 )
0

, B22
=

0

4l 3 aml 2

B1 =
0

1
, C1 = 1 0.3 , D12 = 0.01, C2 = 9 0.1

H11
= H12

=
0.3 0

0 0.3
, E11

= E12
=

0.5 0

0 0.5
,

E21
= E22

=
0

0.2

 

and  = cos(88 ). The disturbance attenuation level  is set to 
be equal to 1 in this example and 1 = 2 = 1. The 
membership functions for Rule 1 and Rule 2 are shown in 
Fig. (4).  

 In our simulation, we assume (1) = 0.045 and (2) = 
0.025. We assume the sampling period is 0.01, that is, hs

 = 
0.01, and ns

 = 0 which means no data packet dropout 
happens in the communication channel.  

 The random time delays exist in S = {1, 2}, and its 
transition rate matrices are given by:  

   

=
1 1

2 2

 

 In this example, the fault signal is simulated as follows:  

   

f (t) =

1 t [5,10]

0 others
 

 For the sake of simplicity, 
   
D̂

i
( )  is assumed to be a zero 

matrix in this example. By applying Theorem 3.1 and the 

iterative algorithm, we get the following fault estimator for  
 S = {1, 2} of the form (20)-(22) where:  

   

Â11(1) =
5.2761 42.358

79.949 18.168
,  

   

Â12(1) =
6.3274 41.749

82.695 18.11
,

Â21(1) =
6.1284 44.1547

74.265 19.541
,

Â22(1) =
6.1147 43.224

78.4474 19.3218
,

B̂1(1) =
1.0018

0.0029931
, B̂2(1) =

0.91953

0.18201
,

Ĉ1(1) = 2.06 7.8782 ,Ĉ2(1) = 1.9243 7.6107 ,

Â11(2) =
10.386 41.1

96.295 17.874
,

Â12(2) =
2.4862 42.937

70.708 18.469
,

Â21(2) =
8.546 44.587

85.4447 17.214
,

Â22(2) =
2.5548 45.254

88.214 17.228
,

B̂1(2) =
1.1029

0.27829
, B̂2(2) =

1.0011

0.0094
,

Ĉ1(2) = 2.0784 8.0286 ,Ĉ2(2) = 1.9683 7.7673 ,

 

 

Fig. (4). Membership function. 
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 Histories of the residual signals rs
(t) along with the fault 

signal f(t) are shown in Fig. (5). The results demonstrate that 
the designed fault estimator meets the performance 
requirement.  

5. CONCLUSION  

 In this paper, a technique of designing a delay-dependant 
fuzzy fault estimator for an nonlinear uncertain net-worked 
control system with random communication network-
induced delays and data packet dropouts has been proposed. 
The Lyapunov-Razumikhin method has been employed to 
derive such a fault estimator for this class of systems. 
Sufficient conditions for the existence of such a fault 
estimator for this class of nonlinear NCSs are derived in a 
form of bilinear matrix inequalities. We finally use a 
numerical example to demonstrate the effectiveness of this 
methodology at the last section.  
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